
Chapter 1

Heuristics
The official dogma on parametric estimation is: Good estimators con-

verge to the right thing and have limiting normal distributions; moreover, the
variance of the limiting distribution can’t be smaller than a quantity defined
by the Fisher information function; estimators that achieve the asymptotic
lower bound are called efficient; maximum likelihood estimators are efficient.

The dogma is not quite correct, but much of it can be rescued in slighlty
altered form. And therein hangs a tale. This Chapter starts the story by
describing (non-rigorously) one method for building estimators that typically
have good properties, by explaining when the estimators should be efficient,
and by showing what can go wrong.
Section 1 establishes some notation that helps to clarify the role of param-

eters and models.
Section 2 sketches the typical steps involved in establishing asymptotic be-

havior of an estimator, with asymptotic normality of M-estimators as a
guiding example.

Section 3 introduces the concept of efficiency. It presents a nonrigorous
argument for why the limiting distributions for M-estimators should not
have variance smaller than the information bound and why maximum
likelihood should achieve that bound.

Section 4 explains why the efficiency assertions from the previous Section
are not true without some extra constraints on limiting behavior of esti-
mators. It points to the rigorous treatments in later Chapters.

1.1 Notation and truth

There is a large body of statistical theory and literature regarding optimalityHeuristics::notation
and large sample approximation, some of it true, some of it almost true,
and some of it a little bit wrong. However, there are grains of truth buried
amongst the chaff of ideas that are not quite correct. Some ideas—such
as efficiency and sufficiency—have survived mathematical indignities and
counterexamples by evolving to retain their secure place at the foundations
of statistics. And some myths have died out.

In this book I will deal rigorously with some parts of the theory that
are both useful and mathematically correct. Initially, the emphasis will be
on models smoothly indexed by a finite-dimensional parameter, but with a
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2 Heuristics

gradual infusion of modern probabilistic techniques that simplify the rigor-
ous discussion of more abstract and general models.

To appreciate the virtues of rigor, you must first understand some of the
folklore.

Many problems in mathematical statistics boil down to the following
question. Let P := {Pθ : θ ∈ Θ} be a statistical model—a family of prob-
ability measures all defined on the same sigma-field F on a set Ω. Let
T = T (ω) be a random variable (or, more generally, a random vector, or
even a random element of some wonderfully abstract space). What is the
distribution of T under each Pθ model?

Typically T is thought of as an estimator for some function τ(θ) of the
indexing parameter θ, or perhaps it represents a choice from a set of possible
actions. From an exact knowledge of the distribution of T under each Pθ, one
could in principle calculate all the various expectations used to evaluate the
performance of T in the traditional decision theoretic senses. Unfortunately,
it is seldom possible to calculate the distributions explicitly. Instead, one
is often forced to invoke simplifying approximations, or, more formally, find
limiting forms of distributions for sequences of estimators {Tn} under a
sequence of models Pn := {Pθ,n : θ ∈ Θn}. The extra parameter n typically
denotes a sample size. The approximations are called then large-sample
(or asymptotic) distributions.

It is also traditional to use statistical models to guide the construction
of an estimator and then to evaluate hypothetical behavior only under those
models. For example, concepts such as sufficiency and efficiency refer only
to behavior under probability measures in some specific model. At times
the dual role of the model can cause some confusion. In what follows, I will
adopt notation that I believe helps to distinguish the two roles.

Let me start with a more concrete example to establish some finer points
of notation.

<1> Example. Let {fθ : θ ∈ Θ} be a family of probability densities (withmle.example
respect to some fixed dominating measure, such as Lebesgue measure on
the real line or on some Rk) for probability measures {Pθ : θ ∈ Θ} on a fixed
sigma-field. Let X1, . . . , Xn be random variables on Ω, and let Pθ,n be a
probability measure on Ω under which the {Xi} are independent, each with
distribution Pθ. The method of maximum likelihood defines θ̂n = θ̂n(ω) as
the value of θ that maximizes

Ln(ω, θ) :=
∏

i≤n
f(Xi(ω), θ).

That is, θ̂n(ω) := argmaxθ∈Θ Ln(θ, ω). For the moment I will ignore all
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questions of existence, uniqueness, or measurability of a maximizing value.
The parameter θ is now playing two roles: as a dummy variable, a place-

holder that indicates a function to be maximized; and as a label that identi-
fies models giving particular hypothetical distributions for the observations
X(ω) := (X1(ω), . . . , Xn(ω)). To emphasize the first role, it helps to think
of θ̂n not as a function of ω but rather as a function on Rn (or Xn, if the
variables Xi were to take values in a set X). That is, we can define an
estimating function

θ̂n(x) := argmaxs∈Θ

∏
i≤n

f(xi, s) where x := (x1, . . . , xn),

then define the estimator θ̂n(X1(ω), . . . , Xn(ω)). In the definition of θ̂n(x)
I have even used a different letter for the dummy variable in order save θ
for its second role.

This approach focuses attention on θ̂n(x) as a function defined by the
fitted model, without making any particular assumptions about how x is to
be interpreted. Performance of θ̂n(X(ω)) under various probabilistic mecha-
nisms for generation of the sample X(ω), and not just for those mechanisms
prescribed by the models, becomes a separate question. That is, the view of
θ̂n(·) as a function of x disentangles the issue of definition via a model from
the issue of behaviour of the estimator under those models.

Remark. Nearly always it is only the distribution of the random
vector X(ω) under some probability measure P on Ω that matters.
That is, the necessary calculations all involve only probability measures
defined on Xn. We can save on notation by taking Ω equal to Xn itself,
regarding ω = x = (x1, . . . , xn) as the observed data and Xi(ω) = xi
as a single observation.

For asymptotic purposes, where behavior as n tends to infinity is
of interest, we could also take Ω to be XN, a countable product of the
coordinate spaces. For the nth in a sequence of models, the observed
data would be (x1, . . . , xn), an initial segment of ω = (x1, x2, . . . ).
The Pθ,n’s could then be defined on the sub-sigma-field Fn generated
by x1, . . . , xn.

The downside of choosing Ω to be Xn or XN is revealed when
statistical procedures involve an auxiliary randomization, perhaps gen-
erated using a random variable U distributed Unif(0, 1) independently
of all the Xi’s. It would be unnatural to require U to be defined as a
(measurable) function on Xn or XN. Instead, we could use a “richer
probability space” XN × (0, 1) and replace Pθ,n by a product measure
Pθ,n ⊗Unif(0, 1)

When we study the behaviour of θ̂n under the model corresponding to
a particular θ, that value of θ is sometimes referred to as the “true value”,
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or Pθ,n as the “true model”. Of course if we actually knew the truth we
wouldn’t need to estimate; the word “true” serves merely to distinguish one
particular parameter value during the course of a calculation. A name like
“test case” or “hypothetical model” might be less misleading. It sometimes
helps to denote the temporarily true value by another symbol, such as θ0,
to avoid confusion with θ as a variable over which to optimize.

�

1.2 Limit theory

With those preliminaries about truth out of the way, let me turn to a generalHeuristics::limit.theory
problem that illustrates a number of important asymptotic ideas. Suppose
the observed data are given by random quantities X = (X1, . . . , Xn), with
each Xi taking values in a set X (such as the real line). Suppose Θ is subset of
the real line, perhaps interpreted as the indexing set of a model, or perhaps
not. Suppose {g(·, θ) : θ ∈ Θ} is a collection of real-valued functions on X.
Define an estimating function θ̂n(x) as the value of θ that minimizes

Gn(x, θ) := n−1
∑

i≤n
g(xi, θ).

That is, θ̂n(x) = argmin
θ∈Θ

Gn(x, θ). In the terminology of Huber (1964), the

corresponding θ̂n(X) is called an M-estimator.
What can we say about the behaviour of θ̂n(X) when the Xi are inde-

pendent, each with marginal distribution P? Equivalently, how does θ̂n(x)
behave under the product measure Pn on Xn?

For the purposes of an asymptotic answer to this question, we might
regard the data as the initial segment of an infinite sequence of independent
X-valued random variables X1, X2, . . . , all defined on the same probability
space (Ω,F,P), with each Xi having distribution P . Alternatively, we might
treat the data as one row in a triangular array of random variables, defined
on a probability space (Ωn,Fn,Pn) that can change with n. The X1 for
the nth row of the array might be completely unrelated to the X1 element
in other rows. It might even be better to make this possibility explicit,
by writing the data as Xn := (Xn,1, . . . , Xn,n). The distribution P could
also be replaced by a Pn that changes with n, a generalization that will be
needed when discussing behavior of estimators under sequences of alterna-
tives. However, for the moment I will work with the simpler setting of a
fixed underlying probability space (Ω,F,P) and a fixed distribution P .

To understand how θ̂n behaves for large samples, we first have to un-
derstand what Gn is doing. The key idea is to approximate Gn by another
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function, or even another random process, whose minimizing value is more
easily analyzed. For a rigorous treatment we will have to determine the
effect of the errors of approximation uniformly over various sets of θ values,
to ensure that the minimizing values are close. For the moment, though, I
will approximate with abandon.

The traditional analysis breaks into three stages.

1.2.1 Local concentration (consistency)

Asymptotic arguments often start with an attempt to show that θ̂n con-
centrates with high probability near some fixed θ0, which depends on the
underlying distributions. If the {Xi} are all defined on a fixed Ω and if the P
does not change with n, it makes sense to ask about convergence at P-almost
all ω. However, if we allow the model to change with n, with each θ̂n ana-
lyzed under a different Pn model, almost sure convergence is ill-defined. It
is then better to enquire about convergence in Pn-probability of θ̂n to θ0 as
n tends to infinity, or even just about concentration around some (possibly
random) value that might change with n:

Pn{|θ̂n − θn| > ε} → 0 for each ε > 0.

Of course, we really want to be able to assert some form of concentra-
tion for a collection of probability measures on Ω, maybe {Pθ : θ ∈ Θ}
or {Pθ,n : θ ∈ Θ}. (The value around which the estimator concentrates
should depend on θ.) A concentration result that held for only one data-
generating mechanism would serve only as an illustration of one possible
behaviour. If θ̂n converges to θ almost surely under Pθ, for each θ ∈ Θ, then
the estimator is said to be strongly consistent (for θ). If the convergence
holds only in Pθ-probability (or Pθ,n-probability), the estimator is said to be
weakly consistent.

Remark. I believe weak consistency is actually the more useful idea
because, typically, consistency is just a prelude to a more detailed
analysis of asymptotic behaviour. For me, strong consistency is often
of interest only because it implies weak consistency.

For the M -estimation problem, at each fixed θ a law of large num-
bers (strong or weak?) implies that Gn(θ) should be close to its expected
value G(θ) = P xg(x, θ). That is, as a first approximation, we should have
Gn(θ) ≈ G(θ). We might then hope that argminθGn(θ) ≈ argminθG(θ).
That is, we might hope that θ̂n lies close to the value θ0 := argminθG(θ),
the value that is defined to minimize the approximating G.
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You will learn in Chapter 2 one rigorous way, essentially due to Wald
(1949), to make this approximation idea more precise and establish consis-
tency.

Remark. Sometimes consistency is the most challenging part of an
asymptotic argument because it requires global approximations to Gn.

1.2.2 Rate of convergence

If we know that θ̂n concentrates near some θ0 (or some θn), then we can ask,
How near is near? or, How rapidly does it converge?. Often a rate is easier to
establish (once consistency holds) than the consistency itself because we are
able to make use of local approximations (such as Taylor expansions) to Gn;
it is usually easier to establish the required uniformity of approximation if
we can concentrate on smaller neighborhoods of θ0.

Again we have a choice of asking about rates at almost all ω or about
rates in the sense of convergence in probability. Again I believe the in-
probability assertion is generally the more relevant, in part because of its
role as a necessary preliminary to the next stage in the analysis.

The rigorous treatment of rates of convergence will begin with Chapter 3,
where local errors will be bounded by means of Taylor expansions. Chapter 4
will generalize the method.

For many M-estimation problems, good estimators converge in proba-
bility at a 1/

√
n rate, that is, θ̂n = θ0 + Op(1/

√
n), a property sometimes

referred to as root-n consistency. [See the discussion near the start of
Chapter 3 if you are not familiar with the Op(·) and op(·) notation.]

Note that the rate of convergence, as just defined, is only an upper
bound. With this terminology an estimator has many rates of convergence.
For example, for a root-n consistent estimator we also have θ̂n = θ0+Op(n−r)
for each r < 1/2. It is more satifactory to have a rate θ̂n − θ0 = Op(αn)
for which the analogous assertion fails if αn is replaced by any βn for which
βn/αn → 0. Chapter 9, on minimax rates of convergence, will describe one
way to formalize this idea.

1.2.3 Limiting distribution

Another way to remove the ambiguity about a rate of convergence is to
demonstrate existence of a nontrivial limiting distribution for the standard-
ized estimator. In many classical problems the limiting distribution is nor-
mal.
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The method that will be presented in Chapters 3 and 4 for proving
existence of limit distributons is essentially just a refinement of the rate cal-
culations, but for concentration near a random θn. For classical parametric
problems we typically have Op(1/

√
n) concentration near θ0 and op(1/

√
n)

concentration near a θn defined by the argmin of a random process that ap-
proximates Gn, with a uniform op(1/n) error over Op(1/

√
n)-neighborhoods

of θ0.
A slightly more specific assertion is sometimes possible. Instead of mere

existence of a limiting distribution, we might have an asymptotic represen-
tation

√
n(θ̂n − θ0) = Wn + op(1), where Wn has known limiting behaviour

under various models. [In Chapter 7 you will learn one reason why such a
representation is so useful.]

For M-estimation with a smoothly parametrized g, we can learn about
the behaviour of Gn near θ0 by means of Taylor expansion of g(x, ·) about
θ0. To avoid later confusion with transposes of vectors, I will denote partial
derivatives with respect to θ by dots:

ġ(x, θ) :=
∂

∂θ
g(x, θ), g̈(x, θ) :=

∂2

∂θ2
g(x, θ),

and so on. The pointwise Taylor expansion

g(x, θ) ≈ g(x, θ0) + (θ − θ0)ġ(x, θ0) + 1
2(θ − θ0)2g̈(x, θ0)

gives a quadratic approximation for Gn near θ0:

Gn(X, θ) =
1
n

∑
i≤n

g(Xi(ω), θ)

≈ 1
n

∑
i≤n

(
g(Xi, θ0) + (θ − θ0)ġ(Xi, θ0) + 1

2(θ − θ0)2g̈(Xi, θ0)
)
.

It also gives an approximation for G near θ0:

G(θ) := P xg(x, θ)

≈ P xg(x, θ0) + (θ − θ0)P xġ(x, θ0) + 1
2(θ − θ0)2P xg̈(x, θ0)

= G(θ0) + 0 + 1
2(θ − θ0)2G̈(θ0).

Notice that the linear term must vanish at a minimizing value, at least if θ0

is an interior point of Θ. This property corresponds to “differentiation under
the expectation”,

0 = Ġ(θ0) =
∂

∂θ
P xg(x, θ)

∣∣
θ=θ0

= P x
∂

∂θ
g(x, θ)

∣∣
θ=θ0

= P xġ(x, θ0),

an operation sometimes justified by explicit domination assumptions. Iden-
tification of G̈(θ0) with P xg̈(x, θ0) is often justified in a similar way.
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Remark. For some important examples, the function G is twice
differentiable without g(x, ·) being twice differentiable. The integral
over P can sometimes provide extra smoothness.

The random variables ġ(Xi, θ0) have zero expected value. Assuming that
they also have a finite variance, σ2 := P xġ(x, θ0)2, we can then conclude that
the standardized average

Zn :=
∑

i≤n
ġ(Xi, θ0)/

√
n

should be approximately N(0, σ2) distributed.
Typically, the random variables g̈(Xi, θ0) will have a strictly positive ex-

pected value P xg̈(x, θ0) = G̈(θ0), otherwise higher-order derivatives might
be needed to guarantee even a local minimum at θ0. The average

∑
i≤n g̈(Xi, θ0)/n

should be close to this expected value, which makes the random criterion
function approximately a quadratic in θ − θ0:

Gn(θ) ≈ Gn(θ0) + (θ − θ0)Zn/
√
n+ 1

2(θ − θ0)2J where J := G̈(θ0).

The minimizing θ̂n for Gn should be close to the value θ0 −Zn/(J
√
n) that

minimizes the quadratic. The standardized estimator
√
n(θ̂n − θ0) should

be close to −Zn/J , which has an approximate N(0, σ2/J2) distribution.
As you will se in later chapters, these heuristic arguments can often be

made rigorous if we can gain some sort of uniform control over the errors
in the approximations.

1.3 Efficiency heuristics

If the heuristics in the previous Section are to be believed, there is a wideHeuristics::eff.heuristic
class of estimators that have approximate normal distributions, with vari-
ances that decrease like 1/n. It is natural to look for a g that gives the
smallest possible multiple of 1/n for the approximate variance.

Actually, the task is slightly more complicated than choosing g to min-
imize the variance at a fixed θ0 = argminθ P xg(x, θ). After all, we would
not bother to estimate θ if we knew the distribution P exactly. The more
challenging problem is to minimize the asymptotic variance simultaneously
for a whole set of possible probability measures P .

It is traditional to consider models P = Pθ,n under which the Xi’s are
independent observations on Pθ, with {Pθ : θ ∈ θ} a prescribed set of prob-
ability measures. For that case, we need at least that the estimator θ̂n
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converges in Pθ,n probability to θ, for each θ in Θ (weak consistency). Then,
considering the asymptotic variance as a function of θ, we need to find g to
minimize that function at every θ.

Consider first the question of consistency. For independent observations
from a fixed distribution P the heuristics suggested that θ̂n converges in
probability to argmins P xg(x, s). For samples from Pθ the estimator should
converge in Pθ,n-probability to the value of s that minimizes the function
s 7→ P xθ g(x, s). Temporarily call the minimizing value s0(θ), with the θ to
remind us that the expectation is calculated using the Pθ distribution. We
should require s0(θ) = θ for every θ, that is,

argmins P
x
θ g(x, s) = θ for all θ in Θ.

That is,
P xθ g(x, θ) ≤ P xθ g(x, s) for all s and all θ.

Some authors call this property Fisher consistency.

Remark. Fisher consistency is a property of the function defined by g
and the set of probability measures {Pθ : θ ∈ θ}. It is not directly a
large-sample property of an estimator.

The task becomes: given P, find a Fisher consistent g to minimize
σ2
g(θ)/Jg(θ)

2 for all θ, where

σ2
g(θ) := P xθ ġ(x, θ)2 and Jg(θ) := P xθ g̈(x, θ).

If Pθ has a density fθ, and if differentiation under integral signs is justified,
and if minima correspond to zeros of derivatives, then Fisher consistency
implies

0 =
∂

∂s
P xθ g(x, s)

∣∣
s=θ

=
∂

∂s

∫
fθ(x)g(x, s)

∣∣
s=θ

=
∫
fθ(x)ġ(x, θ).

That is,

Pθġ(x, θ) = 0 for all θ.Fisher.consistent<2>

Consequently σ2
g(θ) is also the variance of ġ(x, θ) under Pθ.

I assert that the constrained minimum of σ2
g(θ)/Ju(θ)2 is achieved for

every θ by g0(x, θ) := − log fθ(x). That is, the lower bound for asymptotic
variance is achieved by the g function that defines the maximum likelihood
estimator. Jensen’s inequality implies that g0 is Fisher consistent:

Pθ (g0(x, θ)− g0(x, s)) =
∫
fθ(x) log

(
fs(x)
fθ(x)

)
≤ log

∫
fθ(x)

fs(x)
fθ(x)

= 0.
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The derivative

`θ(x) := −ġ0(x, θ) =
∂

∂θ
log fθ(x) = ḟθ(x)/fθ(x)

is called the score function for the model. By <2>,

Pθ`θ(x) = 0 for all θ.

The corresponding variance

I(θ) := σ2
g0(θ) = varθ(`θ) = P xθ `θ(x)2 =

∫
ḟθ(x)2/fθ(x)

is called the (Fisher) information function for the model. Moreover,
from the assumed validity of yet another interchange of integration and
differentiation, ∫

f̈θ(x) =
∂2

∂θ2

∫
fθ(x) =

∂2

∂θ2
1 = 0,

and the expression for the second derivative,

g̈0(x, θ) = − ˙̀
θ(x) = −f̈θ(x)/fθ(x) + `θ(x)2,

it follows that

Jg0(θ) = −P xθ ˙̀
θ(x) = −

∫
f̈θ(x) +

∫
`θ(x)2fθ(x) = I(θ)

Thus σ2
g0(θ)/Jg0(θ)2 = 1/I(θ) and, according to the heuristics, the standard-

ized maximum likelihood estimator
√
n(θ̂n − θ) has a limiting N(0, 1/I(θ))

distribution under Pθ,n.
To show that g0 achieves the constrained lower bound, differentiate

through the identity <2> to derive a weaker constraint,

0 =
∂

∂θ

∫
fθ(x)ġ(x, θ)

=
∫
fθ(x)g̈(x, θ) +

∫
ḟθ(x)ġ(x, θ)

= Jg(θ) + Pθġ(x, θ)`θ(x).

It follows, by the Cauchy-Schwarz inequality, that

Jg(θ)2 =
(
− Pθġ(x, θ)`θ(x)

)2 ≤ Pθġ(x, θ)2Pθ`
2
θ = σ2

g(θ)I(θ)

or
σ2(θ)/J(θ)2 ≥ 1/I(θ).
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Remark. The preceding argument is close to the proof of the Cramér-
Rao inequality (also known as the Information inequality) for finite
samples. The differences are that Fisher consistency replaces the finite-
sample unbiasedness assumption and the Cauchy-Schwarz inequality is
applied to the limit distribution; the bound for the limit distribution is
not just a limit of finite sample Cramér-Rao inequalities.

In summary: If we require the M-estimator θ̂n to converge in probability
to θ under independent sampling from Pθ with density fθ, for every θ, then
the asymptotic variance cannot be smaller than 1/I(θ), where

I(θ) := varθ

(
∂

∂θ
log fθ(X1)

)
= −Pθ

(
∂2

∂θ2
log fθ(X1)

)
.

The asymptotic normal distribution for the maximum likelihood estimator
has variance equal to the lower bound.

At least that is what the heuristics suggest.
I have not been rigorous about the conditions required for the arguments

leading to “asymptotic optimality” of the maximum likelihood estimator
amongst the class of M-estimators. For example, the argument is mostly
nonsense when fθ denotes the Uniform(0, θ) density, which is not everywhere
differentiable.

As the next Section explains, optimality is a slippery concept even for
models that seem unlikely candidates as troublemakers. A completely rigor-
ous treatment can seem quite difficult—if one does not have the right tools.
The development of the rigorous theory has been a major theme in modern
theoretical statistics.

1.4 The concept of efficiency

If the heuristics are to be believed, in typical cases M-estimators cannot doHeuristics::efficiency.concept
better than mimic the limiting behaviour of the maximum likelihood estima-
tor, which asymptotically achieves the information bound. No standardized
estimator,

√
n(θ̂n−θ0), should have an asymptotic normal distribution with

a variance smaller than the reciprocal of the Fisher information. In some
asymptotic sense, the maximum likelihood estimator might be called an
efficient estimator.

In fact, it was long accepted in the statistics literature that the maximum
likelihood estimator has similar optimality properties amongst an even wider
class of estimators than described in the previous Section. As Fisher (1922,
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page 277) put it, “The criterion of efficiency is satisfied by those statis-
tics which, when derived from large samples, tend to a normal distribution
with the least possible standard deviation.” Unfortunately, the unqualified
assertion about the limit distributions is not quite valid, even when the dis-
tributions have smooth densities, although it can be rescued. There exist
estimators that beat the efficiency bound, as shown by a construction due
to Hodges.

<3> Example. Suppose the Xi are independent with N(θ, 1) distribution un-super.efficient
der Pθ,n. The information function is identically 1. The maximum likelihood
estimator θ̂n is given by the sample mean, which has a N(θ, 1/n) distribution
under Pθ,n. It achieves the efficiency lower bound, even for finite n.

Fix a θ0 in Θ. Modify θ̂n so that it performs superefficiently if θ0 happens
to be the true value, without disturbing its performance elsewhere. Let
αn = n−1/4, a sequence of positive real numbers that converges to zero more
slowly than 1/

√
n. Define

θ∗n(X) := θ̂n(X){|θ̂n − θ0| > αn}+ θ0{|θ̂n − θ0| ≤ αn}.

Under the Pθ0,n model the modification takes effect with probability tending
to one, Pθ0,n{θ∗n = θ0} → 1, which results in an estimator with obvious
merits, √

n(θ∗n − θ0)→ 0 in Pθ0,n probability.

In particular, the efficiency bound is well beaten. Up to terms of or-
der op(n−1/2) the modified estimator behaves like the constant estimator, θ0,
when the true value is θ0. Unlike the constant estimator, θ∗n can adapt when
the true value is not θ0,

Pθ,n{θ∗n = θ̂} → 1 if θ 6= θ0,

because θ̂n then stays away from the shrinking neighborhood of θ0. Under
Pθ,n for θ 6= θ0, the estimator θ∗n has the same asymptotic behaviour as θ̂.
The estimator θ∗n achieves the efficiency bound at all points of Θ, except
at θ0, where it does much better than the naively formulated concept of
efficiency would allow. It is superefficient.

The superefficient estimator does well at fixed points of Θ, but the mod-
ification has bad consequences at local alternatives {θn} that approach θ0 at
an O(1/

√
n ) rate through Θ. For Pθ0,n, the slowly shrinking neighborhood

{|θ − θ0| ≤ αn} was designed to capture θ̂n and pull it to θ0. The modifi-
cation works because αn decreases more slowly than the Op(1/

√
n ) rate at
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which θ̂n converges to θ0. Unfortunately, it has the same effect for Pθn,n,
under which θ̂n is distributed N(θn, 1/n), so that θ̂n is still within Op(1/

√
n)

of θ0. Thus Pθn,n{θ∗n = θ0} → 1. In particular, if θn = θ0 + δn/
√
n with

δn → δ, then
√
n(θ∗n − θn)→ −δ in Pθn,n probability,

which is not so good if |δ| is large. If we relax the definition of a local
alternative, allowing δn that wander off to infinity more slowly than

√
nαn,

we can even arrange

|
√
n(θ∗n − θn)| → ∞ in Pθn,n probability.

The estimator θ∗n has achieved its superefficient status at the expense of
poor behaviour under certain types of alternative.

�

A similar shrinkage construction can be applied in other parametric prob-
lems. In fact (Problem [1]), for rather general situations it is even possible
to create a randomized estimator that is superefficient at a dense set of pa-
rameter values. Clearly the efficiency heuristics don’t tell the whole story.

A requirement of good behavior under local sequences of alternatives
was not part of Fisher’s concept of efficiency. The requirement excludes the
Hodges estimator and its ilk from the optimality competition. It plays a
role in two modern approaches—the Convolution Theorem and the Local
Asymptotic Minimax Theorem—to rescuing Fisher’s idea. See Chapter 12.

The Convolution Theorem tightens up another assertion made by Fisher
(1924) regarding efficient estimators. He described the effect of inefficient
estimation as equivalent, asymptotically—a qualification that was seldom
made explicit during the period when Fisher first contributed to the subject—
to the addition of an independent source of error beyond what one should
expect of an efficient estimator.

Let A be the efficient statistic with variance σ2/n, and B the inef-
ficient statistic with variance σ2/En; . . . the correlation of A with
(B − A) is zero, so that the deviations of B from the population
value may be regarded as made up of two parts: one, an error of
random sampling, properly so called, is the deviation of A from the
population value; the other, distributed independently of the first,
is the error of estimation by which the inferior estimate, B, differs
from the superior estimate, A.

[Fisher 1924, page 446]

Fisher’s assertion corresponds to an asymptotic comparison between a√
n-consistent estimator τ̂n and an efficient estimator θ̂n: under each Pn,θ0 ,

√
n(τ̂n − θ0) =

√
n(τ̂n − θ̂n) +

√
n(θ̂n − θ0),
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where, in some sense, the two terms on the right-hand side should be asymp-
totically independent. If limiting distributions existed, we could interpret
asymptotic independence to mean(√

n(τ̂n − θ̂n),
√
n(θ̂n − θ0)

)
 (M,Z)Fisher.rep<4>

with Z distributed N(0, 1/I(θ0)) independently of the random noise M .
Consequently, we would have

√
n(τ̂n − θ0) M + Z.Fisher.convolution<5>

This limit distribution is least dispersed when M is degenerate. For exam-
ple, when variances are finite, as would be the case when M had a normal
distribution, the equality

P|M + Z|2 = P|M |2 + P|Z|2

shows that the mean-squared error is a minimum if M = 0 almost surely.
(An assumption of asymptotic normality was implicit in Fisher’s concept of
efficiency.)

More generally, if ρ(·) is nonnegative, symmetric, and convex, the sym-
metry of the distribution of Z gives

Pρ(M + Z) = 1
2Pρ(M + Z) + 1

2Pρ(−M + Z) ≥ Pρ(Z),

with strict inequality if ρ(·) is strictly convex and if M is not degenerate at
zero. Asymptotically efficient estimators are those for which M ≡ 0. The
distribution of Z provides an asymptotic lower bound for the accuracy of
estimation (Fisher’s “error of estimation”). Only asymptotically efficient
estimators τ̂n can achieve that bound and then the difference

√
n(τ̂n − θ̂n)

converges in probability to zero; τ̂n and θ̂n are asymptotically equivalent up
to terms of order op(n−1/2).

Unfortunately, this second view of efficiency is also not quite valid, al-
though it too can be rescued. The Convolution Theorem makes the rescue by
requiring that

√
n(θ̂n − θn) have the same limiting distribution under Pθn,n

whenever
√
n(θn − θ0) has a finite limiting value.

The Asymptotic Minimax Theorem imposes a slightly different sort of lo-
cal regularity, by consideration of the worst expected loss Pθ,nρ

(√
n(θ̂n − θ)

)
over θ near θ0.

In each of the rigorous approaches to asymptotic efficiency, one requires
some form of local uniformity of good behavior, not just behavior at each
fixed θ. Acceptable behaviour at local alternatives then rules out superlative
behaviour at a single, fixed θ0.
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Problems

[1] [General version of Le Cam (1953, pages 286–289)] Index set Θ ⊆ Rd. dense.superefficient
Countable dense set S = {s1, s2, . . . }. Let Sk = {s1, . . . , sk}. For an es-
timator Tn with (Tn − θ)/βn  Qθ under Pθ,n, with βn → 0, choose αn
with αn/βn → ∞. Construct T ∗n,k by shrinkage towards Sk, then choose
T ∗n = T ∗n,k with probability ck. Get mixture of Qθ and δ0 for limiting distri-
bution of (T ∗n − θ)/βn.

Notes

Hodges’s shrinkage example was descibed by Le Cam (1953, page 280). Ap-
parently the result was not published by Hodges himself. Check
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