Solution to HW2.3

(Hard; extremely optional) In class on September 11 you saw lots of technical details that are usually hidden in a course at this level. In particular, you saw the role played by the process $Z_n(t) = n^{-1/2} \sum_{i \leq n} \overset{\bullet}{g}(x_i, t)$ for $t \operatorname{near} \theta$. Define $H_{\theta}(t) = \mathbb{E}_{\theta} \overset{\bullet}{g}(z, t)$ and

$$W_n(t) = Z_n(t) - \mathbb{E}_{\theta} Z_n(t) = n^{-1/2} \sum_{i \le n} \left(\overset{\bullet}{g}(x_i, t) - H_{\theta}(t) \right).$$

For each constant C show (under the assumptions described in class) that

$$\mathbb{E}_{\theta} \sup_{|h| \le C} |W_n(\theta + h/\sqrt{n}) - W_n(\theta)| \to 0 \quad \text{as } n \to \infty.$$

What does this tell you about the behavior of $Z_n(\theta_n^*)$ (under \mathbb{P}_{θ}) if θ_n^* is a root-*n* consistent estimator for θ ? Hint: Use more Taylor, starting from

$$\sqrt{n} \left(Z_n(\theta + \delta) - Z_n(\theta) \right) = \sum_{i \le n} \delta \int_0^1 \overset{\bullet}{g} (x_i, \theta + s\delta) \, ds.$$

I'll use primes rather than dots to indicate derivatives with respect to the parameter, because $\overset{\bullet\bullet}{g}(z,t)$ looks weird. Maybe it would be better use another letter, say $q = \overset{\bullet}{g}$, because $\overset{\bullet\bullet}{q}$ looks better than $\overset{\bullet\bullet\bullet}{g}$.

0.1 Assumptions

The assumptions are

- (i) $\mathbb{E}_{\theta}|g'(z,\theta)|^2 < \infty$ and $\mathbb{E}_{\theta}g(z,\theta) = 0$
- (ii) $\mathbb{E}_{\theta}|g''(z,\theta)| < \infty$
- (iii) There exists a neighborhood $U = (\theta \epsilon_0, \theta + \epsilon_0)$ of θ and a function M for which

 $|g'''(z,t)| \le M(z)$ for all $t \in U$ and all z.

Also, $\mathbb{E}_{\theta} M < \infty$.

Draft: 25 Sept 2014

Statistics 610 © David Pollard

0.2 Pointwise control

Taylor's theorem with remainders written in integral form make it easier to control the error terms in the approximations for W_n . Start with the pointwise approximation to g'. For any fixed δ with $|\delta| \leq \epsilon_0$,

$$<1> \qquad g'(z,\theta+\delta) - g'(z,\theta) = \int_0^1 \frac{\partial}{\partial s} g''(z,\theta+s\delta) \, ds = \delta \int_0^1 g''(z,\theta+s\delta) \, ds.$$

Similarly,

$$g''(z,\theta+s\delta) - g''(z,\theta) = \delta \int_0^s g'''(z,\theta+t\delta) dt$$

Combine the last two equalities to deduce that

$$r_{\theta}(z,\delta) := g'(z,\theta+r) - g'(z,\theta) - \delta g''(z,\theta)$$
$$= \delta^2 \iint \{0 < t < s < 1\} g'''(z,\theta+t\delta) \, dt \, ds$$

and

<2>
$$|r_{\theta}(z,\delta)| \leq \iint \{0 < t < s < 1\} M(z) \, dt \, ds = \frac{1}{2} \delta^2 M(z).$$

0.3 Approximations

Temporarily write a_n for $n^{-1/2}$. By definition,

$$H_{\theta}(\theta + \delta) = \mathbb{E}_{\theta}g'(z, \theta + \delta)$$

= $\mathbb{E}_{\theta} \left(g'(z, \theta) + \delta g''(z, \theta) + r_{\theta}(z, \delta)\right)$
= $0 - \delta \mathbb{I}(\theta) + R(\delta)$

where

$$|R(\delta)| \leq \mathbb{E}_{\theta} |r_{\theta}(z, \delta)| \leq \frac{1}{2} \delta^2 \mathbb{E}_{\theta} M$$
 if $|\delta| \leq \epsilon_0$.

In particular, if $|h| \leq C$ and $Cn^{-1/2} \leq \epsilon_0$, then

 $<\!\!3\!\!>$

$$\mathbb{E}_{\theta} Z_n(\theta + ha_n) = a_n^{-1} H_{\theta}(\theta + ha_n) = -h\mathbb{I}(\theta) + R(ha_n)$$

where $|R(ha_n)| \leq Ka_n$ for $K := C^2 \mathbb{E}_{\theta} M/2$.

Draft: 25 Sept 2014

Statistics 610 © David Pollard

Similarly,

$$Z_n(\theta + ha_n) = a_n \sum_{i \le n} \left(g'(x_i, \theta) + ha_n g''(x_i, \theta) + r_\theta(x_i, ha_n) \right)$$
$$= Z_n(\theta) + hJ_n + R_n(ha_n)$$

 $<\!\!4\!\!>$

 $<\!\!5\!\!>$

where $J_n = n^{-1} \sum_{i \le n} g''(x_i, \theta)$ and

$$|R_n(ha_n)| \le \frac{a_n C^2}{2n} \sum_{i \le n} M(x_i).$$

From $\langle \mathbf{3} \rangle$ and $\langle \mathbf{4} \rangle$, for $|h| \leq C$

$$\Delta_n(C) := \sup_{|h| \le C} |W_n(\theta + ha_n) - W_n(\theta)| \le C|J_n + \mathbb{I}(\theta)| + R_n(ha_n) + Ka_n.$$

In HW2.3 I asked you to show that $\mathbb{E}_{\theta}\Delta_n(C) \to 0$ for each fixed C, in the mistaken belief that it would make the problem easier. The contributions from R_n is easily disposed of:

$$|\mathbb{E}_{\theta}R_n(ha_n)| \le a_n C^2 \mathbb{E}_{\theta} M.$$

The SLLN tells us that $J_n + \mathbb{I}(\theta) \to 0$ with \mathbb{P}_{θ} -probability one. You would need to make some sort of uniform integrability argument to deduce that $\mathbb{E}_{\theta}|J_n + \mathbb{I}(\theta)| \to 0$. (Sorry about that.)

In fact we only need the weaker convergence in probability,

$$\mathbb{P}_{\theta}\{\Delta_n(C) > \epsilon\} \to 0 \qquad \text{as } n \to \infty, \text{ for each fixed } \epsilon > 0 \text{ and } C < \infty,$$

for which a WLLN applied to $J_n + \mathbb{I}(\theta)$ suffices.

Let me show you why $\langle \mathbf{6} \rangle$ suffices to control $Z_n(\theta_n^*)$ for a root-n consistent estimator θ_n^* . Define $h_n^* = \sqrt{n}(\theta^* - \theta)$. For each $\epsilon > 0$ there exists a constant C_{ϵ} for which

$$\mathbb{P}_{\theta}\{|h_n^*| > C_{\epsilon}\} < \epsilon \quad \text{for all } n.$$

The equality

$$Z_n(\theta_n^*) - Z_n(\theta) = W_n(\theta_n^*) - W_n(\theta)h_n^*\mathbb{I}(\theta)$$

shows that

$$|Z_n(\theta_n^*) - Z_n(\theta) + h_n^* \mathbb{I}(\theta)| \le \Delta_n(C_{\epsilon}) + Ka_n \quad \text{whenever } |h_n^*| \le C_{\epsilon}.$$

It follows that $\mathbb{P}_{\theta}\{|Z_n(\theta_n^*) - Z_n(\theta) + h_n^*\mathbb{I}(\theta)| > 2\epsilon\} \to 0$ as $n \to \infty$, for each $\epsilon > 0$.

Draft: 25 Sept 2014

Statistics 610 © David Pollard

 $<\!\!6\!\!>$