Statistics 610 fall 2014

Homework \# 5
Due: Thursday 9 October
[5.1] Suppose x_{1}, x_{2}, \ldots are iid $N\left(\mu, \sigma^{2}\right)$ distributed random variables. Define $T_{n}=\sum_{i \leq n}\left(x_{i}-\bar{x}_{n}\right)^{2}$ where $\bar{x}_{n}=n^{-1} \sum_{i \leq n} x_{i}$. Find the constant c_{n} that minimizes $\mathbb{E}\left|c_{n} T_{n}-\sigma^{2}\right|^{2}$. Hint: The answer is not $c_{n}=(n-1)^{-1}$.
[5.2] For a fixed density function f on the real line define

$$
f_{\theta}(z)=\frac{1}{\sigma} f\left(\frac{z-\mu}{\sigma}\right) \quad \text { where } \theta=(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^{+}
$$

Find the information matrix

$$
\mathbb{I}(\mu, \sigma)=\operatorname{var}_{\theta}\left(\frac{\partial \log f_{\theta}}{\partial \theta}\right),
$$

the 2×2 variance matrix for the random vector $\left[\partial \log f_{\theta} / \partial \mu, \partial \log f_{\theta} / \partial \sigma\right]$.
[5.3] Let \mathbb{P}_{θ} denote the uniform distribution on $[0, \theta]^{2}$, for $\theta>0$. That is, the coordinates x_{1} and x_{2} are independent Uniform $[0, \theta]$ under \mathbb{P}_{θ}. Let $S:=$ $x_{1}+x_{2}$ and $M:=\max \left(x_{1}, x_{2}\right)$. Consider estimation of θ, with the excellence of an estimator $\widehat{\theta}$ being judged by $\mathbb{E}_{\theta}(\widehat{\theta}-\theta)^{2}$, the smaller the better.
(i) Define $G(m):=\mathbb{E}_{\theta}(S \mid M=m)$ for each m in $[0, \theta]$. Explain why $G(M)$ is preferred to S as an estimator for θ.
(ii) Define $H(s):=\mathbb{E}_{\theta}(3 M / 2 \mid S=s)$ for each s in $[0,2 \theta]$. Explain why $H(S)$ is not preferred to $3 M / 2$ as an estimator for θ.
(iii) Explain why $\mathbb{E}_{\theta}\left(2 x_{1} \mid S\right)$ is preferred to $2 x_{1}$ as an estimator for θ.
[5.4] Under the \mathbb{P}_{θ} model, suppose x_{1}, \ldots, x_{n} are independent with each distributed $\operatorname{Unif}(\theta-1 / 2, \theta+1 / 2)$. (You can think of \mathbb{P}_{θ} as the uniform distribution on $(\theta-1 / 2, \theta+1 / 2)^{n}$ and the x_{i} 's as the coordinates of a generic x in \mathbb{R}^{n}.) The order statistics $x_{(1)}<x_{(2)}<\cdots<x_{(n)}$ are just the values x_{1}, \ldots, x_{n} rearranged in increasing order.
(i) Show that $T(x)=\left(x_{(1)}, x_{(n)}\right)$ is a sufficient statistic for $\left\{\mathbb{P}_{\theta}: \theta \in \mathbb{R}\right\}$.
(ii) Describe the conditional distribution of x given $T(x)=\left(t_{1}, t_{2}\right)$.
(iii) For $\theta-1 / 2<y<z<\theta+1 / 2$ and δ small enough, show that

$$
\mathbb{P}_{\theta}\left\{y<x_{(1)}<y+\delta, z<x_{(n)}<z+\delta\right\}=\delta^{2} n(n-1)(z-y)^{n-2}+o\left(\delta^{2}\right) .
$$

(iv) Find the distribution of $x_{(n)}-x_{(1)}$. Sketch the density function.
(v) Mimic the argument given in class (for $n=2$) to find a 90% confidence interval J_{x} for θ.
(vi) Find the expected length of J_{x} and the distribution of the length of J_{x}. (A labelled, hand-drawn sketch of the distribution function would help. It would be useful to show where 0.9 is on the vertical axis. You might prefer to use R to draw pictures for some values of n.)

