
Chapter 7

Hellinger differentiability

Section 1 relates Hellinger differentiability to the classical regularity con-
ditions for maximum likelihood theory.

Section 2 discusses connections between Hellinger differentiability and point-
wise differentiability of densities, leading to a sufficient condition for
Hellinger differentiability.

Section 3 derives the information inequality, as an illustration of the ele-
gance brought into statistical theory by Hellinger differentiability.

Section 4 explains how one can dispense with the domination assumption
when defining Hellinger differentiability, at the cost of a natural extra
assumption regarding non-dominated components. The slightly strength-
ened concept is called Differentiability in Quadratic Mean (DQM) to
avoid confusion.

Section 5 shows that DQM is preserved under measurable maps.
Final two sections not yet edited.

Preliminary version. Editing in progress.

7.1 Heuristics

The traditional regularity conditions for asymptotic statistical theory in-DQM::heuristics
volve existence of two or three derivatives of density functions, together
with domination assumptions to justify differentiation under integral signs.
Le Cam (1970) noted that such conditions are unnecessarily stringent. He
commented:

Even if one is not interested in the maximum economy of
assumptions one cannot escape practical statistical problems in
which apparently “slight” violations of the assumptions occur.
For instance the derivatives fail to exist at one point x which
may depend on θ, or the distributions may not be mutually ab-
solutely continuous or a variety of other difficulties may occur.
The existing literature is rather unclear about what may happen
in these circumstances. Note also that since the conditions are
imposed upon probability densities they may be satisfied for one
choice of such densities but not for certain other choices.
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2 Hellinger differentiability

Probably Le Cam had in mind examples such as the double exponential den-
sity, 1/2 exp(−|x− θ|), for which differentiability fails at the point θ = x. He
showed that the traditional conditions can, for some purposes, be replaced
by a simpler assumption of Hellinger differentiability: differentiability
in norm of the square root of the density as an element of an L2 space.

<1> Definition. Write L1
+(λ) for the set of nonnegative functions that arenorm.diff

integrable with respect to a sigma-finite measure λ.
Say that a set F = {fθ : θ ∈ Θ} ⊆ L1

+(λ), indexed by a subset Θ of Rk,
is Hellinger differentiable at a point θ0 of Θ if the map θ 7→ ξθ(x) :=√
fθ(x) is differentiable in L2(λ) norm at θ0, that is, if there exists a k-

dimensional vector ξ•θ0(x) of functions in L2(λ) such that

ξθ(x) = ξθ0(x) + (θ − θ0)′ξ•θ0(x) + rθ(x) with ‖rθ‖2 = o(|θ − θ0|) near θ0.hell.diff<2>

Call ξ•θ0(x) the Hellinger derivative at θ0.
In particular, if P = {Pθ : θ ∈ Θ} is a family of probability measures

dominated by λ, say that P is Hellinger differentiable at θ0 if the set of
densities {dPθ/dλ : θ ∈ Θ} is Hellinger differentiable at θ0.

Remark. Some authors—see, for example, Bickel, Klaassen, Ritov, and
Wellner (1993, page 202)—adopt a slightly different definition,

ξθ(x) = ξθ0(x) + 1
2 (θ − θ0)′∆(x)ξθ0(x) + rθ(x),hell.diff2<3>

replacing the Hellinger derivative ξ•θ0 by 1
2∆(x)ξθ0(x). As explained

in Section 4, the modification very cleverly adds an extra implicit
regularity assumption to the definition, by requiring that ξ•θ0(x) = 0
when ξθ0(x) = 0. The two definitions are not completely equivalent.

Classical statistical theory, especially when dealing with independent
observations from a Pθ, makes heavy use of the function `θ(x) := log pθ(x),
where pθ = dPθ/dλ. The vector `•θ(x) of partial derivatives with respect to θ
is called the score function. The variance matrix Iθ of the score function
is called the Fisher information matrix for the model. The classical
regularity conditions justify differentiation under the integral sign to get

Pθ`
•
θ(x) = λp•θ(x) =

∂

∂θ
λpθ(x) = 0,zero.deriv<4>

whence Iθ := varθ (`•θ) = Pθ (`•θ`
•′
θ ).

Under assumptions of Hellinger differentiability, the derivative ξ•θ takes
over the role of the score vector. Ignoring problems related to division by
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zero and distinctions between pointwise and L2(λ) differentiability, we would
have

2ξ•θ (x)
ξθ(x)

?=
2√
fθ(x)

∂

∂θ

√
fθ(x) =

1
fθ(x)

∂fθ(x)
∂θ

= `•θ(x).

Thus the ∆ in the modified definition <3> corresponds to the score function.
The equality <4> corresponds to the assertion Pθ (ξ•θ/ξθ) = λ (ξθξ•) = 0,

which Section ?? will show to be a consequence of Hellinger differentiabil-
ity and the fact that ‖ξθ‖2 = for all θ. The Fisher information Iθ at θ
corresponds to the matrix

Pθ0
(
`•θ`
•′
θ

) ?= 4Pθ0
(
ξ•θξ
•′
θ /ξ

2
θ

) ?= 4λ
(
ξ•θξ
•′
θ

)
.

Here I flag both equalities as slightly suspect, not just for the unsupported
assumption of equivalence between pointwise and Hellinger differentiabili-
ties, but also because of a possible 0/0 cancellation. For the moment it is bet-
ter to insert an explicit indicator function, {ξθ > 0}, to protect against 0/0.
To avoid possible ambiguity or confusion, I will write Iθ for 4λ(ξ•θξ

•′
θ ) and I◦θ

for 4λ(ξ•θξ
•′
θ {ξθ > 0}), to hint at equivalent forms for Iθ without yet giving

precise conditions under which all three exist and are equal. See Section ??
for an explanation of when the distinction is necessary.

The classical assumptions also justify further interchanges of integrals
and derivatives, to derive an alternative representation Iθ = −Pθ`••θ for the
information matrix. It might seem obvious that there can be no analog
of this representation for Hellinger differentiability. Indeed, how could an
assumption of one-times differentiability, in norm, imply anything about
a second derivative? Surprisingly, there is a way, if we think of second
derivatives as coefficients of quadratic terms in local approximations. As
will be shown in Section ??, the fact that ‖ξθ‖2 = 1 for all θ leads to a
quadratic approximation for a log-likelihood ratio—a sort of Taylor expan-
sion to quadratic terms without the usual assumption of twice continuous
differentiability. Remarkable.

7.2 A sufficient condition for Hellinger differentiability

How does Hellinger differentiability relate to the classical assumption ofDQM::pwise
pointwise differentiability?

Roughly speaking, the difference between the two concepts is like the
difference between convergence in L2 and convergence almost surely. In
fact, it is easy (Problem [1]) to adapt a standard counterexample to show
that Hellinger differentiability does not imply pointwise differentiability.
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Consider the case where Θ is one-dimensional, and fθ is both Hellinger
differentiable and differentiable a.e. [λ] at θ = 0. Choose a sequence {θn}
tending to zero so fast that

∑
n ‖rθn‖2/|θn| < ∞, which implies rθn(x) =

o(|θn|) a.e. [λ]. For almost all x,

ξθn(x) = ξ0(x) + θnξ
•
0(x) + o(|θn|)

ξθn(x)2 = ξ0(x)2 + θnf
′
0(x) + o(|θn|).

If f0(x) 6= 0, the second equation can be rewritten as

ξθn(x) = ξ0(x)
(

1 + θn
f ′0(x)
ξ0(x)2

+ o(|θn|)
)1/2

= ξ0(x) + 1
2θn

f ′0(x)
ξ0(x)

+ o(|θn|).

It follows (cf. differentiation of
√
fθ(x) by first principles) that f ′0(x) =

2ξ0(x)ξ•0(x). At an x where f0(x) = 0, this argument fails. Instead we
would have

ξθn(x)2 = θ2
nξ
•
0(x)2 + o(|θn|2)

ξθn(x)2 = θnf
′
0(x) + o(|θn|).

We then deduce that f ′0(x) = 0 but apparently we no longer have any control
over ξ•0(x). However, if 0 is an interior point of the parameter space Θ
we could repeat the argument with {θn} replaced by {−θn}, obtaining for
almost all x for which ξ0(x) = 0 that

ξ±θn(x) = ±θnξ•0(x) + o(|θn|).

Nonnegativity of ξθ would then force ξ•0(x) = 0.
In summary: If the fθ(x) are pointwise differentiable at θ = 0 for almost

all x and if 0 is an interior point of Θ then the only possible candidate (up
to an almost sure equivalence) for the Hellinger derivative at 0 is

ξ•0(x) = 1
2

f ′0(x)
ξ0(x)

What more do we need in order to show that this ξ•0 is, in fact, an L2(λ)
derivative of θθ at θ = 0? The answer requires careful attention to the
problem of when functions of a real variable can be recovered as integrals of
their derivatives.
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<5> Definition. A real valued function H defined on an interval [a, b] of the realabs.cty.def
line is said to be absolutely continuous if to each ε > 0 there exists a δ > 0
such that

∑
i |H(bi)−H(ai)| < ε for all finite collections of nonoverlapping

subintervals [ai, bi] of [a, b] for which
∑

i(bi − ai) < δ.
Absolute continuity of a function defined on the whole real line is taken

to mean absolute continuity on each finite subinterval.

The following connection between absolute continuity and integration
of derivatives is one of the most celebrated results of classical analysis
(UGMTP §3.4).

<6> Theorem. A real valued function H defined on an interval [a, b] is abso-fundamental
lutely continuous if and only if the following three conditions hold.

(i) The derivative H ′(t) exists at Lebesgue almost all points of [a, b].

(ii) The derivative H ′ is Lebesgue integrable

(iii) H(t)−H(a) =
∫ t
a H

′(s) ds for each t in [a, b]

Put another way, a function H is absolutely continuous on an inter-
val [a, b] if and only if there exists an integrable function h for which

H(t) =
∫ t

a
h(s) ds for all t in [a, b]ac.integral<7>

The function H must then have derivative h(t) at almost all t. As a system-
atic convention we could take h equal to the measurable function

H•(t) =
{
H ′(t) at points t where the derivative exists,
0 elsewhere.

I will refer to H• as the density of H. Of course it is actually immaterial
how H• is defined on the Lebesgue negligible set of points at which the
derivative does not exist, but the convention helps to avoid ambiguity.

Now consider a nonnegative function H that is differentiable at a point t.
If H(t) > 0 then the chain rule of elementary calculus implies that the func-
tion 2

√
H is also differentiable at t, with derivative H ′(t)/

√
H(t). At points

where H(t) = 0, the question of differentiability becomes more delicate,
because the map y 7→ √y is not differentiable at the origin. If t is an inter-
nal point of the interval and H(t) = 0 then we must have H ′(t) = 0. Thus
H(y) = o(|y−t|) near t. If

√
H had a derivative at t then

√
H(y) = o(|y−t|)

near t, and hence H(y) = o(|y − t|2). Clearly we need to take some care
with the question of differentiability at points where H equals zero.
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Even more delicate is the fact that absolute continuity of a nonnegative
function H need not imply absolute continuity of the function

√
H, without

further assumptions—even if H is everywhere differentiable (Problem [2]).

<8> Lemma. Suppose a nonnegative function H is absolutely continuous on ansqrt.ac
interval [a, b], with density H•. Let ∆(t) := 1/2H•(t){H(t) > 0}/

√
H(t). If∫ b

a |∆(t)| dx <∞ then
√
H is absolutely continuous, with density ∆, that is,

√
H(t)−

√
H(a) =

∫ t

a
∆(s) ds for all t in [a, b]

Proof Fix an η > 0. The function Hη := η+H is bounded away from zero,
and hence

√
Hη has derivative H ′η = H ′/(2

√
H + η) at each point where the

derivative H ′ exists. Moreover, absolute continuity of
√
Hη follows directly

from the Definition <5>, because

|
√
Hη(bi)−

√
Hη(ai)| =

|Hη(bi)−Hη(ai)|√
Hη(bi) +

√
Hη(ai)

≤ |H(bi)−H(ai)|
2
√
η

for each interval [ai, bi]. From Theorem <6>, for each t in [a, b],

√
H(t) + η −

√
H(a) + η =

∫ t

a

H•(s)
2
√
H(s) + η

ds.

As η decreases to zero, the left-hand side converges to
√
H(t)−

√
H(a). The

integrand on the right-hand side converges to ∆(s) at points where H(s) >
0. For almost all s in {H = 0} the derivative H ′(s) exists and equals
zero; the integrand converges to 0 = ∆(s) at those points. By Dominated
Convergence, the right-hand side converges to

∫ t
a ∆(s) ds.

�

The integral representation for the square root of an absolutely contin-
uous function is often the key to proofs of Hellinger differentiability. For
simplicity of notation, the following sufficient condition is stated only for a
one-dimensional Θ with 0 as an interior point.

<9> Theorem. Suppose F = {fθ(x) : |θ| < δ} ⊆ L1
+(λ) for some δ > 0.Hdiff.suff

Suppose also that

(i) the map (x, θ) 7→ fθ(x) is product measurable;

(ii) for λ almost all x, the function θ 7→ fθ(x) is absolutely continuous on
[−δ, δ], with almost sure derivative f•θ (x);
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(iii) for λ almost all x, the function θ 7→ fθ(x) is differentiable at θ = 0;

(iv) for each θ the function ξ•θ (x) := 1
2f
•
θ (x){fθ(x) > 0}/

√
fθ(x) belongs

to L2(λ) and λ(ξ•θ )2 → λ(ξ•0)2 as θ → 0.

Then F has Hellinger derivative ξ•0(x) at θ = 0.

Remark. Assumption (iii) might appear redundant, because (ii) implies
differentiability of θ 7→ fθ(x) at Lebesgue almost all θ, for λ-almost
all x. A mathematical optimist (or Bayesian) might be prepared to
gamble that 0 does not belong to the bad negligible set; a mathematical
pessimist might prefer Assumption (iii).

Proof As before, write ξθ(x) for
√
fθ(x) and define rθ(x) := ξθ(x)−ξ0(x)−

θξ•0(x). We need to prove that λr2θ = o(|θ|2) as θ → 0.
Assumption (i) and the convention about densities imply joint measur-

ability of (x, θ) 7→ f•θ (x).
For simplicity of notation, consider only positive θ. The arguments for

negative θ are analogous. Write m for Lebesgue measure on [−δ, δ].
With no loss of generality (or by a suitable decrease in δ) we may as-

sume that λ(ξ•θ )2 is bounded, so that, by Tonelli, ∞ > mθλx(ξ•θ (x))2 =
λxmθ(ξ•θ (x))2, implying mθ(ξ•θ (x))2 <∞ a.e. [λ]. From Lemma <8> it then
follows that

ξθ(x)− ξ0(x)
θ

=
1
θ

∫ θ

0
ξ•s (x) ds a.e. [λ].

By Jensen’s inequality for the uniform distribution on [0, θ], and (iv),

λ

∣∣∣∣ξθ(x)− ξ0(x)
θ

∣∣∣∣2 ≤ 1
θ

∫ θ

0
λξ•s (x)2 ds→ λ(ξ•0)2 as θ → 0.limsup.diff<10>

Define nonnegative, measurable functions

gθ(x) := 2 |ξθ(x)− ξ0(x)|2 /θ2 + 2ξ•0(x)2 − |rθ(x)/θ|2 .

By (iii), rθ(x)/θ → 0 at almost all x where ξ0(x) > 0, and hence gθ(x) →
4ξ•0(x)2. At almost all points where ξ0(x) = 0 we have ξ•0(x) = 0, so that
ξθ(x) = rθ(x) and gθ(x) ≥ 0. Thus lim inf gθ(x) ≥ 4ξ•0(x)2 a.e. [λ]. By Fa-
tou’s Lemma (applied along subsequences), followed by an appeal to <10>,

4λ(ξ•0)2 ≤ lim inf
θ→0

λgθ ≤ 4λ(ξ•0)2 − lim sup
θ→0

λ |rθ(x)/θ|2 .

That is, λr2θ = o(θ2), as required for Hellinger differentiability.
�
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<11> Example. Let q be a probability density with respect to Lebesgue mea-shift.family
sure m on the real line. Suppose q is absolutely continuous, with den-
sity q• for which Iq := m

(
{q > 0}q•2/q

)
< ∞. Define Qθ to have density

fθ(x) := q(x − θ) with respect to λ, for each θ in R. The conditions of
Theorem <9> are satisfied, with

ξ•θ (x) = −1
2

q•(x− θ)√
q(x− θ)

{q(x− θ) > 0} and 4m(ξ•θ )2 ≡ Iq.

The family Q := {Qθ : θ ∈ R} is Hellinger differentiable at θ = 0. In fact,
the same argument works at every θ; the family is everywhere Hellinger
differentiable, with Hellinger derivative ξ•θ at θ.

It is traditional to call Iq the Fisher information for q, even though it
would be more more precise to call it the Fisher information for the shift
family generated by q.

�

7.3 Differentiability of unit vectors

Suppose τ is a map from Rk into some inner product space H (such asDQM::unit.vector
L2(λ)). Suppose also that τ is differentiable (in norm) at θ0,

τθ = τθ0 + (θ − θ0)′τ•θ0 + rθ with ‖rθ‖ = o(|θ − θ0|) near θ0.

For simplicity of notation, suppose θ0 = 0.
The Cauchy-Schwarz inequality gives |〈τ0, rθ〉| ≤ ‖τ0‖ ‖rθ‖ = o(|θ|). It

would usually be a blunder to assume naively that the bound must therefore
be of order O(|θ|2); typically, higher-order differentiability assumptions are
needed to derive approximations with smaller errors. However, if ‖τθ‖ is
constant—that is, if τθ is constrained to take values lying on the surface of
a sphere—then the naive assumption turns out to be no blunder. Indeed, in
that case, it is easy to show that in general 〈τ0, rθ〉 equals a quadratic in θ
plus an error of order o(|θ|2). The sequential form of the assertion will be
more convenient for the calculations in Section ??.

<12> Lemma. Let {αn} be a sequence of constants tending to zero. Let τ0,UNITvector
τ1, . . . be elements of norm one for which τn = τ0 + αnW + ρn, with W a
fixed element of H and ‖ρn‖ = o(αn). Then 〈τ0,W 〉 = 0 and 2〈τ0, ρn〉 =
−α2

n‖W‖2 + o(α2
n).
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Proof Because both τn and τ0 have unit length,

0 = ‖τn‖2 − ‖τ0‖2 = 2αn〈τ0,W 〉 order O(αn)
+ 2〈τ0, ρn〉 order o(αn)

+ α2
n‖W‖2 order O(α2

n)

+ 2αn〈W,ρn〉+ ‖ρn‖2 order o(α2
n).

The o(αn) and o(α2
n) rates of convergence in the second and fourth lines

come from the Cauchy-Schwarz inequality. The exact zero on the left-hand
side of the equality exposes the leading 2αn〈τ0,W 〉 as the only O(αn) term
on the right-hand side. It must be of smaller order, o(αn) like the other
terms, which can happen only if 〈τ0,W 〉 = 0, leaving

0 = 2〈τ0, ρn〉+ α2
n‖W‖2 + o(α2

n),

as asserted.
�

Remark. Without the fixed length property, the difference ‖τn‖2−‖τ0‖2
might contain terms of order αn. The inner product 〈τ0, ρn〉, which
inherits o(αn) behaviour from ‖ρn‖, might then not decrease at the
O(α2

n) rate.

<13> Corollary. If P has a Hellinger derivative ξ•θ0 at 0, and if 0 is an interiorunit2
point of Θ, then λ (ξ0ξ•0) = 0 and 8λ

(
ξ0rθ

)
= −θ′I0θ + o(|θ|2) near 0.

Proof Start with the second assertion, in its equivalent form for sequences
θn → 0. Write θn as |θn|un, with un a unit vector in Rk. By a subsequencing
argument, we may assume that un → u, in which case,

ξθn = ξ0 + |θn|u′nξ•0 + rθn = ξ0 + |θn|u′ξ•0 +
(
rθn + |θn|(un − u)′ξ•0

)
.

Invoke the Lemma (with W = u′ξ•0) to deduce that u′λ (ξ0ξ•0) = 0 and

−4|θn|2λ
(
u′ξ•0

)2 + o(|θn|2) = 8λ
(
ξ0
(
rθn + |θn|(un − u)′ξ•0

))
= 8λ (ξ0rθn) + 8|θn|(un − u)′λ (ξ0ξ•0) .

Because 0 is an interior point, for every unit vector u there are sequences
θn → 0 through Θ for which u = θn/|θn|. Thus u′λ (ξ0ξ•0) = 0 for every unit
vector u, implying that λ (ξ0ξ•0) = 0. The last displayed equation reduces
the sequential analog of the asserted approximation.

�
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Remark. If 0 were not an interior point of the parameter space, there
might not be enough directions u along which θn → 0 through Θ, and
it might not follow that λ(ξ0ξ•0) = 0. Roughly speaking, the set of such
directions is called the contingent of Θ at θ0. If the contingent is
‘rich enough’, we do not need to assume that 0 is an interior point. See
Le Cam and Yang (2000, Section 7.2) and Le Cam (1986, page 575)
for further details.

7.4 Information inequality

The information inequality for the model P := {Pθ : θ ∈ Θ} bounds the vari-DQM::info
ance of a statistic T (x) from below by an expression involving the expected
value of the statistic and the Fisher information: under suitable regularity
conditions,

varθ(T ) ≥ γ•θ ′I−1
θ γ•θ where γθ := PθT (x) and γ•θ :=

d

dθ
γθ.

The classical proof of the inequality imposes assumptions that derivatives
can be passed inside integral signs, typically justified by more primitive
assumptions involving pointwise differentiability of densities and domination
assumptions about their derivatives.

By contrast, the proof of the information inequality based on an as-
sumption of Hellinger differentiability replaces the classical requirements by
simple properties of L2(λ) norms and inner products. The gain in elegance
and economy of assumptions illustrates the typical benefits of working with
Hellinger differentiability. The main technical ideas are captured by the
following Lemma. Once again, with no loss of generality I consider only
behavior at θ = 0.

Remark. The measure Pθ might itself be a product measure, represent-
ing the joint distribution of a sample of independent observations from
some distribution µθ. As shown by Problem [5], Hellinger differentia-
bility of θ 7→ µθ at θ = 0 would then imply Hellinger differentiability of
θ 7→ Pθ at θ = 0. We could substitute an explicit product measure for
Pθ in the next Lemma, but there would be no advantage to doing so.

<14> Lemma. Suppose a dominated family P has Hellinger derivative ξ•0 at 0Tdiff
and that supθ∈U PθT (x)2 < ∞, for some neighborhood U of 0. Then the
function θ 7→ γθ := P xθ T (x) has derivative γ•0 = 2λ(ξ0ξ•0T ) at 0.

Remark. Notice that PθT is well defined throughout U , because of the
bound on the second moment. Also (λ|ξ0ξ•0T |)

2 ≤
(
λξ20T

2
) (
λ|ξ•0 |2

)
<

∞.
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Proof Write C2 for supθ∈U PθT (x)2, so that ‖ξθT‖2 ≤ C for each θ in U .
For simplicity, I consider only the one-dimensional case. The proof for Rk

differs only notationally.

�


