
Chapter 7

Contiguity

Special version with missing proofs to be filled in by Stat 618 class

7.1 Definition and stochastic order equivalences

In many asymptotic problems one needs to study estimators under various
sequences of probability models. For example, in Chapter 1, we saw that
the Hodges estimator θ∗n behaves badly under a sequence of alternatives
θn := θ0 + δ/

√
n. For a careful analysis we would have to consider behavior

of θ∗n(x1, . . . , xn) under the product measure Pn,θn := Pnθn
on Xn. From the

theory developed in Chapter 3, we already know a lot about the behavior
of θ∗n under the product measure Pn,θ0 := Pnθ0 . We could repeat the argu-
ments with θn taking over the role played by θ0, following closely the steps
used for the θ0 analysis, to derive the asymptotics under the alternatives.
There is, however, a more elegant approach, whereby the analysis is con-
centrated into a study of the density dPθn/dPθ0 . The underlying magic is
called contiguity, a subtle (see the Notes in Section 5) invention of Le Cam
(1960).

As you will learn in the next few Chapters, contiguity lies at the root of
a number of well known asymptotic facts.

The contiguity idea is not restricted to independent sampling. It makes
sense—and has interesting consequences—for any two sequences {Pn} and
{Qn} of probability measures. For each n, both Pn and Qn should live on
the same space (Ωn,Fn), but there need be no constraint on how the spaces
change with n. For example, Pn and Qn might be the joint distributions
of random vectors with dimension kn, corresponding to parametric models
whose dimensions change with sample size.

<1> Definition. A sequence {Qn} is said to be contiguous to {Pn} if, for each
sequence of sets {Fn}, with Fn ∈ Fn:

if PnFn → 0 then QnFn → 0.

Write {Qn} C {Pn}, or just Qn C Pn, to denote contiguity.

Rewriting the limiting requirements of the definition as explicit δ, ε in-
equalities, we get a more cumbersome (but more versatile) characterization.
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2 Contiguity

<2> Lemma. The contiguity Qn C Pn is equivalent to the assertion: for each
ε > 0 there exists an n0 and a δ > 0, both depending on ε, such that, for
each n ≥ n0,

sup{QnF : F ∈ Fn and PnF < δ} ≤ ε,

That is, if F ∈ Fn and PnF < δ, for some n ≥ n0, then QnF ≤ ε.

Proof

�

<3> Example. Let Pn denote the N(αn, 1) distribution and Qn denote the
N(βn, 1) distribution, both on the real line. Under what conditions on the
sequences of constants {αn} and {βn} do we have Qn C Pn?

If the sequence δn := βn − αn is not bounded then contiguity fails. For
example, suppose δn →∞ along some subsequence N1. Define Fn := [βn,∞)
if n ∈ N1 and Fn := ∅ otherwise. Then PnFn → 0 but QnFn = 1/2 along
the subsequence.

We will soon have elegant ways to show that Qn C Pn if δn is bounded
in absolute value by some finite constant C. For the moment, brute force
will suffice. Then

QnF = (2π)−1/2

∫
{x ∈ F} exp

(
−(x− βn)2/2

)
dx

= (2π)−1/2

∫
{x ∈ F} exp

(
δn(x− αn)− δ2n/2− (x− αn)2/2

)
dx

≤ Pxn ({x ∈ F} exp (C|x− αn|)) .

If we split the last integrand according to whether |x − αn| ≤ M or not,
for some constant M , then make the change of variable z = x − αn in the
second contribution, we get a bound for the expectation:

exp(CM)PnF + (2π)−1/2

∫
{|z| > M} exp

(
C|z| − z2/2

)
dz.

If M is large enough, the second contribution is smaller than ε/2. The first
contribution is also smaller than ε/2 if PnF < ε exp(−CM)/2.

�
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The more cumbersome characterization makes it easy to prove that con-
tiguity is equivalent to preservation of the op(1) or Op(1) properties for
sequences of random variables. Because there are so many different proba-
bility measures involved, we need to be explicit about the measure involved
in these assertions.

<4> Definition. For a sequence of random variables {Yn}, with Yn measurable
with respect to Fn, write

(i) Yn = op(1; Pn) to mean: Pn{|Yn| > η} → 0 as n → ∞, for each
fixed η > 0

(ii) Yn = Op(1; Pn) to mean: for each ε > 0 there exists a finite constant
Mε such that lim supn Pn{|Yn| > Mε} < ε.

<5> Lemma. The following three conditions are equivalent.

(i) Qn C Pn

(ii) For each sequence of random variables {Yn}, with Yn measurable with
respect to Fn: if Yn = op(1; Pn) then Yn = op(1; Qn).

(iii) For each sequence of random variables {Yn}, with Yn measurable with
respect to Fn: if Yn = Op(1; Pn) then Yn = Op(1; Qn).

Proof

�

Remark. A sequence of real random variables {Yn} of order Op(1; Pn) is
sometimes said to be stochastically bounded (under {Pn}), or uniformly
tight. Such a sequence must have a subsequence that converges in
distribution to a probability measure concentrated on R. For real-
valued random variables the proof is easy: a Cantor diagonalization
argument applied to the sequence of distribution functions evaluated
on a countable dense subset of R. The analog for more general spaces
is often called the Prohorov/Le Cam theorem (UGMTP §7.5).



4 Contiguity

7.2 Likelihood ratios

Contiguity has simple characterizations in terms of the behavior of the like-
lihood ratios, the densities dQn/dPn.

It pays to be quite precise in the definition of a likelihood ratio, to avoid
later ambiguities concerning singular parts. Suppose both P and Q are
probability measures defined on the same space (Ω,F). There is a unique
decomposition of Q into a sum Qa + Qs, where Qa is absolutely continuous
with respect to P and Qs is singular with respect to P, that is, Qs concen-
trates on a set NP with zero P measure (UGMTP §3.2). Some authors write
dQ/dP for the density of Qa with respect to P. I will write L for the den-
sity dQa/dP, an R+-valued measurable function, and call it the likelihood
ratio for Q with respect to P. I will also refer to (L,NP) as the Lebesgue
decomposition of Q with respect to P. Thus, at least for nonnegative
measurable functions f ,

Qf = Qaf + Qsf = P (fLNc
P) + Q (fNP)<6>

Of course the Nc
P is irrelevant for the P contribution, but it sometimes helps

to be reminded indirectly that the density applies only to the contribution
from Qa.

Remark. If both P and Q are absolutely continuous with respect to a
measure λ, with densities p and q, then we can take

L := (q/p){p 6= 0} and NP := {p = 0}.

Redefinition of the likelihood ratio on the set NP would have no effect
on the equality <6>. Some authors purposefully define L to be
(q/p){p 6= 0} +∞{p = 0}, which leads to some economy of notation.
For example, with likelihood ratios {Ln} for sequences {Pn} and {Qn},
a statement like Ln = Op(1; Qn) would imply both

dQn

dPn
= Op(1; Qn) and QnNPn

→ 0.

The set NPn
= {Ln = ∞} would get absorbed into the set {Ln > M}

for each finite constant M .
After some experimentation on live audiences, I have decided that

the possibilities for confusion outweigh the notational disadvantages of
the more explicit treatment of singular parts of the {Qn}. I will always
regard the likelihood ratio as a real-valued random variable.

Lemma<5> shows that contiguity is a matter of inheritance of a stochas-
tic order property: to verify contiguity we could check the Op(1; Qn) prop-
erty for all Op(1; Pn) sequences. The next characterization simplifies the
task by allowing us to check the inheritance for just one particular case.
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Notice that 1 = QnΩn ≥ PnLn, so Ln is always of order Op(1; Pn).

<7> Lemma. If Qn has Lebesgue decomposition (Ln, Nn) with respect to Pn then
Qn C Pn if and only if both Ln = Op(1; Qn) and Qn(Nn)→ 0.

Proof

�

Remark. If I had adopted the convention that Ln = ∞ on Nn, the
proof would have been slightly shorter. The case where QnNn = 1,
with Ln ≡ 0, shows that the condition Ln = Op(1; Qn) by itself would
not suffice for contiguity.

<8> Example. For the Pn and Qn from Example <3>,

Ln = exp
(
δn(x− αn)− δ2n/2

)
where δn := βn − αn.

Under Qn the random variable x − αn has a N(δn, 1) distribution. If {δn}
is bounded then δn(x− αn), and hence Ln, is of order Op(1; Qn).

�

The automatic Op(1; Pn) property of {Ln} implies existence of subse-
quences that converge in distribution. Suppose L, on some probability
space (Ω,A,P), represents the limit distribution along some such subse-
quence {Ln : n ∈ N1}.

Remark. Be careful: P need not be a limit of the Pn in any sense; the
probability P exists only to give L a distribution. The image of Pn

under Ln converges, along the subsequence, to the image of P under L,
that is, Ln(Pn) L(P).

For each finite constant M ,

P (L ∧M) = lim
n∈N1

Pn (Ln ∧M) ≤ lim inf
n∈N1

PnLn ≤ 1.

Let M increase to infinity to deduce that PL ≤ 1. Equality here will trans-
late into a Op(1; Qn) property of {Ln : n ∈ N1}; equality for all such subse-
quences will translate into contiguity.
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<9> Lemma. The contiguity Qn C Pn is equivalent to the equality PL = 1
for every L that is a limit in distribution of a subsequence of the likelihood
ratios {Ln} under {Pn}.

Proof Problems [1] and [2] show (via subsequencing arguments) that there
is no loss of generality in considering only the case where Ln itself converges
in distribution to some random variable L on a probability space (Ω,A,P).

�

The last Lemma has an interesting interpretation, which lends support to
the idea that contiguity is a form of asymptotic absolute continuity. For sim-
plicity, suppose Ln converges in distribution under Pn to an L on (Ω,F,P).
Contiguity requires PL = 1, a condition that begs for interpretation of L as
the density of another probability measure Q with respect to P. The limit
assertion then becomes

Ln =
dQn

dPn
(under {Pn} ) 

dQ
dP

(under P),<10>

with Q a probability measure absolutely continuous with respect to P.

<11> Example. Once again consider the Pn and Qn from Example <3>, with
likelihood ratio Ln = exp

(
δn(x− αn)− δ2n/2

)
, where δn := βn − αn. The

difference x − αn has a N(0, 1) distribution, and thus logLn is distributed
as N(−δ2n/2, δ2n), under Pn. For Ln to converge in Pn-distribution we must
have δ2n → δ2 < ∞ (compare with Problem [3]). The limit distribution is
that of L := exp(δx − δ2/2) under the N(0, 1) distribution P on the real
line. By direct calculation, PL = 1. (Compare with the moment generating
function of the normal distribution.) The corresponding Q is the N(δ, 1)
distribution.

�

The form of the limit distribution in the previous Example is not coin-
cidental.
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<12> Example. In many classical situations, logLn has a limiting normal distri-
bution, or, more precisely, Ln  exp(X), with X defined on some (Ω,A,P),
with distribution N(µ, σ2). For contiguity we must have 1 = P exp(X) =
exp(µ+ 1

2σ
2). That is, µ = −1

2σ
2 is equivalent to contiguity in this setting.

�

7.3 Contiguity for product measures

For the study of asymptotic behavior under sequences of alternatives, we
often need to consider sequences of probability measures Qn := Pnθn

and
Pn := Pnθ0 , where θn is a sequence converging to θ0 at a 1/

√
n rate. For

simplicity suppose θ is a real parameter, and Pθ has a smooth density fθ
with respect to a dominating measure λ.

Classical approximation arguments (similar to those used to establish
quadratic approximations in Chapter 3) can be used to establish contiguity,
Qn C Pn, when the density is twice continuously differentiable. The argu-
ments become a little subtle when the densities do not all have the same
support. The difficulties are avoided when {fθ > 0} does not change with θ.
For this case, by restricting λ to the common support set, we may even
suppose fθ(x) > 0 for all θ and x, which ensures that there are no log 0
problems when defining `θ(x) := log fθ(x).

Under the classical regularity conditions the logarithm of the likelihood
ratio

Ln(θ) =
∏
i≤n

f(xi, θ)
f(xi, θ0)

has a local quadratic approximation in 1/
√
n neighborhoods of θ0. More for-

mally, the approximation results from the usual pointwise Taylor expansion
of the log density `(x, θ) = log f(x, θ). For example, in one dimension,

logLn(θ0 + t/
√
n) =

∑
i≤n

(
`(xi, θ0 + t/

√
n)− `(xi, θ0)

)
=

t√
n

∑
i≤n

˙̀(xi, θ0) +
t2

2n

∑
i≤n

῭(xi, θ0) + . . .

≈ tZn −
t2

2
Γ,

where Γ = −Pθ0 ῭(x, θ0) and

Zn =
∑
i≤n

˙̀(xi, θ0)/
√
n N

(
0, varθ0 ˙̀(x, θ0)

)
.
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The limiting variance for Zn and the coefficient Γ from the quadratic term
both equal the information function evaluated at θ0.

The equality −P xθ0 ῭
θ0(x) = varθ0

(
˙̀
θ0(x)

)
is the classical dual represen-

tation for the information function at θ0. As Le Cam and Yang (2000,
page 41) commented,

The equality . . . is the classical one. One finds it for instance
in the standard treatment of maximum likelihood estimation un-
der Cramér’s conditions. There it is derived from conditions of
differentiability under the integral sign.

The classical equality is nothing more than contiguity in disguise.
A rigorous analysis becomes more complicated if the sets {fθ > 0} are

not all the same. We then need to impose a condition regarding the mass
of the part of Pθ that is singular with respect to Pθ0 . See Chapter 11 for
details.

7.4 Limit distributions under contiguous alternatives

Contiguity was advertized in Section 1 as a way to transfer either op(·) or
Op(·) assertions from {Pn} to {Qn}. It can also be used to transfer assertions
of convergence in distribution for sequences of random vectors {Yn}, if we
control the joint behaviour of Yn and the likelihood ratio. The idea behind
the proof is straightforward if we ignore complications such as unbounded
likelihoods: for bounded, uniformly continuous g,

Qng(Yn) ?= PnLng(Yn) ?→ PLg(Y ).

In a rigorous proof, contiguity controls the contributions from regions of
large Ln, and from the singularity region Nn, and then convergence in dis-
tribution of (Ln, Yn) takes care of the convergence assertion. The limit ex-
pression becomes Qg(Y ), where Q is the probability measure defined to have
density L with respect to P. That is, the limit distribution of Yn under Qn

is given by Y , as a random vector on (Ω,F,Q).
We will need the result only for random vectors Yn, but the proof actually

works for random elements more general spaces.

<13> Lemma. Suppose (Yn, Ln) converges in distribution under {Pn} to a limit
represented by a pair (Y,L) on a probability space (Ω,F,P), with PL = 1.
Then {Yn} converges in distribution under {Qn} to the limit represented
by Y as a random element on the probability space (Ω,F,Q), where Q has
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density L with respect to P. That is, Qng(Yn)→ Qg(Y ) := PLg(Y ), at least
for bounded, continuous g.

Proof The condition PL = 1 ensures that Qn C Pn. Fix ε > 0 and let g
be a bounded, continuous function. For convenience suppose 0 ≤ g ≤ 1.

. . .

�

Remark. By the same argument (or just by substitution of (Yn, Ln)
for Yn in the conclusion of the Lemma), the pair (Y,L) under Q also
represents the limit distribution for the pairs (Yn, Ln) under {Qn}.

Convergence in distribution of (Yn, Ln) is equivalent to convergence in
distribution of (Yn, logLn). When the joint limit is normal, the assertion of
the preceding Lemma takes a particularly simple form. The result is known
as Le Cam’s Third Lemma.

<14> Example. Suppose (Yn, Ln)  (Y, eZ) under {Pn}, where the pair (Y,Z),
defined on (Ω,F,P), has a joint normal distribution. To ensure contiguity,
the marginal Z distribution must be N(−1/2σ2, σ2) for some σ2 > 0. Let the
marginal Y distribution be N(µ, V ), and let γ denote the vector of covari-
ances between Y and Z. Under P the pair (Y, Z) has moment generating
function . . .

That is, under Qn the limiting variances and covariances stay the same,
but the mean of Y is shifted to µ+ γ.

�

<15> Example. Chapter 3 derived the asymptotic behavior under Pn := Pnθ0
of an estimator θ̂n that minimizes

∑
i≤ng(xi, θ). For simplicity, reconsider
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only the case where θ is a real-valued parameter. Under classical regularity
conditions, the standardize estimator had a representation

Yn :=
√
n
(
θ̂n − θ0

)
= n−1/2h(xi) + op(1; Pn),

for some h in L2(Pθ0) with Pθ0h = 0. Under mild assumptions, this repre-
sentation also gives the asymptotic distribution of

√
n
(
θ̂n − θn

)
= Yn − t

under Qn := Pnθn
when θn = θ0 + t/

√
n for a fixed t.

Suppose the likelihhood ratio for Qn with respect to Pn has the repre-
sentation

Ln = (1 + op(1; Pn)) exp(tZn − 1
2 t

2Γ),

with Zn = n−1/2
∑

i≤n∆(xi) for a ∆ with Pθ0∆ = 0 and Pθ0∆2 = Γ. Then

(Yn, Zn) = op(1; Pn) + n−1/2∑
i≤n (h(xi),∆(xi)) ,

which has a limiting bivariate normal distribution (Y,Z) with . . .

That is, the limit distribution for
√
n
(
θ̂n − θn

)
under Qn is the same as

the limiting distribution of
√
n
(
θ̂n − θ0

)
under Pn if covP(Y,Z) = t. This

equality is precisely the condition derived in Chapter 1 from the assumption
that Pθg(x, t) is minimized at t = θ.

Estimators for which the limiting distribution of
√
n
(
θ̂n − θn

)
under Pnθn

is the same for each θn = θ0+t/
√
n are said to be Hájek regular at θ0. This

regularity property will return in a later chapter as one of the assumptions
for the Hájek-Le Cam Convolution Theorem.

�

Problems

[1] Suppose {Pn} and {Qn} are sequences of probability measures with the
following property: for each subsequence N1 ⊆ N there exists a subsubse-
quence N2 ⊆ N1 for which {Qn : n ∈ N2} C {Pn : n ∈ N2}. Show that
{Qn : n ∈ N} C {Pn : n ∈ N}. Hint: If contiguity fails, there is subsequence
for which there are sets with PnFn → 0 but QnFn > ε, for some ε > 0.



References for Chapter 7 11

[2] Suppose {Xn} is a sequence of random variables with the following property:
for each subsequence N1 ⊆ N there exists a subsubsequence N2 ⊆ N1 for
which {Xn : n ∈ N2} = Op(1). Show that {Xn : n ∈ N} = Op(1).

[3] Suppose Zn  N(0, Ik) and that αnZn + βn has a nondegenerate limit
distribution, for a pair of deterministic sequences {αn} and {βn}. Show
that both |αn| and βn must converge to finite limits.

7.5 Notes

Le Cam (1960) defined contiguity and derived its most important properties,
in a few pages. The name “Le Cam’s Third Lemma” seems due to Hájek and
Šidák (1967, Chapter VI). It was the third of the lemmas in their chapter
describing contiguity. The numbering now should have little significance.

Lucien Le Cam himself felt that describing contiguity as a subtle in-
vention was an exaggeration. In a private letter to me he wrote “Really,
contiguity is a very trivial affair. I just gave it a name that pleased people.”
Maybe the only subtlety lies in the recognition that something so trivial
is worth noticing. To my chagrin, I ignored the concept for many years,
because it seemed hardly worth bothering about. Moreover, I have found
that I was not alone in my oversight. Maybe subtlety lies in the eye of the
beholder.

References
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