Statistics 610 fall 2014

Homework \# 1
Due: Thursday 11 September
[1.1] Suppose $T: \mathbb{R} \rightarrow \mathbb{R}^{k}$ with $T(z)=\left[T_{1}(z), \ldots, T_{k}(z)\right]$. Let f_{0} be a nonnegative function on \mathbb{R}.
(i) Define Θ as the set of $\theta=\left[\theta_{1}, \ldots, \theta_{k}\right] \in \mathbb{R}^{k}$ for which

$$
\int \exp (\theta \cdot T(z)) f_{0}(z) d z<\infty
$$

Use the Hölder inequality (see below) to show that Θ is convex.
(ii) Show that the function Ψ defined on Θ by

$$
e^{\Psi(\theta)}=\int \exp (\theta \cdot T(z)) f_{0}(z) d z
$$

is convex. Hint: Consider the line $\theta_{r}=(1-r) \theta_{0}+r \theta_{1}$ for $0 \leq r \leq 1$, for given θ_{0}, θ_{1} in Θ. Calculate derivatives (with respect to r) of $\exp \left(\Psi\left(\theta_{r}\right)\right)$.
[1.2] Consider the maximum likelihood estimator based on the model \mathbb{P}_{θ} : the data x_{1}, \ldots, x_{n} are independent observations from the discrete distribution with $f_{\theta}(z)=\theta^{z}(1-\theta)^{1-z}$ for $z \in\{0,1\}$, and $\theta \in[0,1]$. (Independent coin tosses with probability θ of heads.) In class I defined the functions $G_{n}(t)$ and $G_{\theta}(t)$, and gave a quadratic approximation to G_{n} under \mathbb{P}_{θ}. Draw pictures (computer generated) that illustrate the fact that $G_{n} \approx G_{\theta}$ for n large (how large?); and near θ, the function G_{n} is well approximated by a particular quadratic when n is large enough. Give details (code) for how you produce the pictures and calculate the approximations.
[1.3] Suppose f and g are probability density functions on the real line. Show that

$$
\int_{-\infty}^{+\infty} f(z) \log (f(z) / g(z)) d z \geq \int_{-\infty}^{+\infty}(\sqrt{f(z)}-\sqrt{g(z)})^{2} d z
$$

by arguing as follows. Define $\Delta(z)$ by $\sqrt{f(z)}=\sqrt{g(z)}(1+\Delta(z))$. Show that

$$
\int f \log (f / g) \geq 2 \int g(1+\Delta) \Delta=2 \int \sqrt{f}(\sqrt{f}-\sqrt{g}) .
$$

Then use the fact that

$$
\int(\sqrt{f}-\sqrt{g})^{2}=2-2 \int \sqrt{f g}
$$

Hölder's inequality

Suppose F and G are nonnegative functions for which $\int F f_{0}<\infty$ and $\int G f_{0}<\infty$. For each r in $(0,1)$,

$$
\int F^{r} G^{1-r} f_{0} \leq\left(\int F f_{0}\right)^{r}\left(\int G f_{0}\right)^{1-r}
$$

Proof Check that both sides of the equality are divided by C^{r} if F is replaced by F / C. Choose $C=\int F f_{0}$ to see that, without loss of generality, $\int F f_{0}=1$. Similarly, without loss of generality, suppose $\int G f_{0}=1$. For the integrand on the left-hand side note that

$$
\begin{aligned}
F^{r} G^{1-r} & =\exp (r \log F+(1-r) \log G) \\
& \leq \exp (\log (r F+(1-r) G)) \quad \text { by concavity of the log function } \\
& =r F+(1-r) G
\end{aligned}
$$

Multiply both sides by f_{0} then integrate to deduce that

$$
\int F^{r} G^{1-r} f_{0} \leq \int(r F+(1-r) G) f_{0}=1
$$

