
Chapter 3

Classical regularity conditions

Preliminary draft. Please do not distribute.

The results from classical asymptotic theory typically require assumptions
of pointwise differentiability of a criterion function with respect an unknown
parameter. Taylor expansion about some “true” value in the parameter space
then gives a quadratic approximation to the criterion function, within error
terms that can be bounded using the remainder from the Taylor expansion.
With appropriately small error terms, an estimator defined to minimize the
criterion function will lie close to the random variable that minimizes the
quadratic, a random variable that typically has a neat closed form represen-
tation. The estimator inherits the limiting behaviour of the minimizer of the
quadratic.
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3.1 The classical (local) regularity conditions

Consider once more the problem discussed heuristically in Chapter 1, butClassical::classical.reg
this time with the aim of proving rigorously some of the limit theory from
before. The methods will be classical, a combination of smoothness and
domination assumptions that together ensure good local approximaions by
random quadratics. The desire for rigor compels us to pay more attention
to the effect of remainder terms in Taylor expansions.

As before, start with a set of real-valued functions {g(x, θ) : θ ∈ Θ}
indexed by a subset Θ of some Euclidean space Rk. An estimator θ̂n is
defined by (approximate) minimization of a random criterion function,

Gn(θ) = Gn(ω, θ) =
1
n

∑
i≤n

g(Xi(ω), θ).

version: 20sept10
printed: 20 September 2010

Asymptopia
c©David Pollard



2 Classical regularity conditions

For simplicity, begin with the assumption that the {Xi} are independent
and identically distributed under P, each with distribution P .

Remark. It might perhaps be clearer to write Pn instead of P,
anticipating the situation where the marginal distributions can change
with n, as will be needed for a discussion of power of tests under
alternatives.

To simplify even more, et us assume that θ̂n is consistent in probability,

θ̂n = θ0 + op(1) under the P model.assume.consistent<1>

where θ0 minimizes G(θ) := P xg(x, θ). Let us not carry along global as-
sumptions as extra baggage while we study local behaviour.

Without consistency it would make little sense to be thinking about
behaviour of Gn near θ0. Only if θ̂n has high probability of concentrating
near θ0 can we safely ignore how Gn behaves outside a neighborhood of θ0.

Remark. There is much to recommend taking <1>, or some other
high level requirement, as an assumption for the next step in the
analysis. It reduces the clutter of notation in the statement of
theorems; it helps to distinguish the roles of global and local
assumptions; and it makes the proofs more “modular”. For
example, if someone thinks up a clever new way to establish
consistency in a particular setting, we have no need to rewrite
the proofs of rates of convergence or asymptotic limit behaviour.
And most important of all, when we wish to modify our proofs
to cover new cases—there is no such thing as the perfect or most
general form of a theorem in Asymptopia, as is demonstrated,
for example, by the constant stream of new and improved
consistency theorems that keep journal editors busy—we will
have less material to dig through.

Taylor expansion about θ0 gives the simplest way of deriving a quadratic
approximation for a smooth criterion function. The classical assumptions
use two derivatives to construct the quadratic, and a third derivative (or
something slightly weaker) to bound an error.

<2> Definition. Say that {g(x, θ) : θ ∈ Θ} satisfies the classical regularityclassic.reg
conditions at a point θ0 with respect to P if there is a neighborhood N of θ0 =
argminθ P xg(x, θ) for which:

(a) for P almost all x, the function θ 7→ g(x, θ) is twice differentiableclassical.smooth

in N, with the second derivative g̈(x, θ) that is continuous at θ0;
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(b) the components of ∆(x) := ġ(x, θ0) all belong to L2(P );classical.score

(c) there exists a function M(x) ∈ L1(P ) for which ‖g̈(x, θ)‖2 ≤ M(x)classical.dom

for all θ ∈ N.

Remark. The norm ‖·‖2 of a matrix V is defined by ‖V ‖2 :=
sup|u|=1 |V u|. By Cauchy-Schwarz, |s′V t| ≤ |s| ‖V ‖2 |t| for
all s, t. The domination assumption is equivalent to each of
the k2 components of the matrix g̈(x, θ) being dominated by
some M(x) ∈ L1(P )

(d) the expected value J := P g̈(x, θ0) is nonsingular.classical.posdef

(e) θ0 is an interior point of Θ.classical.int

Remark. The assumption that θ0 is an interior point is sometimes
only implicit in the literature. See Problem [2] or Section 7 for some
examples of what can happen if θ0 lies on the boundary of Θ.

For notational convenience I will express all approximations in terms
of the difference t = θ − θ0. Without some such notational trick I find
my displayed equations too often overflow the line and look intimidating.
Almost equivalently, I could just assume (without loss of generality) that
θ0 = 0. If the notation troubles you, feel free to rewrite what follows with
θ − θ0 in place of t.

<3> Lemma. Under the classical regularity assumptions (a), (b), (c), and (e),classical.quadratic
the criterion function has a local approximation,

Gn(θ0 + t) = Gn(θ0) + t′Zn/
√
n+ 1

2 t
′Jt+ |t|2Rn(t)Gn.Taylor<4>

where Zn =
∑

i≤n ∆(Xi)/
√
n has a limiting N

(
0, P (∆∆′)

)
distribution and,

for each deterministic sequence {δn} converging to zero,

sup
|t|≤δn

|Rn(t)| → 0 in probability.

Proof From Assumption (a), the function g(x, ·) has a pointwise expansion

g(x, θ0 + t) = g(x, θ0) + t′∆(x) + 1
2 t
′g̈(x, θ0)t+ 1

2 t
′r(x, t)t.pwise.Taylor<5>

When t is close enough to 0, the remainder term has the representation

r(x, t) = g̈(x, θ0 + t∗)− g̈(x, θ0),

for some θ0 + t∗ on the line segment L joining θ0 and θ0 + t.
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Remark. This representation assumes that L lies wholly within Θ. If
|t| is small enough, we have no problem with L running outside Θ,
because θ0 is an interior point. If θ0 were on the boundary of Θ, we
would need to place further assumptions on the shape of Θ near θ0.

Define
Mδ(x) := sup{‖r(x, t)‖2 : |t| ≤ δ}.

From the continuity and domination assumptions on g̈,

2M(x) ≥Mδ(x)→ 0 as δ → 0.

Dominated Convergence then implies

P ‖r(x, t)‖2 → 0 as t→ 0.

Integrating <5> with respect to P we get

G(θ0 + t) = G(θ0) + t′P∆ + 1
2 t
′Jt+ o(|t|2),G.Taylor<6>

The coefficient P∆ of the linear term must vanish because G(·) has its
minimum at the interior point θ0.

Remark. If θ0 had been on the boundary of Θ, there would be no
guarantee that P∆ = 0; the quadratic approximation to G(θ0+t) might
contain a nonvanishing linear term t′P∆ in the case of a boundary
point. Both the rate of convergence for θ̂n − θ0 and the limiting
distribution theory would then be affected.

For the g(x, θ) = − log f(x, θ) corresponding to maximum likelihood
estimation, the derivative ∆ becomes the score function. The equality
P∆ = 0 corresponds to a formal “differentiation under the integral
sign” at θ0.

The equality P∆ = 0 and Assumption (b) ensure that Zn has a limiting
N
(
0, P (∆∆′)

)
distribution.

To get the quadratic approximation for Gn(θ0 + t), start from <5> eval-
uated at each observation Xi:

Gn(θ0 + t) =
1
n

∑
i≤n

g(Xi, θ0 + t)

=
1
n

∑
i≤n

(
g(Xi, θ0) + t∆(Xi) + 1

2 t
′g̈(Xi, θ0)t+ 1

2 t
′r(Xi, θ0 + t)t

)
= Gn(θ0) +

t′Zn√
n

+ 1
2 t
′Jt+ 1

2 |t|
2Rn(t),
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where

|Rn(t)| ≤
∥∥∥∥ 1
n

∑
i≤n

g̈(Xi, θ0)− J
∥∥∥∥

2

+
1
n

∑
i≤n
‖r(Xi, θ0 + t)‖2 .

By the (weak) law of large numbers for each component of g̈(x, θ0), the first
contribution to Rn(t) converges in probability to zero, regardless of {δn}
and t. Whenever |t| ≤ δn, the second contribution is bounded in absolute
value by

∑
i≤nMδn(Xi)/n, which converges in L1(P) to zero.

�

3.2 Asymptotics via quadratic approximation

Once we know (or assume) that θ̂n lies close to some θ0 with probabilityClassical::quad.comp
tending to one, and we have a suitable quadratic approximation to the cri-
terion function near θ0, it takes but two comparisons to derive the limiting
form for the estimator. The regularity conditions play no further role in the
asymptotic arguments. The same arguments can work even when classical
regularity assumptions fail, provided we are able (by whatever means) to
establish consistency and construct suitable approximations to the random
criterion function.

<7> Theorem. Supposeclassical.CLT

(i) a quadratic approximation

Gn(θ0 + t) = Gn(θ0) +
t′Zn√
n

+ 1
2 t
′Jt+ op(|t|2)

holds uniformly in op(1) neighborhoods of t = 0, with J a positive
definite matrix and Zn a random vector of order Op(1).

(ii) θ0 is an interior point of Θ

(iii) θ̂n → θ0 in probability

(iv) θ̂n comes within op(1/n) of minimizing Gn.

Then θ̂n = θ0 − J−1Zn/
√
n + op(1/

√
n ). If Zn has a limiting N(0, D)

distribution then
√
n(θ̂n − θ0) N(0, J−1DJ).

The proof breaks naturally into two steps, which I will state as two sepa-
rate lemmas. First we must prove that θ̂n lies within Op(1/

√
n) of θ0, using a
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comparison between the values of Gn at θ̂n and at θ0. Assumption (e) plays
no role in the first step. Within Op(1/

√
n) neighborhoods of θ0 the quadratic

approximation reduces to a simpler form, which suggests the second-stage
comparison between the values of Gn at θ̂n and at a random θ∗ that also
lies within Op(1/

√
n) of θ0. Assumption (e) is needed at this step to ensure

that, with probability tending to one, θ∗ is a well defined point of Θ.
Both parts of the argument are variations on a single comparison tech-

nique, which is worth isolating as a deterministic result.

<8> Lemma. Suppose f is a real-valued function on a set T and κ : T → R+.det.quad
If t∗ and t0 are points of T such that, for some nonnegative constants ε, γ
and η,

(i) f(t) ≥ f(t0)− γ − ηκ(t) + κ(t)2 for all tlower.quad

(ii) f(t∗) ≤ f(t0) + εeps.max

then κ(t∗) ≤ η +
√
ε+ γ.

Proof Temporarily abbreviate κ(t∗) to κ. From (i) evaluted at t = t∗,

f(t∗)− f(t0) ≥ (κ− η/2)2 − γ − η2/4

From (ii), the left-hand side is less than ε. Thus√
ε+ γ + η2/4 ≥ |κ− η/2|.

It follows that either κ ≤ η/2 or

η/2 +
√
ε+ γ + η2/4 ≥ κ.

The general inequality
√
a+ b ≤

√
a +
√
b, for a, b ≥ 0, then leads to the

asserted bound for κ.
�

To be continued


