Solution to HW2.3

(Hard; extremely optional) In class on September 11 you saw lots of technical details that are usually hidden in a course at this level. In particular, you saw the role played by the process $Z_{n}(t)=n^{-1 / 2} \sum_{i \leq n} \stackrel{\bullet}{g}\left(x_{i}, t\right)$ for t near θ. Define $H_{\theta}(t)=\mathbb{E}_{\theta} \dot{g}(z, t)$ and

$$
W_{n}(t)=Z_{n}(t)-\mathbb{E}_{\theta} Z_{n}(t)=n^{-1 / 2} \sum_{i \leq n}\left(\stackrel{\bullet}{g}\left(x_{i}, t\right)-H_{\theta}(t)\right) .
$$

For each constant C show (under the assumptions described in class) that

$$
\mathbb{E}_{\theta} \sup _{|h| \leq C}\left|W_{n}(\theta+h / \sqrt{n})-W_{n}(\theta)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

What does this tell you about the behavior of $Z_{n}\left(\theta_{n}^{*}\right)$ (under \mathbb{P}_{θ}) if θ_{n}^{*} is a root- n consistent estimator for θ ? Hint: Use more Taylor, starting from

$$
\sqrt{n}\left(Z_{n}(\theta+\delta)-Z_{n}(\theta)\right)=\sum_{i \leq n} \delta \int_{0}^{1} \ddot{g}\left(x_{i}, \theta+s \delta\right) d s
$$

I'll use primes rather than dots to indicate derivatives with respect to the parameter, because $\stackrel{\bullet \bullet}{g}(z, t)$ looks weird. Maybe it would be better use another letter, say $q=\dot{g}$, because \ddot{q} looks better than ${ }^{\bullet \bullet}$.

0.1 Assumptions

The assumptions are
(i) $\mathbb{E}_{\theta}\left|g^{\prime}(z, \theta)\right|^{2}<\infty$ and $\mathbb{E}_{\theta} \dot{\theta}(z, \theta)=0$
(ii) $\mathbb{E}_{\theta}\left|g^{\prime \prime}(z, \theta)\right|<\infty$
(iii) There exists a neighborhood $U=\left(\theta-\epsilon_{0}, \theta+\epsilon_{0}\right)$ of θ and a function M for which

$$
\left|g^{\prime \prime \prime}(z, t)\right| \leq M(z) \quad \text { for all } t \in U \text { and all } z .
$$

Also, $\mathbb{E}_{\theta} M<\infty$.

0.2 Pointwise control

Taylor's theorem with remainders written in integral form make it easier to control the error terms in the approximations for W_{n}. Start with the pointwise approximation to g^{\prime}. For any fixed δ with $|\delta| \leq \epsilon_{0}$,
$<1>\quad g^{\prime}(z, \theta+\delta)-g^{\prime}(z, \theta)=\int_{0}^{1} \frac{\partial}{\partial s} g^{\prime \prime}(z, \theta+s \delta) d s=\delta \int_{0}^{1} g^{\prime \prime}(z, \theta+s \delta) d s$.
Similarly,

$$
g^{\prime \prime}(z, \theta+s \delta)-g^{\prime \prime}(z, \theta)=\delta \int_{0}^{s} g^{\prime \prime \prime}(z, \theta+t \delta) d t
$$

Combine the last two equalities to deduce that

$$
\begin{aligned}
r_{\theta}(z, \delta) & :=g^{\prime}(z, \theta+r)-g^{\prime}(z, \theta)-\delta g^{\prime \prime}(z, \theta) \\
& =\delta^{2} \iint\{0<t<s<1\} g^{\prime \prime \prime}(z, \theta+t \delta) d t d s
\end{aligned}
$$

and
$<2>\quad\left|r_{\theta}(z, \delta)\right| \leq \iint\{0<t<s<1\} M(z) d t d s=\frac{1}{2} \delta^{2} M(z)$.

0.3 Approximations

Temporarily write a_{n} for $n^{-1 / 2}$. By definition,

$$
\begin{aligned}
H_{\theta}(\theta+\delta) & =\mathbb{E}_{\theta} g^{\prime}(z, \theta+\delta) \\
& =\mathbb{E}_{\theta}\left(g^{\prime}(z, \theta)+\delta g^{\prime \prime}(z, \theta)+r_{\theta}(z, \delta)\right) \\
& =0-\delta \mathbb{I}(\theta)+R(\delta)
\end{aligned}
$$

where

$$
|R(\delta)| \leq \mathbb{E}_{\theta}\left|r_{\theta}(z, \delta)\right| \leq \frac{1}{2} \delta^{2} \mathbb{E}_{\theta} M \quad \text { if }|\delta| \leq \epsilon_{0}
$$

In particular, if $|h| \leq C$ and $C n^{-1 / 2} \leq \epsilon_{0}$, then

$$
\mathbb{E}_{\theta} Z_{n}\left(\theta+h a_{n}\right)=a_{n}^{-1} H_{\theta}\left(\theta+h a_{n}\right)=-h \mathbb{I}(\theta)+R\left(h a_{n}\right)
$$

where $\left|R\left(h a_{n}\right)\right| \leq K a_{n}$ for $K:=C^{2} \mathbb{E}_{\theta} M / 2$.

Similarly,

$$
\begin{aligned}
Z_{n}\left(\theta+h a_{n}\right) & =a_{n} \sum_{i \leq n}\left(g^{\prime}\left(x_{i}, \theta\right)+h a_{n} g^{\prime \prime}\left(x_{i}, \theta\right)+r_{\theta}\left(x_{i}, h a_{n}\right)\right) \\
& =Z_{n}(\theta)+h J_{n}+R_{n}\left(h a_{n}\right)
\end{aligned}
$$

where $J_{n}=n^{-1} \sum_{i \leq n} g^{\prime \prime}\left(x_{i}, \theta\right)$ and

$$
\left|R_{n}\left(h a_{n}\right)\right| \leq \frac{a_{n} C^{2}}{2 n} \sum_{i \leq n} M\left(x_{i}\right)
$$

From $<\mathbf{3}>$ and $<\mathbf{4}>$, for $|h| \leq C$

$$
\Delta_{n}(C):=\sup _{|h| \leq C}\left|W_{n}\left(\theta+h a_{n}\right)-W_{n}(\theta)\right| \leq C\left|J_{n}+\mathbb{I}(\theta)\right|+R_{n}\left(h a_{n}\right)+K a_{n} .
$$

In HW2.3 I asked you to show that $\mathbb{E}_{\theta} \Delta_{n}(C) \rightarrow 0$ for each fixed C, in the mistaken belief that it would make the problem easier. The contributions from R_{n} is easily disposed of:

$$
\left|\mathbb{E}_{\theta} R_{n}\left(h a_{n}\right)\right| \leq a_{n} C^{2} \mathbb{E}_{\theta} M
$$

The SLLN tells us that $J_{n}+\mathbb{I}(\theta) \rightarrow 0$ with \mathbb{P}_{θ}-probability one. You would need to make some sort of uniform integrabilty argument to deduce that $\mathbb{E}_{\theta}\left|J_{n}+\mathbb{I}(\theta)\right| \rightarrow 0$. (Sorry about that.)

In fact we only need the weaker convergence in probability,

$$
\mathbb{P}_{\theta}\left\{\Delta_{n}(C)>\epsilon\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \text { for each fixed } \epsilon>0 \text { and } C<\infty,
$$

for which a WLLN applied to $J_{n}+\mathbb{I}(\theta)$ suffices.
Let me show you why $\langle\mathbf{6}\rangle$ suffices to control $Z_{n}\left(\theta_{n}^{*}\right)$ for a root-n consistent estimator θ_{n}^{*}. Define $h_{n}^{*}=\sqrt{n}\left(\theta^{*}-\theta\right)$. For each $\epsilon>0$ there exists a constant C_{ϵ} for which

$$
\mathbb{P}_{\theta}\left\{\left|h_{n}^{*}\right|>C_{\epsilon}\right\}<\epsilon \quad \text { for all } n .
$$

The equality

$$
Z_{n}\left(\theta_{n}^{*}\right)-Z_{n}(\theta)=W_{n}\left(\theta_{n}^{*}\right)-W_{n}(\theta) h_{n}^{*} \mathbb{I}(\theta)
$$

shows that

$$
\left|Z_{n}\left(\theta_{n}^{*}\right)-Z_{n}(\theta)+h_{n}^{*} \mathbb{I}(\theta)\right| \leq \Delta_{n}\left(C_{\epsilon}\right)+K a_{n} \quad \text { whenever }\left|h_{n}^{*}\right| \leq C_{\epsilon} .
$$

It follows that $\mathbb{P}_{\theta}\left\{\left|Z_{n}\left(\theta_{n}^{*}\right)-Z_{n}(\theta)+h_{n}^{*} \mathbb{I}(\theta)\right|>2 \epsilon\right\} \rightarrow 0$ as $n \rightarrow \infty$, for each $\epsilon>0$.

