Statistics 610 fall 2014

Homework \# 4
Due: Thursday 2 Octoberber
[4.1] In class I argued geometrically that, for independent $N(0,1)$-distributed Z_{i} 's the random variable $R=\left(\sum_{i \leq n} Z_{i}^{2}\right)^{1 / 2}$ has a continuous distribution with density

$$
g(r)=(2 \pi)^{-n / 2} e^{-r^{2} / 2} n r^{n-1} B_{n} \quad \text { for } r \geq 0,
$$

where B_{n} denotes the volume of the unit ball in \mathbb{R}^{n}.
(i) Find the density function for the distribution of $W=R^{2} / 2$.
(ii) Find B_{n}. (Hint: Gamma function.)
[4.2] Suppose X is an $m \times 1$ random vector with a $N(\mu, V)$ distribution. Suppose V is nonsingular.
(i) Let $X=\left[X_{1}, X_{2}\right]$, where X_{i} is $m_{i} \times 1$ and $m_{1}+m_{2}=m$. Show (by direct calculation) that the joint density for $\left(X_{1}, X_{2}\right)$ factorizes into the product of the marginal densities if $\operatorname{cov}\left(X_{1}, X_{2}\right)=0$.
(ii) (harder) Suppose $X=\left[Y_{1}, Y_{2}, W\right]$ where Y_{1} and Y_{2} are real random variables and W is an $(m-2) \times 1$ random vector. Show that Y_{1} and Y_{2} are conditionally independent given $W=w$ if the $[1,2]$ element of V^{-1} is zero.
[4.3] Let \mathbb{P}_{θ} denote the uniform distribution on $[\theta, 1+\theta]^{2}$. Under \mathbb{P}_{θ} the coordinates of the point $x=\left(x_{1}, x_{2}\right)$ are independent, each distributed uniformly on $[\theta, 1+\theta]$. The set

$$
J_{x}=\left\{t \in \mathbb{R}: \max \left(x_{1}, x_{2}\right)-1+\epsilon \leq t \leq \min \left(x_{1}, x_{2}\right)-\epsilon\right\}
$$

is a 90%-confidence interval for θ if $(1-2 \epsilon)^{2}=0.9$. Find

$$
\mathbb{P}_{\theta}\left\{\theta \in J_{x}| | x_{1}-x_{2} \mid=r\right\}
$$

for $0<r<1$. A picture would be good.

