
Chapter 5

Convexity

Very rough draft

5.1 Approximation of convex functions

Convexity::approximation

Expand Convexity simplifies arguments from Chapter 3. Reasons: local
minima are global minima and pointwise convergence of a sequnce of convex
functions implies uniform convergence on compacta. The first Lemma in
this Section contains the standard result (Rockafellar 1970, Theorem 10.8)
that pointwise convergence of a sequence of (deterministic) convex functions
{Hn} to a limit function B on an open set G implies uniform convergence
on each compact subset of G.

For a subset H of Rk and δ > 0, write Hδ for the set {y : d(y,H) ≤ δ}.
For a bounded subset T of Rk, call a finite subset T0 ⊂ T a δ-net for

T if d(t, T0) ≤ δ for ever t in T . Equivalently, the union of closed balls
∪t∈T0B(t, δ) covers T . Also equivalently, B(t, δ) ∩ T0 6= ∅ for each t in T .

Define T δ := {t ∈ Rk : d(t, T ) ≤ δ}.

<1> Lemma. (based on Pollard 1991) Let K be a compact,convex subset of Rd.bound
Let H(·) and A(·) be real-valued functions defined on K4δ, with H convex
and A satisfying the uniform continuity requirement

|A(s)−A(t)| ≤ η whenever |s− t| ≤ 2δ and s, t ∈ K4δ.

Let T0 be a δ-net for K3δ. Then

sup
s∈K
|H(s)−A(s)| ≤ 4η + 3 max

t∈T0

|H(t)−A(t)|

Proof Write ∆ for the maximum of |H(t) − A(t)| over the finite set T0.
The asserted inequality will follow from a pair of bounds for A:

H(s) ≤ A(s) + η + ∆ for all s in K2δ<2>
H(s) ≥ A(s)− 4η − 3∆ for all s in K<3>
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2 Convexity

Proof of upper bound (2).

Let s be a point of K2δ. First I prove that s lies in the convex hull of the
finite set

T (s) := {t ∈ T : |s− t| ≤ 2δ} = T0 ∩B(s, 2δ).

Argue by contradiction. If s is not in the convex hull then, by the separating
hyperplane theorem, there exists some unit vector u for which

u′s > u′t for all t in T (s)

The closed ball B(s∗, δ) around the point s∗ = s+δu lies inside B(s, 2δ)∩K4δ

and it contains no points from T0, which contradicts the δ-net property of T0.
It follows that s must be a convex combination of points in Ts. That is,

s =
∑

t∈T (s) αtt with αt ≥ 0 and
∑

t αt = 1. Then

H(s) ≤
∑
t

αtH(t) by convexity of H

≤
∑
t

αt (A(t) + ∆) definition of ∆

≤
∑
t

αt (A(s) + η + ∆) because |s− t| ≤ 2δ for t ∈ T (s)

≤ A(s) + η + ∆.

Proof of lower bound <3>.

Let s be a point of K. Find a point of T0 with |s − t| ≤ δ. Define s∗ =
t− (s− t). Then s∗ ∈ T (s) ⊆ K2δ and t = (s+ s∗)/2. By convexity of H,

H(t) ≤ (H(s) +H(s∗)) /2

From <2>,
H(s∗) ≤ A(s∗) + η + ∆,

and, by definition of ∆,
H(t) ≥ A(t)−∆

Combine the last three inequalities to get

2A(t)− 2∆ ≤ H(s) +A(s∗) + η + ∆.

Both A(s∗) and A(t) lie within η of A(s). Inequality <3> follows.
�
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5.2 Minimizers of convex functions

Convexity::argmin

Suppose M is a strictly convex function on Rk satisfing the growth con-
dition

M(t)/|t| → ∞ as |t| → ∞.growth<4>

For each z in Rk, the function M(t, z) := M(t)−z′t achieves its minimum
value M∗(z) = inft∈Rk M(t)− z′t at a unique point, ψM (z).

I claim that the map z 7→ ψM (z) is continuous. I would also like to show
that if M(t∗, z) ≤M∗(z)+ε then t∗ must be close to ψM (z) in some suitably
uniform sense. What else would be needed to establish a more general form
of Lemma <5>?

5.3 A limit theorem for M-estimators

Convexity::limit

<5> Lemma. Suppose {Hn(t) : t ∈ Rk} is a stochastic process with convexstoch.approximation
sample paths. Assume

(i) Hn(t̂n) ≤ inft∈Rk Hn(t) + op(1) for some random t̂n

(ii) there exists a sequence of random vectors {Zn} of order Op(1) for
which

Hn(t) + Z ′nt→ 1
2 |t|

2 in probability, for each fixed t ∈ Rk.

Then t̂n = Zn + op(1).

Proof Define

An(t) = 1
2 |t|

2 − Z ′nt = 1
2 |Zn − t|

2 − 1
2 |Zn|

2,

so that |Hn(t)−An(t)| → 0 in probability, for each fixed t. Note that An is
minimized at Zn, which will imply that Hn is minimized near Zn, with high
probability.

Suppose ε > 0 and η > 0 are given, small quantities. By (ii), there exists
an R > 0 for which P{|Zn| > R} < ε eventually. Choose a δ < 1/4 such
that

|An(s)−An(t)| ≤ η2 when |s− t| ≤ 2δ and |Zn| ≤ R and s, t ∈ B(0, R+ 1)
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Let T0 be a δ-net for B(0, R+1). Then there exists a set Ωn with probability
eventually greater than 1− 2ε, on which

|Zn| ≤ R
∆n := maxt∈T0 |Hn(t)−An(t)| ≤ η2

Hn(t̂n) ≤ Hn(Zn) + η2

On Ωn, Lemma <1> implies that

|Hn(t)−An(t)| ≤ 7η2 for all |t| ≤ R.

In particular, for all unit vectors v,

Hn(Zn)− 7η2 ≤ An(Zn) = An(Zn + 6η)− 18η2 ≤ Hn(Zn + 6ηv)− 11η2

Convexity of r 7→ Hn(Zn + rv) then implies that

Hn(Zn) + 4η2 ≤ Hn(Zn + rv) for all r ≥ 6η and all unt vectors v,

which forces t̂n to lie within the ball of radius 6η around Zn.
�

I would like to strengthen the Lemma by replacing (ii) by: there exists
a sequence of random vectors {Zn} of order Op(1) for which

Hn(t) + Z ′nt→M(t) in probability, for each fixed t ∈ Rk,

where M is a strictly convex function satisfying the growth condition <4>.
I would like to conclude something like

t̂n = ΨM (Zn) + op(1)

If we had Zn  Z then we would get t̂n  ψM (Z), a very clean limit
theorem.

<6> Theorem. Let Gn(θ) =
∑

i≤n gn,i(θ) be a random process with convexrandom.sum
sample paths defined on Rk. Suppose there exist points θn in Rk and positive
definite matrices Jn for which:

(i) θ̂n is an estimator for which Gn(θ̂n) ≤ infθ∈ΘGn(θ) + op(1)
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(ii) the function θ 7→ PGn(θ) is minimized at θn

(iii) each {gn,i} has a linear approximation near θn,

gn,i(θ) = gn,i(θn) + (θ − θn)′Dn,i + rn,i(θ),

where the Dn,i are random vectors with zero expected value

(iv) PGn(θn + J
−1/2
n t) = 1

2 |t|
2 + o(1) for each t

(v) var
(∑

i≤nrn,i(θn + J
−1/2
n t)

)
= o(1) for each t

(vi) Zn := −J−1/2
n

∑
i≤nDn,i = Op(1)

Then J
1/2
n (θ̂n − θn) = Zn + op(1).

Try to replace (iv) by PGn(θn + J
−1/2
n t) = M(t) + o(1) for each t, with M

as in Section 2. Maybe the Theorem will then be strong enough to cover
the lasso (Example <17>).

Proof The standardized random vector t̂n = J
1/2
n (θ̂n − θn) comes within

op(1) of minimizing the process

Hn(t) := Gn(θn + J−1/2
n t)−Gn(θn)

= −t′Zn +
∑

i≤nrn,i(θn + J−1/2
n t).

For a fixed t, assumption (v) ensures that the sum contributed by the {rn,i}
lies within op(1) of its expectation,

P
∑

i≤nrn,i(θn + J−1/2
n t)

= PGn(θn + J−1/2
n t)− PGn(θn) because PDn,i = 0

= 1
2 |t|

2 + o(1) by (iv)

Thus Hn(t)+t′Zn = 1
2 |t|

2+op(1) for each fixed t. An appeal to Lemma <??>
completes the proof.

�

Remarks. The theorem is almost true if θ ranges over only a subset Θ
of Rd, instead of over the whole of Rd.
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5.4 Examples

Convexity::examples

<7> Example. Suppose X1, X2, . . . are independent observations from a prob-median
ability distribution P on the real line with sample median θ0. Suppose also
that there is a neighborhood of θ0 in which P has a continuous, strictly
positive density (with respect to Lebesgue measure). Let θ̂n be the sample
median. Show that 2f(θ0)(θ̂n − θ0) N(0, 1).

�

<8> Example. Generalize Example <7> to cover argmin
∑

i |t−Xi| in higherspatial.median
dimensions.

�

<9> Example. Theorem 1 of Pollard (1991) for L1 regression.LAD.regression
�

<10> Example. Modify the following result from Dou, Pollard, and Zhou (2009),exp.fam
but with improved argument from talk at Wellner conference:

Let {Qλ : λ ∈ R} be an exponential family of probability measures with
densities dQλ/dQ0 = fλ(y) = exp (λy − ψ(λ)). Remember that eψ(λ) =
Q0e

λy and that the distribution Qλ has mean ψ(1)(λ) and variance ψ(2)(λ).
We assume:

(ψ3) There exists an increasing real function G on R+ such thatpsi3

|ψ(3)(λ+ h)| ≤ ψ(2)(λ)G(|h|) for all λ and h

Without loss of generality we assume G(0) ≥ 1.

(ψ2) For each ε > 0 there exists a finite constant Cε for which ψ(2)(λ) ≤psi2

Cε exp(ελ2) for all λ ∈ R. Equivalently, ψ(2)(λ) ≤ exp
(
o(λ2)

)
as

|λ| → ∞.

As shown in Section ??, these assumptions on the ψ function imply that

h2(Qλ, Qλ+δ) ≤ δ2ψ(2)(λ) (1 + |δ|)G(|δ|) for all λ, δ ∈ R.hell<11>

Remark. We may assume that ψ(2)(λ) > 0 for every real λ. Otherwise we
would have 0 = ψ(2)(λ0) = varλ0(y) = νfλ0(y)(y − ψ(1)(λ0))2 for some λ0,
which would make y = ψ(1)(λ0) for ν almost all y and Qλ ≡ Qλ0 for every λ.
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The theory in this section combine ideas from Portnoy (1988) and from Hjort
and Pollard (1993). We write our results in a notation that makes the ap-
plications in Section ?? and ?? more straightforward. The notational cost
is that the parameters are indexed by {0, 1, . . . , N}. To avoid an excess of
parentheses we write N+ for N + 1. In the applications N changes with the
sample size n and Q is replaced by Qn,a,B,N or Q̃n,a,B,N .

Suppose ξ1, . . . , ξn are (nonrandom) vectors in RN+ . Suppose Q =
⊗i≤nQλi

with λi = ξ′iγ for a fixed γ = (γ0, γ1, . . . , γN ) in RN+ . Under Q, the
coordinate maps y1, . . . , yn are independent random variables with yi ∼ Qλi

.
The log-likelihood for fitting the model is

Ln(g) =
∑

i≤n
(ξ′ig)yi − ψ(ξ′ig) for g ∈ RN+ ,

which is maximized (over RN+) at the MLE ĝ (= ĝn).

Remark. As a small amount of extra bookkeeping in the following
argument would show, we do not need ĝ to exactly maximize Ln. It
would suffice to have Ln(ĝ) suitably close to supg Ln(g). In particular,
we need not be concerned with questions regarding existence or
uniqueness of the argmax.

Define

(i) Jn =
∑

i≤n ξiξ
′
iψ

(2)(λi), an N+ ×N+ matrix

(ii) wi := J
−1/2
n ξi, an element of RN+

(iii) Wn =
∑

i≤nwi
(
yi − ψ(1)(λi)

)
, an element of RN+

Notice that QWn = 0 and varQ(Wn) =
∑

i≤nwiw
′
iψ

(2)(λi) = IN+ and

Q|Wn|2 = trace (varQ(Wn)) = N+.

<12> Lemma. Suppose 0 < ε1 ≤ 1/2 and 0 < ε2 < 1 andmle.approx

maxi≤n |wi| ≤
ε1ε2

2G(1)N+
with G as in Assumption (ψ3).

Then ĝ = γ + J
−1/2
n (Wn + rn) with |rn| ≤ ε1 on the set {|Wn| ≤

√
N+/ε2},

which has Q-probability greater than 1− ε2.
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Proof The equality Q|Wn|2 = N+ and Tchebychev give Q{|Wn| >
√
N+/ε2} ≤

ε2.
Reparametrize by defining t = J

1/2
n (g − γ). The concave function

Ln(t) := Ln(γ + J−1/2
n t)− Ln(γ) =

∑
i≤n

yiw
′
it+ ψ(λi)− ψ(λi + w′it)

is maximized at t̂n = J
1/2
n (ĝ − γ). It has derivative

L̇n(t) =
∑

i≤n
wi

(
yi − ψ(1)(λi + w′it)

)
.

For a fixed unit vector u ∈ RN+ and a fixed t ∈ RN+ , consider the
real-valued function of the real variable s,

H(s) := u′L̇n(st) =
∑

i≤n
u′wi

(
yi − ψ(1)(λi + sw′it)

)
,

which has derivatives

Ḣ(s) = −
∑

i≤n
(u′wi)(w′it)ψ

(2)(λi + sw′it)

Ḧ(s) = −
∑

i≤n
(u′wi)(w′it)

2ψ(3)(λi + sw′it).

Notice that H(0) = u′Wn and Ḣ(0) = −u′
∑

i≤nwiw
′
iψ

(2)(λi)t = −u′t.
Write Mn for maxi≤n |wi|. By virtue of Assumption (ψ3),

|Ḧ(s)| ≤
∑

i≤n
|u′wi|(w′it)2ψ(2)(λi)G

(
|sw′it|

)
≤MnG (Mn|st|) t′

∑
i≤n

wiw
′
iψ

(2)(λi)t

= MnG (Mn|st|) |t|2.

By Taylor expansion, for some 0 < s∗ < 1,

|H(1)−H(0)− Ḣ(0)| ≤ 1
2 |Ḧ(s∗)| ≤ 1

2MnG (Mn|t|) |t|2.

That is, ∣∣∣u′ (L̇n(t)−Wn + t
)∣∣∣ ≤ 1

2MnG (Mn|t|) |t|2.u’ll<13>

Approximation <13> will control the behavior of L̃(s) := Ln(Wn+su), a
concave function of the real argument s, for each unit vector u. By concavity,
the derivative

˙̃
L(s) = u′L̇n(Wn + su) = −s+R(s)
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is a decreasing function of s with

|R(s)| ≤ 1
2MnG (Mn|Wn + su|) |Wn + su|2

On the set {|Wn| ≤
√
N+/ε2} we have

|Wn ± ε1u| ≤
√
N+/ε2 + ε1.

Thus
Mn|Wn ± ε1u| ≤

ε1ε2
2G(1)N+

(√
N+/ε2 + ε1

)
< 1,

implying

|R(±ε1)| ≤ 1
2MnG(1)|Wn ± ε1u|2

≤ ε1ε2
G(1)N+

(
N+/ε2 + ε21

)
≤ ε1

(
1 + ε21ε2/N+

)
< 5

8ε1.

Deduce that
˙̃
L(ε1) = −ε1 +R(ε1) ≤ −3

8ε1

˙̃
L(−ε1) = ε1 +R(−ε1) ≥ 3

8ε1

The concave function s 7→ Ln(Wn+su) must achieve its maximum for some s
in the interval [−ε1, ε1], for each unit vector u. It follows that |t̂n−Wn| ≤ ε1.

�

<14> Corollary. Suppose ξi = Dηi for some nonsingular matrix D, so thatAnBn

Jn = nDAnD whereAn :=
1
n

∑
i≤n

ηiη
′
iψ

(2)(λi).

If Bn is another nonsingular matrix for which

‖An −Bn‖2 ≤ (2
∥∥B−1

n

∥∥
2
)−1assumptionA<15>

and if

maxi≤n |ηi| ≤
ε
√
n/N+

G(1)
√

32
∥∥B−1

n

∥∥
2

for some 0 < ε < 1max.eta<16>

then for each set of vectors κ0, . . . , κN in RN+ there is a set Yκ,ε with QYcκ,ε <
2ε on which∑

0≤j≤N
|κ′j(ĝ − γ)|2 ≤

6
∥∥B−1

n

∥∥
2

nε

∑
0≤j≤N

|D−1κj |2.
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Remark. For our applications of the Corollary in Sections ?? and ??,
we need D = diag(D0, D1, . . . , DN ) and κj = ej , the unit vector with
a 1 in its jth position, for j ≤ m and κj = 0 for j > m. In our
companion paper we will need the more general κj ’s.

Proof First we establish a bound on the spectral distance between A−1
n

and B−1
n . Define H = B−1

n An−I. Then‖H‖2 ≤
∥∥B−1

n

∥∥
2
‖An −Bn‖2 ≤ 1/2,

which justifies the expansion∥∥A−1
n −B−1

n

∥∥
2

=
∥∥((I +H)−1 − I

)
B−1
n

∥∥
2
≤
∑

j≥1
‖H‖k2

∥∥B−1
n

∥∥
2
≤
∥∥B−1

n

∥∥
2
.

As a consequence,
∥∥A−1

n

∥∥
2
≤ 2

∥∥B−1
n

∥∥
2
.

Choose ε1 = 1/2 and ε2 = ε in Lemma 12. The bound on maxi≤n |ηi|
gives the bound on maxi≤n |wi| needed by the Lemma:

n|wi|2 = η′iD(Jn/n)−1Dηi = η′iA
−1
n ηi ≤

∥∥A−1
n

∥∥
2
|ηi|2.

Define Kj := J
−1/2
n κj , so that |κ′j(ĝ − γ)|2 ≤ 2(K ′jWn)2 + 2(K ′jrn)2. By

Cauchy-Schwarz, ∑
j
(K ′jrn)2 ≤

∑
j
|Kj |2|rn|2 = Uκ|rn|2

where

Uκ :=
∑

j
κ′jJ

−1
n κj =

∑
j
n−1(D−1κj)′A−1

n D−1κj

≤ 2n−1
∥∥B−1

n

∥∥
2

∑
j
|D−1κj |2.

For the contribution Vκ :=
∑

j |K ′jWn|2 the Cauchy-Schwarz bound is too
crude. Instead, notice that QVκ = Uκ, which ensures that the complement
of the set

Yκ,ε := {|Wn| ≤
√
N+/ε} ∩ {Vκ ≤ Uκ/ε}

has Q probability less that 2ε. On the set Yκ,ε,∑
0≤j≤N

|κ′j(ĝ − γ)|2 ≤ 2Vκ + 2Uκ|rn|2 ≤ 3Uκ/ε.

The asserted bound follows.
�

�

<17> Example. Try to apply Theorem <6> to cover Theorem 2 of Knight andlasso
Fu (2000). Comment that more recent results with p = pn are much closer
to the way the lasso is used.

�
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Notes

Convexity: Huber (1964)
Brown (1985) and Appendix A of Maritz (1981).
Andersen and Gill (1982)
Haberman (1989)
Niemiro (1992)
Bickel, Klaassen, Ritov, and Wellner (1993, pp 328, 473, 519)
Ritov (1987)
Jurečková (1977)
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