
Appendix A

Coupling Binomial with normal

A.1 Cutpoints

At the heart of the construction in Chapter 7 lies the quantile coupling of
a random variable distributed Bin(m, 1/2) with a random variable Y dis-
tributed N(m/2,m/4). The coupling relies heavily on very accurate ap-
proximations for the cutpoints −∞ = β0 < β1 < · · · < βn < βm+1 = ∞ for
which

P{X ≥ k} = P{Y > βk} for k = 0, 1, . . . ,m.

It is more convenient to work with the the tails of the standard normal
Φ̄(z) = P{N(0, 1) > z}, and the standardized cutpoint zk = 2(βk−m/2)/

√
m,

thereby replacing P{Y > βk} by Φ̄(zk). The coupling is then defined via a
Z distributed N(0, 1) by

Y =
m

2
+
√
m

4
Z

X = γm(Z) :=
∑m

k=0
k{Z ∈ Jk} where Jk := (zk, zk+1]
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Symmetry considerations show that zm−k+1 = −zk, so that it suffices to
consider only half the range for k. More precisely, when m = 2L is even we
have only to consider k ≥ L+ 1 = (m+ 2)/2. When m = 2L− 1 is odd we
have only to consider k ≥ L+ 1 = (m+ 3)/2.

The usual normal approximation with continuity correction suggests that
βk ≈ k − 1/2 or zk ≈ (2k − 1−m)/

√
m. For the purposes of Chapter 7, we

need only a sharp lower bound,

βk ≥ k −
1
2
− cm−1/2 for m ≥ 1 and (m+ 1)/2 ≤ k ≤ m.<1>
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2 Coupling Binomial with normal

for some universal constant c.
What follows is based on the method used by Carter and Pollard (2004),

who derived a slightly sharper form of the Tusnády coupling inequality
(Csörgő and Révész 1981, Section 4.4). See also Pollard (2001, Appendix D)
for a slightly different version of the argument.

A.2 Proof of inequality <1>

The argument involves two steps. First obtain an upper bound for the tail
probability Φ̄(zk) = P{Y > βk} using Laplace’s method with the exact rep-
resentation of the Binomial tail as a beta integral. Then invert the inequality
to obtain a lower bound for zk.

A.2.1 Binomial tail probability

Start from the well known (Feller 1971, Section 1.7) relationship between
the tails of the Binomial and beta distributions.

P{X ≥ k} =
m!

(k − 1)!(m− k)!

∫ 1/2

0
tk−1(1− t)m−k dt.<2>

The representation takes a more convenient form with the reparametriza-
tions M = m−1, K = k−1, N = m−k, and the change of variable s = 1−2t:

P{X ≥ k} = m
M !
K!N !

1
2

∫ 1

0

(
1− s

2

)K (1 + s

2

)N

ds.

For the purposes of a Laplace approximation, write the integrand as exp (Mh(s))
where

h(s) =
1 + ε

2
log
(

1− s
2

)
+

1− ε
2

log
(

1 + s

2

)
= h(0) +

1
2

log(1− s2) +
ε

2
log
(

1− s
1 + s

)
= h(0)− 1

2
(s2 +

s4

2
+
s6

3
+ . . . )− ε(s+

s3

3
+
s5

5
+ . . . ) if |s| < 1.<3>

The function h is maximized at s = −ε, where ε := (2K −M)/M , and

h(−ε)− h(0) =
1
2
ε2 + ε4G(ε) where G(ε) :=

∑∞

r=0

ε2r

(2r + 3)(2r + 4)
.<4>



§A.2 Proof of inequality <1> 3

The function G is strictly increasing on [0, 1] with

1
12

= G(0) ≤ G(ε) ≤ G(1) = −1
2

+ log 2 ≈ 0.1931

Stirling’s formula (Feller 1968, Section II.9),

n! =
√

2πn exp (log n− n+ λn) with
1

12n+ 1
≤ λn ≤

1
12n

,<5>

and the representations K/M = (1 + ε)/2 and N/M = (1 − ε)/2 simplifies
the ratio mM !/K!N ! to

m

√
M

2πKN
exp

(
M logM −K logK −N logN + Λ

)
where Λ = Λm,k := λM − λK − λN

=
m

M

√
4M

2π(1− ε2)
exp

(
−K log

(
K

M

)
−N log

(
N

M

)
+ Λ

)
= 2

m

M

√
M

2π
exp

(
−Mh(−ε) + Λ− 1

2
log(1− ε2)

)
In summary, to determine the standardized cutpoint zk we need to solve the
equation

Φ̄(zk) = e∆

√
M

2π

∫ 1

0
exp

(
Mh(s)−M(h(−ε)

)
ds<6>

where ∆ := log(1 +M−1)− 1
2

log(1− ε2) + Λm,k.

To get a lower bound for zk we need an upper bound for the right-hand
side of <6>. Expansions <3> and <4> imply

h(s)− h(−ε) ≤ −1
2
s2 − εs− 1

2
ε2 − ε4G(ε)

which gives

Φ̄(zk) ≤ exp(∆−Mε4G(ε))

√
M

2π

∫ ∞
0

exp
(
− 1

2
M(s+ ε)2

)
ds

= exp(∆−Mε4G(ε))Φ̄(ε
√
M)

It is convenient to reexpress the last inequality, using the increasing function
Ψ(x) := − log Φ̄(x), as

Ψ(zk) ≥ Ψ(ε
√
M) +Mε4G(ε) + 1

2 log(1− ε2)− log(1 +M−1)− Λm,k.<7>
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A.2.2 Inversion of the tail bound

The following Lemma, whose proof is given in Section 3, will covert inequal-
ity <7> to a lower bound for zk.

<8> Lemma. Define

ρ(x) :=
d

dx
Ψ(x) = φ(x)/Φ̄(x) and r(x) := ρ(x)− x.

Then

(i) ρ is an increasing, nonnegative function with ρ(−∞) = 0 and ρ(0) =
2/
√

2π ≈ .7979.

(ii) r is a decreasing nonnegative, function with r(∞) = 0 and r(0) = ρ(0)
and r(x) ≤ 2/x for x ≥

√
2.

Moreover, for all x ∈ R and δ ≥ 0, the increments of Ψ satisfy the inequal-
ities

(iii) δρ(x) ≤ Ψ(x+ δ)−Ψ(x) ≤ δρ(x+ δ),

(iv) xδ + 1
2δ

2 ≤ Ψ(x+ δ)−Ψ(x) ≤ ρ(x)δ + 1
2δ

2.

With ε = (2K −M)/M , inequality <1> is equivalent to

zk ≥
Mε√
M + 1

− 2c
M + 1

for 0 ≤ ε ≤ 1 if M ≥ 1.

A large enough choice of c would take care of all m small enough. Thus it
more than suffices to find a constant C and an M0 for which

zk ≥ ε
√
M − C/M for all M ≥M0.<9>

It is easiest to split the argument into three parts, for three ranges of ε.
In what follows, C0, C1, C2, . . . will be various universal constants.

Case: 0 ≤ ε ≤ C1/
√
M .

For this range, inequality <7> implies

Ψ(zk) ≥ Ψ(ε
√
M)− C2/M

where the constant C2 depends on C1. Invoke Lemma 8(iii) with δ = C3/M
and x = ε

√
M − δ to get

Ψ(ε
√
M) ≥ Ψ(ε

√
M − δ) + ρ(−δ)δ
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If C3 and M are large enough, the δρ(−δ) term is larger than C2/M , so that
Ψ(zk) ≥ Ψ(ε

√
M − δ), implying zk ≥ ε

√
M − C3/M .

Case: C1/
√
M ≤ ε ≤ ε0 < 1.

For this range, if C1 is large enough (depending on ε0) the Mε4G(ε) term is
much bigger than the other remainder terms in <7>, implying

Ψ(zk) ≥ Ψ(ε
√
M) +

1
13
Mε4

Choose x = ε
√
M and δ = C4

√
Mε3 in Lemma 8(iv) to get

Ψ(x+ δ) ≤ Ψ(x) + δρ(x) +
1
2
δ2 ≤ Ψ(x) + 2C4Mε4 +

1
2
C2

4Mε4

Choose C4 so that 2C4 + 1
2C

2
4 < 1/13 to conclude that zk ≥ ε

√
M(1+C4ε

2).

Case: ε0 ≤ ε ≤ 1.
If ε0 is close enough to 1 then ε0(1+C4ε

2
0) ≥ 1 ≥ ε. The desired lower bound

for zk is trivially true.

A.3 Tails of the normal distributions

Needs editing

The classical tail bounds for the normal distribution (cf. Feller (1968),
Section VII.1 and Problem 7.1) show that Φ̄(x) behaves roughly like the
density φ(x):(

1
x
− 1
x3

)
φ(x) <Φ̄(x) <

1
x
φ(x)

Φ̄(x) < 1
2 exp

(
−x2/2

) for x > 0<10>

The first upper bound is good for large x, the second for x ≈ 0.
Lemma 8 interpolates smoothly between the different cases in <10>.

Recall that Ψ(x) := − log Φ̄(x) and

ρ(x) =
d

dx
Ψ(x) = φ(x)/Φ̄(x).

To a first approximation, the positive function ρ(x) increases like x. By
inequality <10>, the error of approximation, r(x) := ρ(x) − x, is positive
for x > 0 and, for x > 1,

r(x) <
x

x2 − 1
= O(1/x) as x→∞.
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In fact, as shown by the proof of the next lemma, ρ(·) is increasing and r(·)
is decreasing and positive, on the whole real line.

<11> Lemma. The function ρ(·) is increasing and the function r(·) is decreasing,
with r(∞) = ρ(−∞) = 0 and r(0) = ρ(0) = 2/

√
2π ≈ .7979. For all x ∈ R

and δ ≥ 0, the increments of the function Ψ(x) := − log Φ̄(x) satisfy the
inequalities

(i) δρ(x) ≤ Ψ(x+ δ)−Ψ(x) ≤ δρ(x+ δ),

(ii) δr(x+ δ) ≤ Ψ(x+ δ)−Ψ(x)− 1
2(x+ δ)2 + 1

2x
2 ≤ δr(x),

(iii) xδ + 1
2δ

2 ≤ Ψ(x+ δ)−Ψ(x) ≤ ρ(x)δ + 1
2δ

2.

Proof Let Z be N(0, 1) distributed. Define M(x) = Pe−x|Z|, a decreasing
function of x with logM(x) strictly convex. Notice that

1/ρ(x) =
√

2π exp
(
x2/2

) ∫ ∞
0

φ(z+x) dz =
∫ ∞

0
exp

(
−xz − z2/2

)
dz =

√
π

2
M(x).

Thus − logM(x)−log
√
π/2 = log ρ(x) = Ψ(x)−x2/2−log

√
2π is a concave,

increasing function of x with derivative ρ(x)− x = r(x). It follows that r(·)
is a decreasing function, because

r′(x) = − d2

dx2
logM(x) < 0 by convexity of logM(x).

Inequality (i) follows from the equality

Ψ(x+ δ)−Ψ(x) = δΨ′(y∗) = δρ(y∗) for some x < y∗ < x+ δ,

together with the fact that ρ(·) is an increasing function. Similarly, the fact
that

d

dy

(
Ψ(y)− 1

2y
2
)

= ρ(y)− y = r(y) which is a decreasing function

gives inequality (ii). Inequality (iii) follows from (ii) because δr(x+ δ) ≥ 0
and xδ + r(x)δ = ρ(x)δ.

�

A.4 Notes

Carter and Pollard (2004)
KMT method (with refinements as in the exposition by Csörgő and

Révész (1981), Section 4.4)
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