
Chapter 8

Local Asymptotic Normality

8.1 LAN and Gaussian shift families

In Chapter 3, pointwise Taylor series expansion gave quadratic approxima-LAN::efficiency.LAN
tions to to criterion functions Gn(θ) = n−1

∑
i≤ng(Xi, θ) for independent,

identically distributed Xi’s. For observations from a density f(x, θ), the
choice g(x, θ) = log f(x, θ) then gives a quadratic approximation for the
logarithm of the likelihood ratio process in n−1/2 neighborhoods of some
particular θ0. As you see in the next few chapters, this quadratic approx-
imation captures the most important features of the model, features that
will lead us to a rigorous treatment of the concept of efficiency introduced
in Chapter 1.

The quadratic approximation of log liklihood ratios is so important it is
given a name, Local Asymptotic Normality, or LAN for short. It turns
out that the details leading to LAN are unimportant for the efficiency the-
orems. It might be that independence assumptions are needed to establish
the approximation in particular cases, or it might be that the approxima-
tion is established by probabilistic arguments involving dependent random
variables; but for the purposes of the efficiency arguments, it is only the
LAN approximation itself that matters.

Recall the convention for probability measures P and Q on the same
sigma-field: the likelihood ratio equals dQ/dP = dQ̃/dP, the density with
respect to P of the part Q̃ of Q that is dominated by P.

<1> Definition. For each n let {Qt,n : t ∈n} be a family of probabilty measuresLAN.defn
indexed by a subset Tn of Rk. Suppose each point of Rk belongs to Tn for
all n large enough. Let Γ be a positive definite matrix not depending on t.
Say that the LAN condition holds at 0 with asymptotic variance matrix Γ if,
for each fixed t in Rk, the likelihood ratio has the representation

Ln(t) :=
dQt,n

dQ0,n
= (1 + εn(t)) exp

(
t′Zn − 1

2 t
′Γt
)
,

where εn(t) = op(1) and Zn  N(0,Γ) under Q0,n. Say that the standardized
LAN condition holds if Γ equals Ik, the identity matrix.
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2 Local Asymptotic Normality

Remark. Many authors replace the 1 + εn(t) factor by a op(1) in the
exponent, which leaves one to ponder whether a op(1) can take the
value −∞ to accomodate the low probability cases where Ln(t) is zero.

Typically the Q’s will come from a local reparametrization of a model
{Pθ,n : θ ∈ Θ} around some point θ0 in the interior of the parameter space:
Qt,n := Pθ0+t/

√
n or, more generally, Qt,n := Pθ0+Ant for some sequence of

deterministic matrices {An} that converges to the zero matrix as n→∞.

Remark. The cautious wording in Definition <1> regarding the
covering property of the Tn sets is merely to handle cases such as:
Tn = {t ∈ Rk : θ0 + Ant ∈ Θ} for a fixed proper subset Θ of Rk.
If θ0 lies in the interior of Θ, the Tn sets expand to cover the whole
of Rk; each t in Rk is eventually a member of Tn. Of course the limit
assertions only make sense when interpreted as statements that apply
to all n greater than some n0(t), but it would be too tedious if I were
to spell out such a minor subtlety repeatedly.

The dual role for Γ in the LAN definition—as a limiting variance matrix
for Zn and as the matrix in the quadratic form—is no accident. As you saw in
Chapter 5, we need it to get the contiguity, Qt,n C Q0,n. Without contiguity
many asymptotic arguments would fail for subtle reasons involving sets of
small measure.

A simple reparametrization, with Γ−1/2δ replacing t and Γ−1/2Zn replac-
ing Zn, would reduce the LAN property to the simpler standardized form
where Γ equals the identity matrix. It is notationally simpler to work with
the standardized case. The translation to the case of general Γ should never
present more than a notational problem.

In the standardized case, the limiting distribution of the likelihood ra-
tio Ln(t) under Q0,n is just the distribution of

L(t) := dQt/dQ0 = exp(t′z − 1
2
|t|2) under Q0,

for the Gaussian shift family Q = {Qt : t ∈ Rk} with Qt = N(0, Ik).
Moreover, for each finite subset F of Rk, the random vector {Ln(t) : t ∈ F}
converges in distribution (under Q0,n to {L(t) : t ∈ F} under Q0.

In some asymptotic sense, the model Qn = {Qt,n : t ∈ Tn}} measures
behaves like a gaussian shift family. It was one of Lucien Le Cam’s great
insights that the solutions of certain asymptotic problems related to theJust Le Cam? Wald? Hájek?

local behavior of Pn := {Pθ,n : θ ∈ Θ} near a fixed θ0 can be reduced
to the solutions of the corresponding Gaussian shift problems. Chapter 10
will explore this idea in more detail, showing that the results for Gaussian
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shifts (to be established in Chapter 9) provide lower asymptotic bounds for
efficiency quantities calculated for Pn.

8.2 Bahadur’s rescue of efficiency

Under a regularity assumption weaker than LAN (but in the same spirit)LAN::bahadur
Bahadur (1964) was one of the first to rescue Fisher’s concept of efficiency.
Essentially he considered the behavior of an estimator Tn under two alter-
natives {Pn} or {Qn}, for which

dQn

dPn
 exp

(
tZ − 1

2 t
2σ−2

)
with Z ∼ N(0, σ−2) under P,nearLAN<2>

for some constant t > 0. The constant σ−2 corresponds to the Fisher infor-
mation function evaluated at the value θ0 that defined Pn. The only other
vestige of the underlying parameter is an assumption about the asymptotic
behavior of some estimator Tn under each sequence of alternatives. Specifi-
cally, suppose there is a number θ0 and a constant τ > 0 for which

√
n (Tn − θ0) N(0, τ2) under Pn.<3>

lim inf
n

Qn{
√
n (Tn − θn) < 0} ≤ 1

2 where θn := θ0 + t/
√
n.<4>

The second assumption is weaker than an assumption of a N(0, τ2) limiting
distribution

√
n(Tn − θn) under Qn.

Assuming <2>, <3>, and <4>, Bahadur (1964) was able to rule out
the possibility that τ2 < σ2, the inequality corresponding to superefficiency
of Tn at θ0.

The proof that τ2 ≥ σ2 will follow as a simple consequence of the next
Lemma, which captures the essence of Bahadur’s main argument.

<5> Lemma. Suppose Pn and Qn are probability measures with Qn contiguousBahadur.lemma
to Pn. Suppose dQn/dPn, as random variables on (Xn,An,Pn), converge in
distribution to a random variable L on (X,A,P). Then for each sequence of
measurable functions ψn with 0 ≤ ψn ≤ 1, and each positive constant C,

lim inf
n

(
Pnψn + CQnψ̄n

)
≥ ‖P ∧ (CQ)‖1,

where Q is the probability measure on (X,A) defined by dQ/dP = L.

Proof Write Ln for the density of the part of Qn that is absolutely contn-
uous with respect to Pn. We are assumimg that Ln  L. Thus

Pnψn+CQnψ̄n ≥ inf
0≤ψ≤1

Pn
(
ψ + CLnψ̄

)
= Pn

(
{CLn ≤ 1}+ CLn{CLn > 1}

)
.
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That is, the infimum is achieved when ψ := {CLn ≤ 1}. Rewrite the last
expectation as Pn (1 ∧ (CLn)). The map x 7→ 1 ∧ (Cx) is bounded and
continuous on R+. The lower bound converges to P (1 ∧ (CL)) = ‖P ∧
(CQ)‖1, as asserted.

�

Proof (of Theorem <??>) Identify the limit distribution for Ln with
the distribution of the density dQ/dP, where P := N(0, σ2) and Q :=
N(t, σ2). Invoke the Lemma with ψn := {

√
n(Tn − θn) ≥ 0} and C :=

exp
(
−σ−2t2/2

)
. The lim inf of Pnψn + CQnψ̄n is less than P{N(−t, τ2) ≥

0}+ 1
2C. To calculate the norm of P∧ (CQ), note that the N(0, σ2) density

is smaller than C times the N(t, σ2) density at those points x of the real line
for which −1

2x
2σ−2 ≤ −1

2σ
−2t2 − 1

2σ
−2(x− t)2, that is, when x ≥ t. Thus

‖P ∧ (CQ)‖ = P[t,∞) + CQ(−∞, t] = Φ̄(t/σ) + 1
2C.

In order that Φ̄(t/τ) + 1
2C ≥ Φ̄(t/σ) + 1

2C, we must have τ ≥ σ.
�

8.3 The negligible set of points of superefficiency

LAN::bahadur
Should any of this section be salvaged for variations on Bahadur, or should it wait until
Chap 10?

If f is a real valued function, write f̄ for 1− f .

Recall from Section ?? that the affinity between two finite measures λ and µ on a
space (X,A) is

α1(λ, µ) = ‖λ− µ‖1 = inf
0≤f≤1

λf + µf̄ ,

where the infimum runs over all measurable functions with 0 ≤ f ≤ 1. When X equals
Rk, we get the same infimum if f is also restricted to be continuous (Problem [4]).

The particular case of two normal distributions will be important for LAN models.
From Section ??:

‖N(t1, σ2)−N(t2, σ
2)‖1 = 2P{ |N(0, 1)| ≤ |t1 − t2|/σ}normal.affinity<6>

<7> Lemma. Suppose Pn and Qn are probability measures with Qn contiguous to Pn. Supposeextra.bahadur
dQn/dPn, as random variables on (Xn,An,Pn), converge in distribution to a random
variable L on (X,A, P ). Then for each sequence of measurable functions ψn with 0 ≤
ψn ≤ 1, and each positive constant C,

lim inf
n

`
Pnψn + CQnψ̄n

´
≥ ‖P ∧ (CQ)‖1,

where Q is the probability measure on (X,A) defined by dQ/dP = L.
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Proof Write Ln for the density deQn/dPn, where eQn denotes the part of Qn that is
absolutely contnuous with respect to Pn. We are assumimg that Ln  L. Then

Pnψ + CQnψ̄ ≥ Pn
`
ψn + CLN ψ̄

´
≥ Pn ({CLn ≤ 1}+ CLN{CLn > 1}))

That is, the minimum is achieved when ψn = {CLn ≤ 1}. Rewrite the last expectation
as Pn1 ∧ (CLN ). The map x 7→ 1 ∧ (Cx) is bounded and continuous on R+. The lower
bound converges to

P (1 ∧ (CL)) = P min

„
dP

dP
,
d(CQ)

dP

«
= ‖P ∧ (CQ)‖1,

as asserted.
�

<8> Corollary. Suppose {Yn} is sequence of random vectors for which Yn  λ under Pn andshrink
Yn  µ under Qn, where λ and µ are probability measures on Rk. Then for each positive
constant C,

‖λ ∧ (Cµ)‖1 ≥ ‖P ∧ (CQ)‖1

In particular, ‖λ− µ‖1 ≤ ‖P −Q‖1.

Proof For each continuous g with 0 ≤ g ≤ 1 invoke the Lemma with ψn = g(Yn) to get

λg(y) + Cµḡ(y) ≥ ‖P ∧ (CQ)‖1

Take the infimum over all such g.
�

One-dimensional? Suppose (Tn − θ)/δn  N(0, σ2
θ) under Pn,θ. Assume LAN. Give

Bahadur method for median unbiased, after first noting the proof via Corollary <8> and
equality <6>.

<9> Corollary. Suppose {Tn} is sequence of random vectors, and λ0 is a probability distri-
bution on Rk, for which

√
n(Tn−θ0) λ0 under Pn and

√
n(Tn−θ0)− t λ0 under Qn.

Then, for each continuous g with 0 ≤ g ≤ 1,

λ0g(x) + Cλ0g(x− t) ≥ ‖P ∧ (CQ)‖1

In particular, if P is the N(0, 1) distribution and Q is the N(t, 1) distribution, then

λ0(−∞, z) + λ0[z + t,∞) ≥ P{ |N(0, 1)| ≥ t/2} for every real z



6 Local Asymptotic Normality

8.4 A classical sufficient condition for LAN

Let {Pθ : θ ∈ Θ} be a family of probability measures on a space (X,A),LAN::classicalLAN
indexed by a subset Θ of Rk, with corresponding densities {fθ(x)} with
respect to a measure λ. Suppose observations {xi} are drawn independently
from the distribution Pθ0 , where θ0 is an interior point of Θ.

Under the classical regularity conditions—twice continuous differentia-
bility of log f(x, θ) with respect to θ, with a dominated second derivative—
the log of the likelihood ratio

Ln(θ) =
∏
i≤n

f(xi, θ)
f(xi, θ0)

has a local quadratic approximation in 1/
√
n neighborhoods of θ0. Formally,

the approximation results from the usual pointwise Taylor expansion of the
log density g(x, θ) = log f(x, θ), following a familiar style of argument. For
example, in one dimension,

logLn(θ0 + t/
√
n) =

∑
i≤n

(
g(xi, θ0 + t/

√
n)− g(xi, θ0)

)
=

t√
n

∑
i≤n

g•(xi, θ0) +
t2

2n

∑
i≤n

g••(xi, θ0) + . . .

≈ tZn −
t2

2
Γ,

where Γ = −Pθ0g••(x, θ0) and

Zn =
∑

i≤n
g•(xi, θ0)/

√
n N

(
0, varθ0g

•(x, θ0)
)
.

The limiting variance for Zn and the coefficient Γ from the quadratic term
both equal the information function evaluated at θ0.

The methods from Chapter 3 can be used to establish such a quadratic
approximation rigorously, with even a uniform op(1) bound on the remainder
for t in bounded neighborhoods of the origin, which is more than we need
for LAN.

For simplicity of notation, again suppose θ0 = 0. Write N0 for the set
{x : f0(x) = 0}, and α(θ) for PθN0, the total mass of the part of Pθ that
is not absolutely continuous with respect to P0. The Fn-measurable set
Fn :=

⋃
i≤n{xi ∈ N0} has zero Pn0 probability, but

Pnθ F
c
0 =

∏
i≤n

PθN
c
0 =

(
1− α(θ)

)n
.
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If α(θ) were not of order o(θ2) we could find a sequence {θn} of order
O(n−1/2) and an ε > 0 for which α(θn) ≥ ε/n infinitely often. We would
then have a sequence for which lim infn PnθnFn ≥ 1− e−ε > 0 but Pn0 Fn ≡ 0,
ruling out contiguity. Thus a necessary condition for contiguity, Pnθn C Pn0
whenever θn = O(n−1/2) is

Pθ{x : f0(x) = 0} = o(θ2) as θ → 0.ctg.nec<10>

Assumption <10> takes care of one difficulty in the the case when the
sets {fθ > 0} are not the same as {f0 > 0}. Another, more subtle, problem
arises with the definition of log fθ. If f0(x) > 0 then, by continuity, we know
that fθ(x) > 0 for |θ| ≤ δ(x), but there is no guarantee of a fixed neighbor-
hood U of 0 on which fθ(x) > 0 for all x. We might have P0 log fθ(x) = −∞
for all θ 6= 0, which would cast doubt on some of the calculations sketched
at the start of this Section. The function `θ(x) := log fθ(θ) might only be
finite on an interval of θ values that depend on x. It still makes sense to
work with the pointwise derivative ˙̀

0(x), but we might encounter the value
−∞ with positive P0 probability when studying `θ(x) for a fixed θ 6= 0.

In view of these worrisome details, it is better to impose the regularity
conditions directly on fθ(x), and not on log fθ(x). It also simplifies matters
greatly if we take densities with respect to Pθ0 and not with respect to an
arbitrary dominating λ.

<11> Theorem. Let pθ(x) = dPθ/dPθ0, the density with respect to Pθ0 of theLANclassical
part of Pθ that is dominated by Pθ0. Suppose the map θ 7→ pθ is twice
differentiable in a neighborhood U of θ0, which is an interior point of Θ. Let
Pn = Pnθ0 and Qn = Pnθn, for a sequence θn := θ0 +tn/

√
n with {tn} bounded.

Suppose also that p is twice differentiable with:

(i) θ 7→ p••θ (x) is continuous at θ0;

(ii) there exists an M(x) in L1(Pθ0) for which supθ∈U |p••θ (x)| ≤M(x);

(iii) |p•θ| ∈ L2(Pθ0) for each θ ∈ U and Pθ0 |p•θ|2 → P xθ0 |p
•
θ0
|2 <∞ as θ → θ0;

(iv) P⊥θ X = o(|θ − θ0|2) as θ → θ0.

Then

(a) Pθ0p
•
θ0

= 0 and Pθ0p
••
θ0

= 0.

(b)
dQn

dPn
= (1 + op(1; Pn)) exp

(
t′nZn − 1

2 t
′
nI0tn

)
,
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where I0 := Pθ0(p•θ0p
•
θ0
′) and Zn :=

∑
i≤np

•
0(xi)/

√
n  N(0, I0) un-

der Pn.

The main Taylor expansion ideas in the proof are captured by the fol-
lowing Lemma. It is worthwhile separating these arguments from the rest
of the proof because the same Lemma will also be needed when establishing
LAN under a DQM assumption in Section 6.

<12> Lemma. Suppose Ln =
∏
i(1 + εi,n) where {εi,n : 1 ≤ i ≤ kn} are randomepsin

variables for which

(i) maxi |εi,n| = op(1) as n→∞

(ii)
∑

i ε
2
i,n = Op(1) as n→∞

Then Ln = (1 + op(1)) exp(
∑

i εi,n −
1
2

∑
i ε

2
i,n).

(iii) If εi,n = Ui,n + Vi,n with

(a)
∑

i U
2
i,n = Op(1) and maxi |Ui,n| = op(1)

(b)
∑

i Vi,n = op(1) and
∑

i V
2
i,n = op(1)

then assumptions (i) and (ii) hold and∑
i
εi,n − 1

2

∑
i
ε2i,n =

∑
i
Ui,n − 1

2

∑
i
U2
i,n + op(1)

Remark. In (iii) the extra op(1) in the exponent can be absorbed into
the 1 + op(1) factor.

Proof For the first assertion use the Taylor approximation

| log(1 + z)− z + 1
2z

2| ≤ |z|3 for |z| ≤ 1/2..

on the set An = {maxi |εi,n| ≤ 1/2} to get

| log(Ln)−
∑

i
εi,n + 1

2

∑
i
ε2i,n| ≤

∑
i
|εi,n|3

≤ maxi |εi,n|
∑

i
ε2i,n = op(1),

that is,
LnAn = An exp

(
δnZn − 1

2δ
2
nI0 + op(1)

)
.

The 1 + op(1) factor in the statement of the Theorem absorbs the op(1) in
the exponent, as well as allowing for arbitrarily bad behavior of Ln on Acn.

�
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Proof (of Theorem <11>) For simplicity of notation assume θ0 = 0 and
write P for Pθ0 . Also, intepret all op(·) and Op(·) as op(·; Pn) and Op(·; Pn).

�

8.5 Differentiation of unit vectors

For a differentiable map θ 7→ ξθ, the Cauchy-Schwarz inequality implies thatLAN::unit.vector
〈ξ(θ0), r(θ)〉 = o(|θ − θ0|). It would usually be a blunder to assume naively
that the bound must therefore be of order O(|θ − θ0|2); typically, higher-
order differentiability assumptions are needed to derive approximations with
smaller errors. However, if ‖ξ(θ)‖ is constant—that is, if the function is
constrained to take values lying on the surface of a sphere—then the naive
assumption turns out to be no blunder. Indeed, in that case, 〈ξ(θ0), r(θ)〉
can be written as a quadratic in θ − θ0 plus an error of order o(|θ − θ0|2).

<13> Lemma. Let θ 7→ ξθ be a map from R into L2(λ) that is Hellinger differ-UNITvector
entiable at some θ0, that is, ξθ = ξ0 + (θ − θ0)∆ + rθ, with ∆ ∈ L2(λ) and
‖rθ‖ = o(|θ − θ0|) near θ0. Then

(i) 〈ξ0,∆〉 = 0

(ii) 2〈ξ0, rθ〉 = −θ2‖∆‖2 + o(|θ − θ0|2).

Stat 618 folks: Extend this lemma to cover the case where λ = Pθ0 and
P⊥θ X = o

(
|θ − θ0|2

)
near θ0.

Proof Without loss of generality suppose θ0 = 0. Because both ξθ and ξ0
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have unit length,

0 = ‖τn‖2 − ‖τ0‖2 = 2αn〈τ0,W 〉 order O(αn)
+ 2〈τ0, ρn〉 order o(αn)

+ α2
n‖W‖2 order O(α2

n)

+ 2αn〈W,ρn〉+ ‖ρn‖2 order o(α2
n).

On the right-hand side I have indicated the order at which the various
contributions tend to zero. (The Cauchy-Schwarz inequality delivers the
o(|θ|) and o(|θ|2) terms.) The exact zero on the left-hand side leaves the
leading 2θ〈ξ0,∆〉 unhappily exposed as the only O(|θ|) term. It must be of
smaller order, which can happen only if 〈ξ0,∆〉 = 0, leaving

0 = 2〈ξ0, rθ〉+ θ2‖∆‖2 + o(|θ|2),

as asserted.
�

Without the fixed length property, the inner product 〈ξ0, rθ〉, which in-
herits o(|θ|) behaviour from ‖rθ‖, might not decrease at the O(|θ|2) rate.

8.6 LAN via DQM

Le Cam (1970) showed that the LAN approximation holds under conditionsLAN::DQMLAN
much weaker than the classical smoothness and domination assumptions:
Hellinger differentiability is almost enough. Only a few small, but very
significant, details related to division by zero complicate the argument. To
avoid these difficulties it is better to work with the DQM assumption, with
densities pθ with respect to Pθ0 for the part of Pθ that is dominated by Pθ0 .

To avoid notational fuss, let me again assume that θ0 = 0. Recall from
Chapter 7 that DQM of θ 7→ Pθ at 0, with score function ∆, means

(i) P⊥θ (X) = o(|θ|2) as |θ| → 0,

(ii) ∆ is a vector of L2(P0) functions for which√
pθ(x) = 1 + 1

2θ
′∆(x) + rθ(x) with P0

(
r2θ
)

= o(|θ|2) near 0.

Remember also that I0 = P0(∆∆′) is the Fisher information matrix at θ = 0.
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<14> Theorem. Suppose θ 7→ Pθ is DQM at 0, with score function ∆. Letalmost.LAN
Pn := Pn0 and Qn := Pnθn, with θn := tn/

√
n for a bounded sequence {tn}.

Then, under {Pn},

dQn

dPn
= (1 + op(1; Pn)) exp

(
δ′nZn − 1

t

′
n
I0tn

)
,

where
Zn := n−1/2∑

i≤n∆(xi) N(0, I0).

In particular, the reparametrized family Qt,n = Pn
t/
√
n

is LAN with asymp-
totic variance matrix I0.

Proof

The asserted quadratic approximation follows.
�

Problems

[1] Give hints for proof of LAN implies DQM, as on Le Cam (1986, page 584).

[2] Suppose {gn} is a sequence of vector-valued, measurable functions for which
gn → g0 a.e. [µ] and µ|gn|2 → µ|g0|2 <∞, for some measure µ.

(i) Use Fatou’s lemma to show that

lim inf µ
(
2|gn|2 + 2|g0|2 − |gn − g0|2

)
≥ 4µ|g0|2

(ii) Deduce that µ|Gn − g0|2 → 0.
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[3] LetW1,W2, . . . be a sequence of independent, identically distributed random
variables with P|Wi|r <∞ for a constant r ≥ 1. Prove that maxi≤n |Wi| =
op(n1/r). Hint: Show that

P{maxi≤n |Wi| > εn1/r} ≤ ε−rP|W1|r{|Z1| > εn1/r},

then invoke Dominated Convergence.

[4] Show that the affinity between two finite Borel measures λ and µ on a
metric space X equals the infimum of λg + µḡ taken over all continuous
functions g for which 0 ≤ g ≤ 1. Hint: Use the fact that the bounded
continuous functions are dense in L1(λ + µ). Also, if 0 ≤ f ≤ 1 show that
|f − g0| ≤ |f − g| where g0 = 1 ∧ g+.

[5] Let Pn and Qn be as in Lemma <5>. Suppose {Yn} is sequence of random
vectors for which Yn  λ under Pn and Yn  µ under Qn, where λ and µ
are probability measures on Rk. For each positive constant C, show that
‖λ ∧ (Cµ)‖1 ≥ ‖P ∧ (CQ)‖1. Deduce that ‖λ − µ‖1 ≤ ‖P − Q‖1. Hint:
Invoke the Lemma with ψn := g(Yn), with g continuous and 0 ≤ g ≤ 1, then
appeal to Problem [4].

[6] Show that ‖N(t1, σ2)−N(t2, σ2)‖1 = 2P{ |N(0, 1)| ≤ |t1 − t2|/σ}.

8.7 Notes

These notes refer to material now in other chapters. They need to be
updated.LAN::Notes

The argument in Section 3 is an extension of the method of Bahadur
(1964). He noted that there is an easy generalization to the case where the
parameter is vector valued. Bahadur imposed classical regularity conditions
to produce the required approximation for the likelihood ratio.

I borrowed the exposition for the last three Sections from Pollard (1997).
The essential argument is fairly standard, but the interpretation of some
of the details is novel. Compare with the treatments of Le Cam (1970,
and 1986 Section 17.3), Ibragimov and Has’minskii (1981, page 114), Millar
(1983, page 105), Le Cam and Yang (1990, page 101), or Strasser (1985,
Chapter 12).

???
Hájek (1962) used Hellinger differentiability to establish limit behaviour

of rank tests for shift families of densities. Most of results in Section ??
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are adapted from the Appendix to Hájek (1972), which in turn drew on
Hájek and Šidák (1967, page 211) and earlier work of Hájek. For a proof
of the multivariate version of Theorem <??> see Bickel, Klaassen, Ritov,
and Wellner (1993, page 13). A reader who is puzzled about all the fuss
over negligible sets, and behaviour at points where the densities vanish,
might consult Le Cam (1986, pages 585–590) for a deeper discussion of the
subtleties.
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