Statistics 610 fall 2014 Homework # 1 Due: Thursday 11 September

- [1.1] Suppose $T : \mathbb{R} \to \mathbb{R}^k$ with $T(z) = [T_1(z), \dots, T_k(z)]$. Let f_0 be a nonnegative function on \mathbb{R} .
 - (i) Define Θ as the set of $\theta = [\theta_1, \dots, \theta_k] \in \mathbb{R}^k$ for which

$$\int \exp(\theta \cdot T(z)) f_0(z) \, dz < \infty.$$

Use the Hölder inequality (see below) to show that Θ is convex.

(ii) Show that the function Ψ defined on Θ by

$$e^{\Psi(\theta)} = \int \exp(\theta \cdot T(z)) f_0(z) \, dz$$

is convex. Hint: Consider the line $\theta_r = (1 - r)\theta_0 + r\theta_1$ for $0 \le r \le 1$, for given θ_0, θ_1 in Θ . Calculate derivatives (with respect to r) of $\exp(\Psi(\theta_r))$).

- [1.2] Consider the maximum likelihood estimator based on the model \mathbb{P}_{θ} : the data x_1, \ldots, x_n are independent observations from the discrete distribution with $f_{\theta}(z) = \theta^z (1-\theta)^{1-z}$ for $z \in \{0,1\}$, and $\theta \in [0,1]$. (Independent coin tosses with probability θ of heads.) In class I defined the functions $G_n(t)$ and $G_{\theta}(t)$, and gave a quadratic approximation to G_n under \mathbb{P}_{θ} . Draw pictures (computer generated) that illustrate the fact that $G_n \approx G_{\theta}$ for n large (how large?); and near θ , the function G_n is well approximated by a particular quadratic when n is large enough. Give details (code) for how you produce the pictures and calculate the approximations.
- [1.3] Suppose f and g are probability density functions on the real line. Show that

$$\int_{-\infty}^{+\infty} f(z) \log \left(f(z)/g(z) \right) \, dz \ge \int_{-\infty}^{+\infty} \left(\sqrt{f(z)} - \sqrt{g(z)} \right)^2 dz$$

by arguing as follows. Define $\Delta(z)$ by $\sqrt{f(z)} = \sqrt{g(z)}(1 + \Delta(z))$. Show that

$$\int f \log(f/g) \ge 2 \int g(1+\Delta)\Delta = 2 \int \sqrt{f} \left(\sqrt{f} - \sqrt{g}\right).$$

Then use the fact that

$$\int \left(\sqrt{f} - \sqrt{g}\right)^2 = 2 - 2 \int \sqrt{fg}.$$

Hölder's inequality

Suppose F and G are nonnegative functions for which $\int Ff_0 < \infty$ and $\int Gf_0 < \infty$. For each r in (0, 1),

$$\int F^r G^{1-r} f_0 \le \left(\int F f_0\right)^r \left(\int G f_0\right)^{1-r}$$

PROOF Check that both sides of the equality are divided by C^r if F is replaced by F/C. Choose $C = \int Ff_0$ to see that, without loss of generality, $\int Ff_0 = 1$. Similarly, without loss of generality, suppose $\int Gf_0 = 1$. For the integrand on the left-hand side note that

$$F^{r}G^{1-r} = \exp(r\log F + (1-r)\log G)$$

$$\leq \exp(\log(rF + (1-r)G)) \qquad \text{by concavity of the log function}$$

$$= rF + (1-r)G.$$

Multiply both sides by f_0 then integrate to deduce that

$$\int F^r G^{1-r} f_0 \le \int (rF + (1-r)G) f_0 = 1.$$