Statistics 610 fall 2014 Homework # 5 Due: Thursday 9 October

- [5.1] Suppose x_1, x_2, \ldots are iid $N(\mu, \sigma^2)$ distributed random variables. Define $T_n = \sum_{i \le n} (x_i \overline{x}_n)^2$ where $\overline{x}_n = n^{-1} \sum_{i \le n} x_i$. Find the constant c_n that minimizes $\mathbb{E}|c_n T_n \sigma^2|^2$. Hint: The answer is not $c_n = (n-1)^{-1}$.
- [5.2] For a fixed density function f on the real line define

$$f_{\theta}(z) = \frac{1}{\sigma} f\left(\frac{z-\mu}{\sigma}\right)$$
 where $\theta = (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^+$.

Find the information matrix

$$\mathbb{I}(\mu, \sigma) = \operatorname{var}_{\theta} \left(\frac{\partial \log f_{\theta}}{\partial \theta} \right),$$

the 2 × 2 variance matrix for the random vector $[\partial \log f_{\theta}/\partial \mu, \partial \log f_{\theta}/\partial \sigma]$.

- [5.3] Let \mathbb{P}_{θ} denote the uniform distribution on $[0, \theta]^2$, for $\theta > 0$. That is, the coordinates x_1 and x_2 are independent Uniform $[0, \theta]$ under \mathbb{P}_{θ} . Let $S := x_1 + x_2$ and $M := \max(x_1, x_2)$. Consider estimation of θ , with the excellence of an estimator $\hat{\theta}$ being judged by $\mathbb{E}_{\theta}(\hat{\theta} \theta)^2$, the smaller the better.
 - (i) Define $G(m) := \mathbb{E}_{\theta}(S \mid M = m)$ for each m in $[0, \theta]$. Explain why G(M) is preferred to S as an estimator for θ .
 - (ii) Define $H(s) := \mathbb{E}_{\theta}(3M/2 \mid S = s)$ for each s in $[0, 2\theta]$. Explain why H(S) is not preferred to 3M/2 as an estimator for θ .
 - (iii) Explain why $\mathbb{E}_{\theta}(2x_1 \mid S)$ is preferred to $2x_1$ as an estimator for θ .
- [5.4] Under the \mathbb{P}_{θ} model, suppose x_1, \ldots, x_n are independent with each distributed Unif $(\theta 1/2, \theta + 1/2)$. (You can think of \mathbb{P}_{θ} as the uniform distribution on $(\theta 1/2, \theta + 1/2)^n$ and the x_i 's as the coordinates of a generic x in \mathbb{R}^n .) The order statistics $x_{(1)} < x_{(2)} < \cdots < x_{(n)}$ are just the values x_1, \ldots, x_n rearranged in increasing order.
 - (i) Show that $T(x) = (x_{(1)}, x_{(n)})$ is a sufficient statistic for $\{\mathbb{P}_{\theta} : \theta \in \mathbb{R}\}$.
 - (ii) Describe the conditional distribution of x given $T(x) = (t_1, t_2)$.
 - (iii) For $\theta 1/2 < y < z < \theta + 1/2$ and δ small enough, show that

$$\mathbb{P}_{\theta}\{y < x_{(1)} < y + \delta, z < x_{(n)} < z + \delta\} = \delta^2 n(n-1)(z-y)^{n-2} + o(\delta^2).$$

- (iv) Find the distribution of $x_{(n)} x_{(1)}$. Sketch the density function.
- (v) Mimic the argument given in class (for n = 2) to find a 90% confidence interval J_x for θ .
- (vi) Find the expected length of J_x and the distribution of the length of J_x . (A labelled, hand-drawn sketch of the distribution function would help. It would be useful to show where 0.9 is on the vertical axis. You might prefer to use R to draw pictures for some values of n.)