
Chapter 2

Consistency

Preliminary draft. Please do not distribute.

Section 1 explains why the Chapter will be mostly concerned with M-
estimators, even though the techniques are more widely applicable.

Section 2 presents a variation on Wald’s original argument for consistency
of maximum likelihood estimators.

Section 3 considers some of the problems that can arise for estimators that
range over noncompact parameter spaces, or for models that cannot be
successfully compactified.

Section 4 establishes some basic comparison principles for deterministic
functions, which lead to limit theorems when applied to sample paths of
random criterion functions.

Section ?? presents a method that typically succeeds because of existence
of a suitable uniform law of large numbers.

Section ?? presents a high-level result for consistency, in terms of unifor-
mity assumptions about the behaviour of the criterion function.

Section 5: consistency for Z-estimators.
Section 6: consistency for MLE of monotone density on R+.

2.1 Estimators defined by minimization

The statistics and econometrics literatures contain a huge number of the-Consistency::minimization
orems that establish consistency of different types of estimators, that is,
theorems that prove convergence in some probabilistic sense of an estimator
to some desired limiting value.

The variety of different consistency theorems can be overwhelming for a
new researcher. In my opinion, any attempt at cataloging all the variations
on the consistency theme is a not particularly fruitful activity. I think it
is much better to concentrate attention on a smaller number of general
principles, accepting that new applications might require some tweaking of
the standard methods in order to accommodate the peculiarites of particular
examples.

Accordingly, this chapter will focus mainly on a particular type of es-
timator, namely those estimators defined by minimization (or maximiza-
tion) of a some stochastic process. Maximum likelihood estimators and
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2 Consistency

the M-estimators from Chapter 1 are of this type. More generally, suppose
Gn(θ) = Gn(ω, θ) is a random variable for each θ in an index set Θ. Suppose
also that an estimator θ̂n = θ̂n(ω) is defined by minimization of Gn(·), or at
least is required to come close to minimizing Gn(·) over Θ,

Gn(θ̂n) ≈ inf
θ∈Θ

Gn(θ),

in a sense soon to be made more precise. What asymptotic properties
must θ̂n have, as a consequence of the minimization?

If Gn(θ) is a smooth function of θ with Θ a subset of some Rk then
it is sometimes technically simpler to define θ̂n as the zero of the deriva-
tive Ln(θ) := ∂Gn(θ)/∂θ. Of course this approach will encounter difficulties
if minima are achieved at boundary points, or if θ̂n comes only close to
minimizing Gn. As explained in Chapter 5, there are even cases where per-
fectly straightforward minimizations are made to seem more complicated by
a search for a zero derivative. Moreover, at the cost of some artificiality, we
could always recast the problem of finding a zero of a process Ln(θ) as a
problem of minimizing a process such as ‖Ln(θ)‖2. See Section 5.

The prototype for rigorous consistency arguments is a theorem due to
Wald (1949), for maximum likelihood estimators under independent sam-
pling, with Θ equal to a closed subset of Rk. (He also noted that his argu-
ment would work in more general settings.) Section 2 will present a variation
on Wald’s theorem.

In more modern terminology, the central idea in Wald’s method is a
form of one-sided bracketing argument. In recent decades it has becomeref for bracketing?

more common for proofs to involve uniform two-sided bounds, probably be-
cause the methods used to establish the bounds (such as the symmetrization
methods from empirical process theory) usually deliver two-sided inequal-
ities. The argument leading from the bounds to the desired concentration
of the estimator in a small region of the parameter space typically depend
on comparisons involving a single sample path θ 7→ Gn(ω, θ), for fixed ω
and n. To stress this point, I will first present the general arguments first
(Section 4) as comparisons for deterministic functions, leaving you to write
out their stochastic analogs.

2.2 Wald’s method

The following result captures the main idea of Wald (1949).Consistency::wald

<1> Theorem. Let Gn(θ) =
∑

i≤n g(Xi(ω), θ)/n, with the {Xi} independentlyWald
distributed as P and g(·, θ) ∈ L1(P ) for each θ in Θ. Suppose:
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(i) Θ is a compact metric spaceW1

(ii) θ0 is a point of Θ such that Pg(·, θ) > Pg(·, θ0) > −∞ for all θ 6= θ0.W2

(iii) For each θ ∈ Θ, the function t 7→ g(x, t) is lower semi-continuous at θW3

for P almost all x.

Remark. That is, there is a P -negligible set Nθ for which
lim infi→∞ g(x, ti) ≥ g(x, θ) if ti → θ and x /∈ Nθ.

(iv) P x infθ g(x, θ) > −∞,W4

(v) θ̂n is a random element of Θ for which Gn(θ̂n) ≤ εn + infθGn(θ)W5

If εn → 0 almost surely then θ̂n → θ0 almost surely; if εn → 0 in probability
then θ̂n → θ0 in probability.

Remark. When P = Pθ0 , a member of a family of probability measures
{Pθ : θ ∈ Θ} with densities fθ with respect to some dominating
measure, and when g(x, θ) = − log fθ(x), the θ̂n from Theorem 1
can be thought of as approximate maximum likelihood estimator. As
noted in Chapter 1, the minimization condition (ii) then follows from
Jensen’s inequality, provided we make sure that Pθ 6= P for θ 6= θ0.
More informatively,

G(θ)−G(θ0) = P x (− log fθ(x) + log fθ0(x))

=
∫
fθ0(x) log (fθ0(x)/fθ(x)) ,

the Kullback-Leibler distance between Pθ0 and Pθ.

Proof For each subset A of Θ define h(x,A) := infθ∈A g(x, θ). If we replace
g(x, θ) by g(x, θ)−h(x,Θ) neither the lower semicontinuity nor the defining
properties for θ0 and θ̂n would be affected. We may, therefore, assume
without loss of generality that g(x, θ) ≥ 0 = h(x,Θ).

Remark. Even though nonmeasurability needs to be taken seriously
when one manipulates uncountable families of random variables—for
example, an infimum of an uncountable family of measurable functions
need not itself be measurable—I will continue to sidestep such issues.
A completely rigorous proof would need to establish measurability
of x 7→ h(x,A) for each open ball A. See the Notes at the end of the
Chapter for further discussion of measurability.
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Fix an open neighborhood U of θ0. Fatou’s lemma and (iii) ensure that
the function θ 7→ G(θ) := P xg(x, θ) is everywhere lower semi-continuous.
It must achieve its infimum on the compact set Θ\U . By (ii), there must
therefore be some ε > 0 for which

G(θ) ≥ 3ε+G(θ0) for each θ in Θ\U .

Consider a fixed t in Θ\U . There exists a sequence of open balls Ni(t)
that shrinks to {t} as i → ∞. By (iii), 0 ≤ h(x,Ni(t)) ↑ g(x, t) a.e. [P ]
as i → ∞. Monotone Convergence then ensures existence of at least one
open neighborhood, call it N(t), of t for which

P xh(x,N(t)) > G(t)− ε ≥ G(θ0) + 2ε

By compactness of the set Θ\U , there exists some finite subset F for
which Θ\U ⊆ ∪t∈FN(t), which implies

infθ∈Θ\U Gn(θ) ≥ mint∈F
1
n

∑
i≤n

h(Xi, N(t)).

By finitely many appeals to the SLLN, as n tends to infinity the right-hand
side of the last inequality converges almost surely to

mint∈F P xh(x,N(t)) ≥ G(θ0) + 2ε

and
Gn(θ0)→ G(θ0) almost surely.

If εn → 0 almost surely then, for almost all ω,

Gn(θ̂n) ≤ εn +Gn(θ0) < G(θ0) + ε < infθ∈Θ\U Gn(θ) eventually.

It follows that θ̂n(ω) ∈ U eventually. Complete the proof of almost sure
convergence by casting out a sequence of negligible sets, one for each U in
a sequence of neighborhoods that shrinks to {θ0}.

If εn → 0 in probability, we have instead that

P{Gn(θ̂n) < infθ∈Θ\U Gn(θ)} → 1

and so P{θ̂n ∈ U} → 1 for each neighborhood U of θ0.
�

The natural parameter space for many problems will not be compact.
To apply Theorem <1> we must either provide some ad hoc, preliminary
argument to force θ̂n into some compact subset, or we must compactify Θ.
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<2> Example. Consider the maximum likelihood estimator θ̂n for a sample ofCauchy
size n from the Cauchy(θ) location family. That is, the observations {Xi} are
assumed to come from a density fθ0(·) (with respect to Lebesgue measure)
for an unknown θ0, where

fθ(x) =
1

π(1 + (x− θ)2)
.

The estimator minimizes the Gn(θ) corresponding to the nonnegative func-
tion

g(x, θ) = log
(
1 + (x− θ)2

)
,

with θ ranging over the whole real line.
Assumptions (iii) and (iv) of the Theorem are trivially satisfied. As-

sumption (ii) follows via the Jensen inequality or the by the argument in
the Remark that followed the statement of the Theorem.

Of course R is not compact. However, if we enlarge the parameter space
to Θ = [−∞,∞] and define g(x,±∞) ≡ ∞, the argument from the Theo-
rem carries over. At the two new compactification points, ±∞, the g(x, ·)
functions are lower semi-continuous; and G(±∞) =∞ > G(θ0); and θ̂n also
minimizes Gn(θ) over the compact Θ.

Theorem <1> applies to the compactified problem, establishing almost
sure convergence of θ̂n to θ0.

The assumption that P corresponds to a density fθ0(·) in the model
family is not essential. It was used only to identify the θ that minimizes
Pg(·, θ). More generally, if fθ0(·) were merely the Cauchy location density
that gave the closest approximation to P , in the sense that

Pg(·, θ) > Pg(·, θ0) > −∞ for θ 6= θ0,

then the Theorem would again prove almost sure convergence of θ̂n to θ0,
without θ0 having any interpretation as a true value of the parameter.

�

2.3 Global difficulties

It is not always possible to justify an application of Theorem <1> by meansConsistency::global
of a compactification of Θ, as in Example <2>. There are very simple
cases where the conclusion of the Theorem holds, even though one of its
assumptions is violated. The usual obstacle is the global integrability As-
sumption (iv). Wald’s theorem is not the last word in consistency proofs.
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<3> Example. Let θ̂n = (µ̂n, σ̂n) be the maximum likelihood estimator for thenormal.mle
N(µ, σ2) family, with the natural parameter space

Θ = {(µ, σ) : −∞ < µ <∞, σ > 0}.

Under sampling from P = N(µ0, σ
2
0), it is easy to prove directly that µ̂n →

µ0 and σ̂n → σ0, both with probability one.
The estimator is defined by the minimization problem treated in Theo-

rem <1> for the special case

g(x, µ, σ) = log σ + (x− µ)2/2σ2.

The infimum over µ and σ equals −∞, for every x: put µ equal to x then
let σ tend to zero. Assumption (iv) of Theorem <1> fails.

If we restrict the parameters to the subset

Θε = {(µ, σ) ∈ Θ : σ ≥ ε},

for any fixed ε > 0, the difficulty disappears; the same sort of compactifica-
tion argument as in Example <2> would allow us to invoke Theorem <1>
when the observations come from some N(µ0, σ

2
0) distribution.

A more subtle argument is needed to overcome the embarrassment for σ
near zero. The traditional solution to the problem involves a pairing trick,
which takes advantage of some special features of the normal distribution.
For simplicity, suppose the sample size is even, n = 2m. Treat the obser-
vations (X1, X2), . . . , (Xn−1, Xn) as a sample of size m from the bivariate
normal density. The maximum likelihood problem then corresponds to min-
imization with

g(x1, x2, µ, σ) = 2 log σ + (x1 − µ)2/2σ2 + (x2 − µ)2/2σ2.

If x1 6= x2 the infimum is attained when µ equals x̄ = (x1 + x2)/2 and σ
equals T , where 2T 2 = (x1 − x̄)2 + (x2 − x̄)2 = (x1 − x2)2/2:

inf
µ,σ

g(x1, x2, µ, σ) = 1 + 2 log T.

When the {Xi} are sampled from a N(µ0, σ
2
0) distribution, the infimum is

integrable: the logarithm of a χ2
1 random variable has a finite expectation.

A compactification of Θ, and an argument analogous to that for the Cauchy
location example, would lead us to a successful application of Theorem <1>
for the bivariate samples.

�
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I find the pairing remedy for the failure of Theorem <1> in the N(µ, σ2)
problem unsatisfying; it gives little insight into why small σ cause so much
trouble. You might be puzzled about why I should be at all concerned with
the failure of the Theorem in this case. After all, we have closed-form ex-
pressions for both µ̂n and σ̂n; a direct proof of almost sure convergence is not
difficult. The real reason for concern is the shortcoming the Example exposes
in the Theorem. What would happen in other problems where closed-form
solutions are not available? It would be preferable to have general theorems
that cover even the difficult cases, and not have to rely on ad hoc arguments
to force parameters into compact regions where local arguments have global
consequences. Unfortunately, general theorems tend to be conglomerates of
special devices, aimed at eliminating difficulties specific to well known bad
cases.

There have been many attempts at formulating general conditions that
can handle the global problem. One of the most elegant is due to Huber
(1967). See Problem [1]. Unfortunately, I have not been able to use Huber’s
method to eliminate the problem with small σ for the N(µ, σ2) model. For-
tunately, the problem can be remedied by using one of the general theorems
from the next Section.

2.4 Comparison arguments

As noted in Section 1, most proofs for M-estimators involve comparisonsConsistency::comparison
between individual sample paths of stochastic processes. Proofs for ran-
dom processes become simpler if we first isolate and study the comparison
arguments for deterministic functions.

Suppose f is a real-valued function defined on some set T . If T0 is a
subset of T and t∗ is a point of T for which f(t∗) < inft∈T\T0

f(t) then t∗ must
lie in T0. This trivial idea lies at the heart of most analyses of minimization
estimators.

Often the argument appears in a slightly disguised form involving two
real-valued functions, f1 and f2 on the set T with finite infima Mi :=
inft∈T fi(t). The set T0 might equal {t ∈ T : f2(t) ≤ M2 + γ} for some
(small) nonnegative γ and t∗ might be a point at which f1 is (almost) min-
imized, f1(t∗) ≤ M1 + ε for some (small) nonnegative ε. If f1 and f2 are
close enough in some uniform sense then we can hope that f2(t∗) also lies
close enough to M2 to force t∗ into the region T0.

The easiest case occurs when we have a uniform bound on |f1(t)−f2(t)|.
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<4> Lemma. Let f1 and f2 be two real-valued function defined on a set T forcompare1
which Mi := inft∈T fi(t) is finite for i = 1, 2. Let t∗ be a point of T such
that, for fixed ε ≥ 0 and δ > 0,

(i) f1(t∗) ≤M1 + εC1.1

(ii) supt∈T |f1(t)− f2(t)| ≤ δC1.2

Then f2(t∗) ≤M2 + ε+ 2δ.

Proof From (ii), f1(t) ≤ f2(t)+δ for all t, which implies that M1 ≤M2+δ.
Thus

f2(t∗) ≤ f1(t∗) + δ by (ii)
≤M1 + δ + ε

≤M2 + 2δ + ε.

�

<5> Theorem. Suppose {Gn(θ) : θ ∈ Θ} is a random criterion function indexedULLN
by a metric space (Θ, d). Let G be a deterministic function on Θ. Suppose
θ̂n is a random element of Θ. Suppose Θn is a subset of Θ for which

(i) supθ∈Θn
|Gn(θ)−G(θ)| ≤ ∆n

(ii) Gn(θ̂n) ≤ εn + infθ∈ΘGn(θ)

(iii) there exists a θ0 ∈ Θn for which inf{G(θ) − G(θ0) : d(θ, θ0) ≥ δ} > 0
for each δ > 0.

Then

(a) If max(εn,∆n) = op(1) and P{θ̂n ∈ Θn} → 1 then d(θ̂n, θ0) = op(1).

(b) If max(εn,∆n)→ 0 almost surely and P{ω : θ̂n(ω) ∈ Θn eventually} =
1 then d(θ̂n, θ0)→ 0 almost surely.

Proof Homework exercise for 618.
�

<6> Example. Needs editing Minimum distance with ‖P −Q‖H := suph∈H |Ph−min.dist
Qh|. Maybe discuss classical case. cf. Problem [6]. Maybe discuss role as
preliminary

√
n-consistent estimator. Adapt argument from the OLD com-

parison chapter.
�
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An attempt at invoking Theorem <5> to prove consistency sometimes
fails because the variability of Gn(θ) about G(θ) increases with G(θ). The
failure can sometimes be averted if |Gn(θ)−G(θ)| is small relative to G(θ)−
G(θ0), uniformly in θ. The next Lemma gives one suitable meaning to the
concept of relative closeness for deterministic functions.

<7> Lemma. Let f1 and f2 be real-valued functions defined on a set T for whichcompare2
Mi := inft∈T fi(t) is finite for i = 1, 2. Let t∗ be a point of T such that, for
a fixed ε ≥ 0,

(i) f1(t∗) ≤M1 + εC2.1

(ii) for fixed δ ≥ 0 and ηi ∈ [0, 1),C2.2

|f1(t)− f2(t)| ≤ δ + η1|f1(t)|+ η2|f2(t)| for every t in T

Then f2(t∗) ≤M2 + γ where

γ =
4δ

(1− η2)(1− η1)
+

2ε
1− η2

+
2(η1 + η2 + η1η2)
(1− η1)(1− η2)

|M2|.

Remark. The coefficients of δ and ε are not important provided
max(η1, η2) is bounded away from 1. For the whole inequality to be of
much value we will need |M2|max(η1, η2) ≈ 0.

Proof Recall that sgn(x) := {x > 0}−{x < 0}. To avoid the need for sep-
arate examination of many combinations of signs, define σi(t) = sgn(fi(t))
and µi = sgn(Mi). Abbreviate σi(t∗) to σ∗i .

Inequality (ii) splits into two one-sided inequalities. Write the first as

f1(t) [1− η1σ1(t)] ≤ δ + f2(t) [1 + η2σ2(t)] for all t,split.f1f2<8>

Bound the left-hand side from below by

M1 (1− η1σ1(t)) ≥M1 (1− η1µ1) .

Then, on the right-hand side, take a limit along a sequence of t values for
which f2(t)→M2, to deduce that

M1(1− η1µ1) ≤ δ +M2(1 + η2µ2).M1.M2<9>

The analogous inequality, with the roles of f1 and f2 reversed, is needed
only at t∗.

f2(t∗) (1− η2σ
∗
2) ≤ δ + f1(t∗) (1 + η1σ

∗
1)

≤ δ + (M1 + ε) (1 + η1σ
∗
1) by assumption (i)
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Multiply through by the nonnegative value 1 − η1µ1 then substitute in the
upper bound for M1 (1− η1µ1) from inequality <9>.

f2(t∗)(1− η2σ
∗
2)(1− η1µ1)

≤ [δ + ε(1 + η1σ
∗
1)] (1− η1µ1) + [δ +M2(1 + η2µ2)] (1 + η1σ

∗
1)

≤ δ (2− η1µ1 + η1σ
∗
1)

+ ε(1 + η1σ
∗
1)(1− η1µ1)+

+M2(1− η2σ
∗
2)(1− η1µ1)

+ |M2| × |η2σ
∗
2 + η1µ1 + η2σ

∗
2η1µ1 + η2µ2 + η1σ

∗
1 + η2µ2η1σ

∗
1|

Divide through by (1−σ∗2η2)(1− η1µ1) then (crudely) argue worst cases for
the signs to derive the asserted bound.

�

The stochastic analog of the Lemma gives a useful method for estab-
lishing consistency. The Theorem is an example of a “high-level result”. It
makes no assumption that Gn be an average of independent g(xi, θ), and
no assumption that Hn = PGn; they could be any two (possibly random)
processes satisfying the uniform approximation requirement of the Lemma.
The result could be applied to all manner of processes constructed from de-
pendent variables. In any particular application it might take some effort to
verify the high-level assumption, but the rest of the comparison argument
need not be repeated.

Remark. I am very much in favour of high-level theorems. They
eliminate a lot of the repetitive details that often consume journal pages;
they focus attention on the important approximation requirements; and
they do not build in too many low-level assumptions about the random
processes under consideration. The difference between high-level and
low-level approaches is like the difference between a program written
in Perl (or whatever your favourite programming language might be)
and a program written in assembly language.To be replaced by a similar appeal.

<10> Theorem. Suppose {Gn(θ) : θ ∈ Θ} and {Hn(θ) : θ ∈ Θ} are (possibly)transfer.min
random criterion functions indexed by a metric space (Θ, d). Suppose θ̂n is
a random element of Θ and Θn is a subset of Θ for which

(i) P{θ̂n ∈ Θn} → 1;

(ii)

sup
θ∈Θn

|Gn(θ)−Hn(θ)|
1 + |Gn(θ)|+ |Hn(θ)|

= op(1);
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Then Hn(θ̂n) ≤ op(1) + (1 + op(1)) infθ∈Θn Hn(θ).
Suppose also that there exists a (possibly random) θ∗n ∈ Θn and a function

κn : θ → R+ for which

(iii) Hn(θ) ≥ Hn(θ∗n) + κn(θ)2 for all θ ∈ Θn.

(iv) Hn(θ∗n) = Op(1)

Then κn(θ̂n) = op(1).

Proof Exercise for Stat 618.
�

I leave the formulation and proof of an almost sure analogue of Theo-
rem <10> to the motivated reader.

In applications of the Theorem, one often discards some of the weighting
factors in the denominator from Assumption (ii), most typically the |Gn(θ)|.
The symmetry betweenGn andHn simplify the proof, but it is often easier to
prove the stronger uniform convergence result with the smaller denominator.

<11> Example. You have seen in Example <3> how Theorem <1> fails for themore.normal.mle
N(µ, σ2) model. The last Lemma solves the difficulty with small σ by means
of a weighting factor that becomes infinite as σ tends to zero.

Suppose the observations are sampled from P = N(µ0, σ
2
0). The maxi-

mum likelihood estimators minimize the Gn corresponding to

g(x, µ, σ) = log(σ/σ0) + (x− µ)2/2σ2.

The extra σ0 has no effect on the location of the maximizing value, but it
does ensure that the expected value

G(µ, σ) = Pg(x, µ, σ) = log(σ/σ0) +
(µ− µ0)2 + σ2

0

2σ2

has a strictly positive minimum: it achieves its minimum value of 1/2 cleanly
at µ = µ0 and σ = σ0. If we can show that G(µ̂, σ̂)→ 1/2, then it will follow
that µ̂ → µ0 and σ̂ → σ0. Lemma <10> with Hn = G will establish the
almost sure version of this convergence if we check that

sup
µ,σ

|Gn(µ, σ)−G(µ, σ)|
G(µ, σ)

→ 0 almost surely.

Such a weighted USLLN shows that the bad behaviour for σ near zero is
unimportant compared to the divergent behaviour of G(µ, σ) as σ → 0.
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To simplify the notation, reparametrize by putting µ = µ0 + σ0t and Reparametrization too cute?

σ2 = σ2
0s, with t ∈ R and s > 0. Thus

G(µ, σ) =
1
2

log s+
1 + t2

2s
.

Also, write ηi for the standardized, N(0, 1) random variable (xi − µ0)/σ0.
Then we need to show

sup
s,t

∣∣∣∣∣∣ 1n
∑
1≤n

(ηi − t)2/2s− (1 + t2)/2s
(log s)/2 + (1 + t2)/2s

∣∣∣∣∣∣→ 0 almost surely

or

sup
s,t

∣∣∣∣∣∣ 1n
∑
1≤n

(η2
i − 1− 2tηi)/(s log s+ 1 + t2)

∣∣∣∣∣∣→ 0 almost surely.

The s log s factor achieves its minimum value −e−1 at e−1. With c = 1−e−1,
the last supremum is less than∣∣∣∣∣∣ 1n

∑
i≤n

(η2 − 1)

∣∣∣∣∣∣+ sup
t

|t|
c+ t2

∣∣∣∣∣∣ 1n
∑
1≤n

ηi

∣∣∣∣∣∣ ,
which tends to zero almost surely by virtue of two applications of the SLLN.

�

The last Example might seem like an awful lot of work for a modest
application, but it does illustrate the effect of allowing weights into the
uniform bounds.

<12> Example. Method of minimum chi-square as in Pakes and Pollard (1989)chi.square
perhaps? Maybe give some other example where the uniform convergence
breaks down near the edge of the parameter space.

�

2.5 Z-estimators

Give theorem and examples via first order conditions.Consistency::Zest
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2.6 A nonparametric example

Unedited This section treats the consistency problem for the maximumConsistency::monotone
likelihood esimator (MLE) defined by a model whose parameter space Θ is
much more complex than a subset of (finite dimensional) Euclidean space.
Specifically, Θ will be the set of all densities with respect to Lebesgue mea-
sure on R+ that are monotone decreasing.

The model posits X1, X2, . . . to be independent observations from a
probability distribution P defined by some unknown θ0 in Θ. The MLE,
θ̂n, is defined as

θ̂n(ω) = argmax
θ∈Θ

∏
i≤n

θ(Xi) = argmax
θ∈Θ

∑
i≤n

log θ(Xi).

The function θ 7→
∑

i≤n log θ(Xi) is usually called the log-likelihood.
For each θ in Θ, the left and right limits, θ(t−) and θ(t+), must exist at

each t > 0; the function θ must be continuous except for possibly countably
many points of discontinuity. Those discontinuities have no effect on the
corresponding probability measure on R+. We may therefore assume that
each θ in Θ is left continuous everywhere.

Remark. Left continuity actually ensures that the supremum in the
definition of the maximum likelihood estimator is actually achieved
(van der Vaart 1998, Section 24). This fact will have little effect on the
explanations that follow, which are written to emphasize how much
we can learn about an estimator from the mere fact that it maximizes
some random criterion function.

Ideally, a consistency result should show, at least under each θ0 in Θ,
that

Pn,θ0{d(θ̂n, θ0) ≥ ε} → 0 as n→∞monotone.consistent<13>

for some metric d on Θ. Unfortunately, I cannot establish the result for
all θ0, but only those that satisfy some extra assumptions. Such a defect
is quite common in proofs with large parameter spaces. Ideally, we want
at least to describe behavior of an estimator under every possible distribu-
tion prescribed by a model; in practice, only some subset of the possible
distributions is tractable.

For nonparametric problems the choice of metric can also be more subtle
than for parametric problems, where Euclidean distance usually recommends
itself. Ideally, if consistency is just the first step in a more detailed analysis,
closeness in d distance should simplify subsequent calculations based on local
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approximations. Unfortunately, we sometimes have to settle for a weaker
metric. For example, I would like to be able to establish some sort of uniform
convergence of θ̂n to θ0, but instead have to settle for the L1 distance,

‖p− q‖1 =
∫ ∞

0
|p(x)− q(x)| dx.

<14> Theorem. For each bounded θ0 in Θ with bounded support, ifmonotone.consistency

(i) the Xi’s are independent observations on the probability distribution
defined by θ0,

(ii)
∫∞

0 θ0(x) log θ0(x) dx > −∞,

then ‖θ̂n − θ0‖1 → 0 in probability.

Remark. Assumption (iii) is equivalent to integrability of θ0 log θ0,
because θ0 is bounded. I write the condition as a one-sided bound to
emphasize the similarity to Theorem <1>.

In fact, a much stronger result—convergence at an Op(n−2/3) rate in L2

norm—is possible (van der Vaart 1998, Theorem 24.6) under the same as-
sumptions on θ0 if we make explicit use of details about the form of θ̂n.
However, as my current purpose is to illustrate what might be possible in
cases where we do not know the explicit form of an estimator defined by an
optimization, I feel the weaker result does have merit.

Proof It will be notationally cleaner to express the argument in terms of
the empirical measure Pn, which puts mass 1/n at each Xi, for i = 1, . . . , n.
With this notation, the log-likelihood equals Pn log θ.

The fact that θ̂n maximizes the log-likelihood suggests that we try to
apply one of the limit theorems from this Chapter to the process {−Pn log θ :
θ ∈ Θ}. Unfortunately, I am unable to obtain uniform bounds for this
process. Instead, consider the processWhose idea?

Gn(θ) = P xn g(x, θ) where g(x, θ) := − log
(
θ(x) + θ0(x)

2

)
.

The MLE need not minimize Gn but, by concavity of the log function and
the fact that Pn log θ̂n ≥ Pn log θ0, it does satisfy the inequality

Gn(θ̂n) ≤ −Pn
(

1
2 log θ̂n + 1

2 log θ0

)
≤ Gn(θ0).Gn<15>
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Remark. To argue for consistency I will need some preliminary
information about θ̂n, which might seem to contradict my stated
purpose of arguing directly from the fact of optimization without
specific knowledge of the form of the MLE. I prefer to think of it as
analogous to needing a preliminary argument to force a parametric
estimator into a compact subset. Some authors might interpret the
preliminaries as a replacement of the MLE by a more tractable sieve
estimator.

Note that the MLE must be a step function with jumps at the order
statistics X(1) < · · · < X(n) with θ̂n(x) = 0 for x > X(n). Otherwise the
step function

θ∗(x) = {0 ≤ x ≤ X(1)}θ̂n(X(1)) +
∑

2≤i≤n
{X(i−1) < x ≤ X(i)}θ̂n(X(i))

would have the same log-likelihood as θ̂n and 1 >
∫∞

0 θ∗(x) dx. For some
δ > 0, the function (1 + δ)θ∗ would belong to Θ and have a larger log-
likelihood than θ̂n. Consequently,

1 =
∫ ∞

0
θ̂n(x) dx ≥ X(1)θ̂n(0).

Under P , the random variable 1/X(1) is of order Op(n) because

P{X(1) > ε/n} = (1− P [0, ε/n])n ≥ (1− θ0(0)ε/n)n → exp(−θ0(0)ε).

With high probability we still capture the MLE if we restrict the optimiza-
tion to those θ for which θ(0) is bounded by a quantity, such as n2, that
grows more rapidly than n.

Similarly, if Ln = inf{x : θ0(x) < n−2} then P (Ln,∞) = O(n−2) because
θ0 has bounded support, which implies

P{X(n) > Ln} ≤
∑

i≤n
P{Xi > Ln} = O(n−1).

With high probability, Pn(Ln,∞) = 0 and θ̂n must therefore concentrate
on [0, Ln].

In short, with probability tending to one, θ̂n must lie in the set

Θn = {θ ∈ Θ : θ(0) ≤ n2 and θ(x) = 0 for x ≤ Ln}.

Remark. By left continuity, θ0(Ln) ≥ n−2. We might also have
θ̂n(x) > 0 for some x > Ln, which would imply θ0 /∈ Θn.
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We can hope that Gn(θ) is close to G(θ) = P xg(x, θ), which will let us
exploit a clean minimization at θ0:

G(θ)−G(θ0) =
∫ ∞

0
θ0(x) log

(
2θ0(x)

θ(x) + θ0(x)

)
= D(θ0‖(θ + θ0)/2),

the Kullback-Leibler distance between θ0 and (θ+θ0)/2. For general proba-
bility densities recall (Pollard 2001, Section 3.2) that the KL distance dom-
inates both the squared Hellinger distance and the squared L1 distance,

D(p‖q) ≥ max
(
H2(p, q), 1

2 ‖p− q‖
2
1

)
For not particularly compelling reasons, I prefer to work with the L1 metric
via the lower bound

G(θ) ≥ 1
2

(∫
|(θ + θ0)/2− θ0|

)2

= 1
8 ‖θ0 − θ‖21 .G.lower<16>

The insertion of the θ0 into the definition of g(x, θ) and the restriction
to Θn have some pleasant boundedness consequences, namely,

g(x, θ) ≤ − log(θ0(x)/2) ≤ − log(1/2n2)) = O(log n) for x ≤ Ln

and

−g(x, θ) ≤ log(n2 + θ0(0)) = O(log n) for each θ in Θn.

Thus there exists a sequence of constants Mn for which |g(x, θ)| ≤ Mn =
O(log n) whenever x ≤ Ln and θ ∈ Θn.

When |g(x, θ)| ≤Mn, the representation

Mn + g(x, θ) =
∫ 2Mn

0
{Mn + g(x, θ) ≥ t} dt

and the monotonicity of the map x 7→ (x, θ) leads to a bound

sup
θ∈Θn

|(Pn − P ){x ≤ Ln}(Mn + g(x, θ))|

≤
∫ 2Mn

0
sup

θ∈Θn,t≥0
|(Pn − P ){x ≤ Ln,Mn + g(x, θ) ≥ t}| dt

≤ 2Mn supI∈I |PnI − PI|

where I denotes the set of all subintervals of the real line. Remember (SCME
?) that supI∈I |PnI − PI| = Op(n−1/2).SCME = first part of Stat 618

notes



Problems for Chapter 2 17

For the contributions from {x > Ln}, use the definition of Θn and the
fact that P{Pn(Ln,∞) = 0} → 1 to get a bound that holds with probability
tending to one,

sup
θ∈Θn

|(Pn − P ){x > Ln}(Mn + g(x, θ))|

≤
∫ ∞
Ln

θ0(x) (Mn + | log(θ0(x)/2)|) dx = O(Mn/n
2) + o(1),

the o(1) term coming from the integrability of θ0 log(θ0)

Remark. If we were prepared to make further assumptions about θ0
the o(1) term could be improved.

Combine the contributions from x ≤ Ln and x > Ln to get

∆n := supθ∈Θn
|Gn(θ)−G(θ)| = op(1).UWLLN<17>

The rest of the proof of consistency fits the pattern of Lemma <7>.
With probability tending to one,

G(θ̂n) ≤ Gn(θ̂n) + ∆n by <17>

≤ Gn(θ0) + ∆n by <15>

≤ G(θ0) + op(1) + ∆n.

Notice that we cannot bound |Gn(θ0) − G(θ0)| by ∆n, because θ0 needn’t
belong to Θn; instead we can appeal to a SLLN for Png(x, θ0). An appeal
to the lower bound <16> completes the proof.

�

Problems

Unedited

[1] Suppose β(·) is a nonnegative function defined on a subset Θc
0 of Θ such Huber.caseA

that for some integrable h(·) with Ph > 0,

g(x, θ) ≥ β(θ)h(x) for all θ ∈ Θc
0 and all x.

Define Gn as in Theorem <1>. Suppose θ0 is a point in Θ0 for which
infθ∈Θc

0
β(θ)Ph > Pg(·, θ0). If Gn(θ̂n) ≤ o(1) + infθGn(θ) almost surely,

show by the following steps that, with probability one, θ̂n must eventually
lie in Θ0.
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(i) With no loss of generality suppose Ph = 1. Write β for the infimum ap-
pearing in (ii) and εn for the o(1) quantity identified by (iii). Choose ε > 0
and γ such that

β(1− ε) ≥ γ > Pg(·, θ0).

Use the SLLN to show that, with probability one, we eventually have

Gn(θ) ≥ β(θ)
1
n

∑
i≤n

h(ξi) ≥ β(1− ε) for all θ in Θc
0.

(ii) Appeal to the SLLN again to show that, with probability one, we eventually
have Gn(θ̂n) ≤ εn +Gn(θ0) < γ, which forces θ̂n into Θ0.

[2] Suppose ξ1, . . . , ξn are independent observations from the Bin(1, θ0) distri-xxx
bution, for a θ0 with 0 < θ0 < 1. The maximum likelihood estimator θ̂n for
the Bin(1, θ) model minimizes

Gn(θ) =
Xn

n
log
(
θ0

θ

)
+
(

1− Xn

n

)
log
(

1− θ0

1− θ

)
over 0 < θ < 1, where Xn =

∑
i≤n ξi. Without using the explicit form

for θ̂n, but appealing only to the general theorems in Chapter C, prove
that θ̂n = θ0 + Op(1/

√
n ). [I am interested in seeing which of the general

assumptions hold in the present special case, rather than in verifying the
elementary result about θ̂n.]

[3] Let {g(·, θ) : θ ∈ Θ} be a family of functions indexed by a compact metricwald2
space Θ. Suppose ξ1, . . . , ξn are independent observations from a distri-
bution P for which P supθ |g(·, θ)| < ∞. Suppose also that at each θ the
function g(x, ·) is continuous, for P almost all x. Adapt Wald’s method to
prove that

sup
θ

∣∣∣ 1
n

∑
i≤n

(
g(ξi, θ)− Pg(·, θ)

)∣∣∣→ 0 almost surely.

[4] State and prove a useful one-sided analogue of Theorem <5>.one.sided.ULLN

[5] State and prove a useful one-sided analogue of Theorem <10>.one.sided.weighted.ULLN

[6] Let {F (x, θ) : θ ∈ Θ} be a family of distribution functions indexed bydist.fn
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a subset Θ of R. Suppose F (x, θ) corresponds to the measure having den-
sity f(x, θ) with respect to a measure µ. Suppose there exists a neighborhood
of a fixed θ0 within which ∂f

∂θ (x, θ) exists, is continuous in θ, and is bounded
in absolute value by some µ-integrable function M(x). Suppose

2C0 = sup
x

∣∣∣∂f
∂θ

(t, θ0){t ≤ x}µ(dx)
∣∣∣ > 0.

Show that
sup
x
|F (x, θ1)− F (x, θ2)| ≥ C0|θ1 − θ2|

for all θ1, θ2 in some neighborhood of θ0. [Hint: Show that

F (x, θ1)− F (x, θ2) = (θ1 − θ2)
∫
∂f

∂θ
(t, θ0){t ≤ x}µ(dx) + o(|θ1 − θ2|),

by means of a dominated convergence argument.]

[7] Generalize the previous problem to Θ a subset of Rk. dist.fn2

Notes

Discuss measurability issues.
Wald (1949) did not require a compact parameter space. Instead he

made assumptions that, essentially, allowed an argument like the one in
Theorem <1> to be applied to a compactification of the parameter space,
in much the same way as for Example <2>.

Consistency: Zaman (1989) Perlman (1972) Jennrich (1969), Wu (1981)
Monotone density: van der Geer (2000), van der Vaart and Wellner

(1996, Sections 3.2 and 3.4), (van der Vaart 1998, Section 24), Groeneboom
(1985), Prakasa Rao (1969), Kim and Pollard (1990).
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