Statistics 610 fall 2014 Homework # 4 Due: Thursday 2 Octoberber

[4.1] In class I argued geometrically that, for independent N(0, 1)-distributed Z_i 's the random variable $R = \left(\sum_{i \le n} Z_i^2\right)^{1/2}$ has a continuous distribution with density

 $g(r) = (2\pi)^{-n/2} e^{-r^2/2} n r^{n-1} B_n$ for $r \ge 0$,

where B_n denotes the volume of the unit ball in \mathbb{R}^n .

- (i) Find the density function for the distribution of $W = R^2/2$.
- (ii) Find B_n . (Hint: Gamma function.)
- [4.2] Suppose X is an $m \times 1$ random vector with a $N(\mu, V)$ distribution. Suppose V is nonsingular.
 - (i) Let $X = [X_1, X_2]$, where X_i is $m_i \times 1$ and $m_1 + m_2 = m$. Show (by direct calculation) that the joint density for (X_1, X_2) factorizes into the product of the marginal densities if $cov(X_1, X_2) = 0$.
 - (ii) (harder) Suppose $X = [Y_1, Y_2, W]$ where Y_1 and Y_2 are real random variables and W is an $(m-2) \times 1$ random vector. Show that Y_1 and Y_2 are conditionally independent given W = w if the [1, 2] element of V^{-1} is zero.
- [4.3] Let \mathbb{P}_{θ} denote the uniform distribution on $[\theta, 1 + \theta]^2$. Under \mathbb{P}_{θ} the coordinates of the point $x = (x_1, x_2)$ are independent, each distributed uniformly on $[\theta, 1 + \theta]$. The set

$$J_x = \{t \in \mathbb{R} : \max(x_1, x_2) - 1 + \epsilon \le t \le \min(x_1, x_2) - \epsilon\}$$

is a 90%-confidence interval for θ if $(1 - 2\epsilon)^2 = 0.9$. Find

 $\mathbb{P}_{\theta}\{\theta \in J_x \mid |x_1 - x_2| = r\}$

for 0 < r < 1. A picture would be good.