
1

Solution to HW2.3

(Hard; extremely optional) In class on September 11 you saw
lots of technical details that are usually hidden in a course at
this level. In particular, you saw the role played by the process

Zn(t) = n−1/2
∑

i≤n
•
g(xi, t) for t near θ. Define Hθ(t) = Eθ

•
g(z, t)

and

Wn(t) = Zn(t)−EθZn(t) = n−1/2
∑

i≤n

(•
g(xi, t)−Hθ(t)

)
.

For each constant C show (under the assumptions described in
class) that

Eθ sup|h|≤C |Wn(θ + h/
√
n)−Wn(θ)| → 0 as n→∞.

What does this tell you about the behavior of Zn(θ∗n) (under Pθ)
if θ∗n is a root-n consistent estimator for θ? Hint: Use more
Taylor, starting from

√
n (Zn(θ + δ)− Zn(θ)) =

∑
i≤n

δ

∫ 1

0

••
g (xi, θ + sδ) ds.

I’ll use primes rather than dots to indicate derivatives with respect to

the parameter, because
•••
g (z, t) looks weird. Maybe it would be better use

another letter, say q =
•
g, because

••
q looks better than

•••
g .

0.1 Assumptions

The assumptions are

(i) Eθ|g′(z, θ)|2 <∞ and Eθ
•
g(z, θ) = 0

(ii) Eθ|g′′(z, θ)| <∞

(iii) There exists a neighborhood U = (θ − ε0, θ + ε0) of θ and a function
M for which

|g′′′(z, t)| ≤M(z) for all t ∈ U and all z.

Also, EθM <∞.
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0.2 Pointwise control

Taylor’s theorem with remainders written in integral form make it easier
to control the error terms in the approximations for Wn. Start with the
pointwise approximation to g′. For any fixed δ with |δ| ≤ ε0,

<1> g′(z, θ + δ)− g′(z, θ) =

∫ 1

0

∂

∂s
g′′(z, θ + sδ) ds = δ

∫ 1

0
g′′(z, θ + sδ) ds.

Similarly,

g′′(z, θ + sδ)− g′′(z, θ) = δ

∫ s

0
g′′′(z, θ + tδ) dt.

Combine the last two equalities to deduce that

rθ(z, δ) := g′(z, θ + r)− g′(z, θ)− δg′′(z, θ)

= δ2
∫∫
{0 < t < s < 1}g′′′(z, θ + tδ) dt ds

and

<2> |rθ(z, δ)| ≤
∫∫
{0 < t < s < 1}M(z) dt ds = 1

2δ
2M(z).

0.3 Approximations

Temporarily write an for n−1/2. By definition,

Hθ(θ + δ) = Eθg′(z, θ + δ)

= Eθ
(
g′(z, θ) + δg′′(z, θ) + rθ(z, δ)

)
= 0− δI(θ) +R(δ)

where

|R(δ)| ≤ Eθ|rθ(z, δ)| ≤ 1
2δ

2EθM if |δ| ≤ ε0.

In particular, if |h| ≤ C and Cn−1/2 ≤ ε0, then

<3> EθZn(θ + han) = a−1n Hθ(θ + han) = −hI(θ) +R(han)

where |R(han)| ≤ Kan for K := C2EθM/2.
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Similarly,

Zn(θ + han) = an
∑

i≤n

(
g′(xi, θ) + hang

′′(xi, θ) + rθ(xi, han)
)

= Zn(θ) + hJn +Rn(han)<4>

where Jn = n−1
∑

i≤n g
′′(xi, θ) and

|Rn(han)| ≤ anC
2

2n

∑
i≤n

M(xi).

From <3> and <4>, for |h| ≤ C

<5> ∆n(C) := sup
|h|≤C

|Wn(θ+han)−Wn(θ)| ≤ C|Jn+ I(θ)|+Rn(han) +Kan.

In HW2.3 I asked you to show that Eθ∆n(C)→ 0 for each fixed C, in the
mistaken belief that it would make the problem easier. The contributions
from Rn is easily disposed of:

|EθRn(han)| ≤ anC2EθM.

The SLLN tells us that Jn + I(θ) → 0 with Pθ-probability one. You would
need to make some sort of uniform integrabilty argument to deduce that
Eθ|Jn + I(θ)| → 0. (Sorry about that.)

In fact we only need the weaker convergence in probability,

<6> Pθ{∆n(C) > ε} → 0 as n→∞, for each fixed ε > 0 and C <∞,

for which a WLLN applied to Jn + I(θ) suffices.
Let me show you why <6> suffices to control Zn(θ∗n) for a root-n con-

sistent estimator θ∗n. Define h∗n =
√
n(θ∗ − θ). For each ε > 0 there exists a

constant Cε for which

Pθ{|h∗n| > Cε} < ε for all n.

The equality

Zn(θ∗n)− Zn(θ) = Wn(θ∗n)−Wn(θ)h∗nI(θ)

shows that

|Zn(θ∗n)− Zn(θ) + h∗nI(θ)| ≤ ∆n(Cε) +Kan whenever |h∗n| ≤ Cε.

It follows that Pθ{|Zn(θ∗n)− Zn(θ) + h∗nI(θ)| > 2ε} → 0 as n→∞, for each
ε > 0.
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