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Introduction

Danger: very rough draft from page 10 onwards

Section 1 describes the standard mathematical formulation of the statistical
decision problem.

Section 2 defines Le Cam’s distance between statistical models.

1.1 Decision theory

The standard framework for statistical decision theory consists of threeIntroduction::decision
parts:

(i) A statistical model, which is just an indexed set P = {Pθ : θ ∈ Θ}
of probability measures all defined on the same (X,A), for some set X

equipped with a sigma-field A. Some authors call such a model a
statistical experiment. The data correspond to a point in the set X.
The elements of Θ are sometimes called the states of Nature.

(ii) A space D of possible actions or decisions that the Statistician can
take after observing x. For example, in estimation problems we can
take D = Θ and for the simplest of hypothesis testing D could be just
a two-point set. To make sense of various integrals we need D to be
equipped with a sigma-field D.

(iii) A loss function L : Θ × D → (−∞,∞], with the interpretation that
action a ∈ D incurs a loss L(θ, a) when θ is the true state of Nature.

For the most part, I will be assuming that the loss function L is nonneg-
ative.

The Statistician’s task is to choose a decision rule, a map d : X → D
that is A\D–measurable. More generally, the decision can be randomized,
a concept that is usually expressed by means of a Markov kernel.

<1> Definition. A Markov kernel K from (X,A) to (Y,B) is a collection ofMarkov.kernel
probability measures K = {Kx : x ∈ X} on B for which the map x 7→ KxB
is A-measurable for each fixed B in B.
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2 Introduction

Many authors take a randomized decision rule to be a Markov ker-
nel from (X,A) to (D,D), but some parts of the decision theory require a
more general concept expressible by means of Kolmogorov conditional ex-
pectations. Lucien Le Cam made a case for an even broader definition of
randomization by means of linear maps between spaces of finite measures.
See Chapter 2 for these generalizations and the arguments for why they lead
to a cleaner mathematical theory.

Each decision rule has a risk function, the function of θ defined by the
expected losses for the rule,

R(θ, d) =
∫
L(θ, d(x)) Pθ(dx) = PxθL(θ, d(x)).

The last expression is the more concise linear functional way to write the
expectation. See Pollard (2001, Section 1.4) for a gentle introduction to
linear functional notation. More generally, a randomized decision rule δ =
{δx : x ∈ X} has risk function

R(θ, δ) =
∫∫

L(θ, a)δx(da) Pθ(dx) = PxθδaxL(θ, a)

The main idea of statistical decision theory is: decision rules should be
compared using only their risk functions. If R(θ, δ) ≤ R(θ, δ′) for all θ ∈ Θ,
with strict inequality for at least one θ, then δ′ is inferior to δ. Some
statisticians go further, summarizing the virtues of a rule by means of its
minimax risk,

Rmmax(Θ, δ) = sup
θ∈Θ

R(θ, δ)

or its Bayes risk for some prior probability distribution π on Θ,

R(π, δ) =
∫
R(θ, δ)π(dθ) = πθPxθδaxL(θ, a).

Of course Θ should be equipped with its own sigma field T and the loss
function should be T ⊗ D-measurable if we are not to run into measure
theoretic complications.

A few examples will help to prepare the ground for the definition of
Le Cam’s distance, as well as providing some notation. The following three
models have been much studied in recent years as pieces of the prime example
of successful application of Le Cam theory to nonparametric settings. In
each case Θ is some (large) set of probability densities defined on (the Borel
sigma-field of) [0, 1]. For each θ in Θ, write Pθ for the probability measure
with density θ with respect to Lebesgue measure.



§1.1 Decision theory 3

<2> Example. The n-fold product measure Pθ,n := Pnθ defines the joint distri-iid
bution of n independent observations from Pθ. Under Pθ,n the coordinate
maps x1, . . . , xn on [0, 1]n are independent random variables, each with dis-
tribution Pθ.

�

<3> Example. Let µ be a finite measure on the Borel sigma-field of [0, 1].Poisson.proc
A Poisson process with intensity measure µ is a stochastic process that
produces a random finite subset of points in [0, 1] such that

(i) the number of points landing in a Borel set A has a Poisson distribution
with mean µA

(ii) for each finite collection of disjoint Borel sets A1, . . . , Ak the numbers
of points landing in each Aj are independent random variables.

Let Pθ,n be the distribution of the Poisson process with intensity mea-
sure µ = nPθ. A realization of the process could be constructed by first
generating a random variable N with a Poisson(n) distribution then, if
N = k, generating k independent observations from Pθ. Many authors
would consider this recipe a completely adequate way of describing a Pois-
son process. A more formal description would take Pθ,n as a probability
measure on the set X of all measures on B[0, 1] expressible as a finite sum of
point masses. The sigma-field A would be the smallest for which each of the
maps x 7→ x(B), with B ∈ B[0, 1], is an A\B(R+)-measurable map from X

into R+.
�

<4> Example. Observe a continuous processwhitenoise

Yt = 2
∫ t

0

√
θ(s)ds+ n−1/2Bt for 0 ≤ t ≤ 1,

where B is a standard Brownian motion (with continuous sample paths).
The distribution Pθ,n of Y is a probability measure on the Borel sigma field
of the space C[0, 1] equipped with its uniform metric.

�

Remark. Under some conditions on Θ, I will show in a later Chapter
that all three models are asymptotically equivalent in Le Cam’s sense.

The concept of sufficiency plays a special role in decision theory. It
allows calculations for a statistical model to be reduced to calculations with a
simpler statistical model defined by the distributions of a sufficient statistic.
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The study of sufficiency is a natural precursor to the study of a distance,
between statistical models that share the same index set, defined by Lucien
Le Cam. Models at zero Le Cam distance are equivalent in Blackwell’s sense,
a notion very closely related to the idea of sufficiency.

<5> Example. Suppose X1, . . . , Xn are independent random variables, eachnormal.shift
distriuted N(θ, 1) for some unknown real θ. Suppose we wish to estimate θ
using only the Xi’s. That is, Θ = D = R. It is very common for statisticians
to use the squared-error loss function, L(θ, a) = (θ − a)2.

To fit this problem into the framework described at the start of the
Section, take X = Rn equipped with its Borel sigma-field. The Xi’s can then
be taken as the coordinate maps: if x = (x1, . . . , xn) ∈ Rn then Xi(x) =
xi. [Actually there seems little point in inventing a name for the observed
random variables; the xi’s suffice.] The probability measure Pθ is then the
multivariate normal distribution, N(θ1, In).

The sample mean, Y (x) =
∑

i≤n xi/n, is a sufficient statistic for this
problem. It has distribution Qθ = N(θ, 1/n) under the Pθ model. Observa-
tion of Y alone corresponds to a new statistical model, Q = {Qθ : θ ∈ Θ}, a
set of probability measures defined on the Borel sigma-field of the real line.

There are various ways to express the sufficiency property. The es-
sential idea is that a “probabilistic copy” X̃1, . . . , X̃n, of the full sample
can be created from Y without knowing θ, by means of some auxiliary
randomization That is the new variables should also have joint distribu-
tion Pθ. Consequently, the performance of any statistical procedure based
on the Xi’s can be matched by an analogous procedure based on the X̃i’s.
For example, for every loss function, the risk function for an estimator
Tn = Tn(X1, . . . , Xn) is exactly the same as the risk function for the ran-
domized estimator Tn(X̃1, . . . , X̃n). The auxiliary randomization turns the
deterministic function Tn on Rn into a randomized estimator for the Q model.

The X̃i’s could be constructed as follows. Independently of Y , generate
independent N(0, 1) distributed random variables Z1, . . . , Zn then define

X̃i = Y + Zi − Z for i = 1, 2, . . . , n, where Z :=
∑

i≤n
Zi/n.

The joint distribution of Z1 − Z, . . . , Zn − Z has a N(0, V ) distribution,
where V = In − 11′/n. The construction could also be described via a
Markov kernel:

X̃1, . . . , X̃n | Y = y ∼ Ky := N(y1, V )
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The Zi’s provide one way to generate an observation from Ky. The rela-
tionship between the P and Q models can be expressed as

Paθ = Qy
θK

a
y ,

or, if we think of K as a mapping of probability measures on Y to probability
measures on X,

Pθ = KQθ for all θ ∈ Θ.

For every randomized decision rule δ = {δx : x ∈ X} for P there is a
corresponding randomized rule for Q, which can written symbolically as

δ̃ay = Kx
y δ

a
x.

Less formally, for the P model we generate a random action by

x ∼ Pθ then a | x ∼ δx
while for the Q model the scheme is

y ∼ Qθ then x ∼ Pθ then a | x ∼ δx
For every loss function, R(θ, δ̃) = R(θ, δ) for every θ. That is, if we judge
performance only by risk functions, we can always do as well with the Q

model as with the P model. In the language of the next Section, the P

and Q models are statistically equivalent.
�

<6> Example. SupposeX1 andX2 are independent observations on the unif(0, θ),uniform.suff
for some θ > 0. The joint distribution of (X1, X2) is Pθ, the uniform distri-
bution on the square (0, θ)2. For simplicity, take the Xi’s as the coordinate
maps for the generic point x = (x1, x2) of the underlying set X = R2

+.
The random variable Y (x) := max(x1, x2) is a sufficient statistic. It

has distribution Qθ with density 2t{0 < t < θ}/θ with respect to Lebesgue
measure on R+. The conditional distribution of (x1, x2) given Y = y is
uniform on the boundary set

{y} × (0, y) ∪ (0, y)× {y}.

We could construct the probabilistic copy with the help of a unif(0, 1) dis-
tributed U and a Ber(1/2) distributed W , with {Y, V,W} independent, by

(X̃1, X̃2) = f(Y, V,W ) = W (Y V, Y ) + (1−W )(Y, Y V ).

The distribution of f(y, V,W ) defines the Markov kernel {Ky : y > 0}
for which Pθ = KQθ. Once again, the P and Q models are statistically
equivalent.

�
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As a small exercise, you should show that the f(Y, V,W ) in the previous
Example can be replaced by a random variable g(Y,U), with U ∼ unif(0, 1).
That is, show how to generate (V,W ) from a single uniformly distributed
random variable.

In general, under mild topological assumptions on the spaces (X,A)
and (Y,B), every Markov kernel from Y to X can be represented as the
distribution of some (measurable) function g(y, U) with U ∼ unif(0, 1).

1.2 The Le Cam distance between statistical models

Suppose P = {Pθ : θ ∈ Θ} on (X,A) and Q = {Qθ : θ ∈ Θ}, on (Y,B),Introduction::distance
are two statistical models with the same index set Θ. Le Cam’s distance
∆(P,Q) between the two models is defined so that a small ∆ implies that
solutions to decision theoretic problems for P have similar solutions—in the
sense of risk functions—to corresponding problems for Q, and vice versa.

Let me begin with a much stronger notion of closeness of models P and Q

defined on the same space (X,A). Suppose there is some (small) ε′ for which

‖Pθ −Qθ‖TV ≤ ε for all θ ∈ Θ.TV.close<7>

Remark. If Q and Q̃ are two probability measures defined on the same
sigma-field B, their total variation distance is defined as∥∥∥Q− Q̃

∥∥∥
TV

= sup
B∈B
|QB − Q̃B| = 1

2
sup
|g|≤1

|Qg − Q̃g|,

the second supremum running over all Bmeasurable functions g that
are bounded in absolute value by 1. If both measures are dominated
by another measure µ, with densities q and q̃ then

2
∥∥∥Q− Q̃

∥∥∥
TV

=
∥∥∥Q− Q̃

∥∥∥
1

:=
∫
|q − q̃| dµ = µ|q − q̃|.

Suppose also that Θ is a metric space (with metric ρ) and we have some
estimator θ̂ for which

Qθ{ρ(θ̂, θ) > Rε} ≤ ε for all θ ∈ Θ.

Then we have

Pθ{ρ(θ̂, θ) > Rε} ≤ ε+ ε′ for all θ ∈ Θ.

If ε and ε′ are both small then we have transformed a good estimator for the Q

model into a good estimator for the P model. Almost the same argument
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works to transform good estimators for P into good estimators for Q. The
bound <7> has created a strong coupling of inference problems for the two
models.

<8> Example. Consider the model Pn = {Pθ,n : θ ∈ Θ} from Example 2, wherebi.iid
Θ is some set of densities on [0, 1]. That is, Pθ,n = Pnθ where Pθ has density θ
with respect to Lebesgue measure on [0, 1].

For a fixed positive integer m let Ji :=
(
i − 1)/m, i/m

]
and define an

approximation map Am by

Amθ =
∑m

i=1
θi{t ∈ Ji} where θi = m

∫
{s ∈ Ji}θ(s) ds

Define Qθ = PAmθ and Qθ,n = Qnθ . Under suitable smoothness condi-
tions on Θ, the Pn model will be close in the total variation sense to the
model Qn = {Qθ,n : θ ∈ Θ} model.

It is usually not easy to calculate total variation distances between prod-
uct measures. Instead, it is typical to work with an upper bound involving
Hellinger distance, which is much friendlier to product measures:

1
4
‖Pn −Qn‖2TV ≤ H

2(Pn, Qn) ≤ nH2(P,Q)

See Pollard (2001, Section3.3, Problem 4.18) for details. If we assume that
each density in Θ is bounded from below by some constant c0 > 0, which is
a very common simplifying assumption in the literature, then

H2(Pθ, Qθ) =
∫ 1

0

(√
θ(s)−

√
Amθ(s)

)2
ds

≤
∫ 1

0

(θ(s)−Amθ(s))2(√
θ(s) +

√
Amθ(s)

)2 ds

≤ 1
4c0

∑m

i=1

∫
{s ∈ Ji}

(
θ(s)− θi

)2
ds

As m gets larger the approximation will usually get better, particularly
so if Θ imposes a smoothness constraint. One particularly elegant way to
control the bound is to take m = 2k then make some assumption about the
decay of the coefficients for θ when expanded in the Haar basis. See Brown,
Carter, Low, and Zhang (2004) for example.

The Qn model is conceptually easier to work with because them-dimensional
vector of counts in each Ji interval is a sufficient statistic, which has a multi-
nomial distribution.
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The anaologous discretization for the Poisson process model of Exam-
ple 3 is even cleaner, for then the m-vector of cell counts, which is again
a sufficient statistic, contains independent Poisson(nθi/m) variables. See
Problem [3].

�

The Le Cam distance takes this total variation idea one step further.
We no longer need the models defined on the same space; the coupling of
the models is created by randomization. For the moment, I will think of the
randomization as being defined by a Markov kernel. As you will see in Chap-
ter 2, Le Cam allowed more general objects to be called randomizations, so
that desirable theorems about randomization should become true.

Suppose K is a Markov kernel from (X,A) to (Y,B). Randomization
via K serves to turn an observation x from some unknown Pθ into an ob-
servations y from a corresponding probability measure on Y: first x ∼ Pθ
then y | x ∼ Kx. These two random operations create a pair of random
variables (x, y) with a joint distribution Γθ,

Γθ(A×B) =
∫
A

(KxB) Pθ(dx) = PxθKy
x{x ∈ A, y ∈ B}.

More generally, at least for every nonnegative, A⊗B-measurable function f
on X× Y,

Γx,yθ f(x, y) = PxθKy
xf(x, y)

The probability measure Γθ has marginals Pθ and Q̃θ, where

Q̃θg = PxθKy
xg(y)

at least for every nonnegative, B-measurable function g on Y.
Under the joint distribution Γθ, the kernel K becomes the conditional

distribution of y given x. For the model {Γθ : θ ∈ Θ} on (X×Y,A⊗B), the x
coordinate is a sufficient statistic. To indicate the dependence of both Q̃θ

and Γθ in a linear way on both Pθ and the Markov kernel K, I like to write
Q̃θ = KPθ and Γθ = Pθ ⊗ K. (See Pollard (2001, Section 4.3) for a more
detailed discussion.)

Le Cam’s deficiency distance measures how well Q can be approximated
in a total variation sense by {Q̃θ : θ ∈ Θ} obtained by a randomization of P.

<9> Definition. The deficiency of the P model with respect to the Q model isdeficieny.def
defined as

dLeCam(P,Q) = inf
K

sup
θ∈Θ
‖Qθ −KPθ‖TV ,deficiency<10>
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the infimum runnning over all randomizations K. Note well: the K is
not allowed to depend on θ.

The Le Cam distance between P and Q is defined as

∆LeCam(P,Q) = max (dLeCam(P,Q), dLeCam(Q,P))

If ∆LeCam(P,Q) = 0 then models are said to be equivalent in the Blackwell
sense.

Remark. For the moment you should think of the randomizations as
being defined by Markov kernels. In Chapter 2 the class of K’s will
be made larger, which, amongst other benefits, will ensure that the
infimum over K in the definition of δ(P,Q) is achieved some some
randomization.

Often we have not just one pair of models but a whole family of pairs of
models, Pn = {Pθ,n : θ ∈ Θn} and Qn = {Qθ,n : θ ∈ Θn}, indexed by another
parameter (such as sample size n). If ∆LeCam(Pn,Qn) → 0 as n → ∞ then
the models Pn and Qn are said to be asymptotically equivalent in the
Le Cam sense.

The choice of the total variation distance in the definition of dLeCam(P,Q)
once again leads to a strong coupling of inference problems. Suppose, for
example, that Θ is a metric space and we have some estimator θ̂ for which

Qθ{d(θ̂, θ) > Rε} ≤ ε for all θ ∈ Θ.

Suppose also that there is a Markov kernel K such that
∥∥∥Qθ − Q̃θ

∥∥∥
TV
≤ ε′

for all θ, where Q̃θ = KPθ. The Markov kernel creates a randomized
estimator, that is, a Markov kernel θ̃ = {θ̃x : x ∈ X} from X to Θ, defined
by θ̃x = the distribution of θ̂(y) where y | x ∼ Kx. Then

Pxθ θ̃tx{d(t, θ) > Rε} = PxθKy
x{d(θ̂(y), θ) > Rε}

= Q̃θ{d(θ̂(y), θ) > Rε} ≤ ε+ ε′ for all θ ∈ Θ.

The final inequality uses the fact that

Q̃θA−QθA ≤
∥∥∥Qθ − Q̃θ

∥∥∥
TV
≤ ε′

with A = {y ∈ Y : d(θ̂(y), θ) > Rε}.

Remark. If you are having trouble deciphering these calculations it
might help you to rewrite them using L(θ, t) = {d(t, θ) > Rε}, a loss
function taking values in {0, 1}.
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The Chapter from here on is just a series of sketched examples to
illustrate some cases where useful bounds can be calculated. Some
of these bounds will be needed to establish equivalance with the
white noise model. I am not sure whether they belong in this
Chapter. After the lectures I will probably have a better idea idea
of what should go where.

<11> Example. Suppose Pθ,n := Poisson(n +
√
nθ). (I chose this parametriza-poisson.bayes

tion so that it is easy to distinguish between two fixed θ values that are
widely separated but hard if they are very close together.) The set X equals
the set N0 = {0, 1, 2, . . . }. Expressed in the fanciest way possible, the prob-
ability measure Pθ,n has density

pθ,n(x) := Pθ,n{x} = exp(−n−
√
nθ)

(n+
√
nθ)x

x!
for x ∈ N0

with respect to counting measure on N0.
Consider the Bayes test between two hypotheses, θ = θ0 = 0 versus θ =

θ1, with prior probability π{θ0} = π{θ1} = 1/2. Use a zero-one loss function,

L(θ, t) = {θ 6= t} for t, θ ∈ Θ0 := {θ0, θ1}.

That is, the task is to guess which model (θ = θ0 or θ = θ1) generates the
observation x, with a loss of one unit for an incorrect guess and a zero loss
for a correct guess and D = Θ0.

As a heuristic, note that Wn := (x−n)/
√
n is approximately distributed

as Qθ := N(θ, 1) under the Pθ,n model. It might seem that inferences about θ
for the Pn model should be approximately like inferences about θ under the
Q = {Qth : θ ∈ R} model. In various senses, if we restrict the range of θ,
it is true that Pn and Q are close in the Le Cam sense but it is not for
the heuristic reason just mentioned. (See the next Example to understand
why closeness of data distributions is not enough.) The Le Cam distance
involves much more than just closeness in distribution for the observed data,
for each θ; it depends on the way different members of the model are related
to other, as the present example will show. In fact, it is the behavior of the
likelihood ratio,

pθ,n(x)
p0,n(x)

= exp
(
−θ
√
n+ x log(1 + θ/

√
n)
)

= ψn(Wn, θ)<12>
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where Ψn(z, θ) = exp (ψn(z, θ)) and

ψn(z, θ) = n log(1 + θ/
√
n)− θ

√
n+ z

√
n log(1 + θ/

√
n)

= −1
2
θ2 +O(|θ|3/

√
n) + z

(
θ +O(θ2/

√
n)
)

<13>

In what follows I will drop n from indexing, but you should remember
that the statistical problems only get close as n goes off to infinity.

A randomized test is just a Markov kernel δ = {δx : x ∈ N0} from N0

to Θ0. The Bayes risk of δ is

R(π, δ) =
1
2

Px0δx{θ1}+
1
2

Pxθ1δx{θ0}

=
1
2

∑
x∈N0

p0(x)δx{θ1}+ pθ1(x)δx{θ0}

The Bayes rule minimizes the Bayes risk by choosing

δx{0} =
{

1 if p0(x) ≤ pθ1(x)
0 otherwise

That is, the minimum Bayes risk is

1
2

∑
x∈N0

min (p0(x), pθ1(x)) =
1
2

∑
x∈N0

p0(x) min (1, pθ1(x)/p0(x))

=
1
2

P0 min (1,Ψn(Wn, θ1)) by <12>.

Under P0, the random variables converge in distribution to Q0. Also ψn(z, θ1)
converges uniformly on compact sets of z to the function ψ(z, θ) := zθ− 1

2θ
2.

These two facts together imply (Why?) that the minimum Bayes risk con-
verges to

1
2

Qy min (1,Ψ(y, θ1)) where Ψ(z, θ) := exp (ψ(z, θ))

The last expression is, in fact, the minimum Bayes risk for testing Q0

against Qθ1 , for the same prior and loss function. You can establish this
fact by proving that the Bayes estimator for this problem is

δy{0} =
{

1 if φ(y) ≤ φ(y − θ1)
0 otherwise

and then noting that

dQθ

dQ0
(y) =

φ(y − θ)
φ(y)

= exp(θy − θ2/2) = Ψ(y, θ).
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It is the convergence in distribution of the likelihood ratios that gave the
asymptotic equality for the Bayes risks.

�

<14> Example. Choose P0,n = Poisson(n) as in the last Example, but take Pθ1,nbad.poisson
as the distribution of X + e−n where X ∼ Poisson (n+

√
nθ1). Once again

note that Wn := (x− n)/
√
n is approximately distributed as Qθ := N(θ, 1)

under the Pθ,n model. But this time there is a perfect test (What?) between
θ = 0 and θ = θ1, with zero Bayes risk. The minimum Bayes risk for the Q

model is the same as before.
The great difference occurs because P0,n and Pθ1,n are mutually singular,

which has a great effect on the likelihood ratio but no effect on the limiting
distribution of Wn under each alternative.

�

<15> Example. It might not be obvious to you that the result in Example 11 islocal.Poisson.normal
actually due to asymptotic equivalence in Le Cam’s sense. Let me construct
the “randomizations” that proves that dLeCam(Q,Pn) → 0 for the models
Pn = {Pθ,n : θ ∈ Θ} and Q = {Qθ,n : θ ∈ Θ} for any fixed, bounded
subset Θ of the real line.

I put quotes around the word randomizations in the last paragraph be-
cause they are of a degenerate kind: deterministic functions. It would be
more exciting to prove that dLeCam(Pn,Q) → 0, for then we would need
(nondegenerate) Markov kernels. I leave that exercise to you.

Once again I omit various n subscripts when I do not need to emphasize
the dependence on n.

The deterministic functions are given by the quantile transformation
(Pollard 2001, Example 2.35). Let Φ be the N(0, 1) distribution function
and Fn be the distribution function of Wn under P0,n. Define γn(y) :=
F−1
n (Φ(y)). If Y ∼ N(0, 1) then γn(Y ) is a random variable with distribution

function Fn. Equivalently, under Q0 the random variable n+
√
nγn(y) has

distribution P0,n.
The distribution function Fn converges uniformly to Φ because Wn con-

verges in distribution (under P0,n) to N(0, 1). It follows that

sup|y|≤C |γn(y)− y| → 0 for each finite C.gamn.cgce<16>
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Define P̃θ to be the distribution of n +
√
nγn(y) under the Qθ. Note

that γn(y) under Q0 has the same distribution as Wn under P0. Calcu-
late

∥∥∥P̃θ − Pθ
∥∥∥

TV
by taking a supremum of |P̃θg − Pθg| over all functions g

with |g| ≤ 1. For a fixed such g temporarily write Gn(y) for g(n+
√
nγn(y)).

Then

|P̃θg − Pθg| = |Qy
θGn(y)− Pxθg(x)|

= |Qy
0Gn(y)Ψ(y, θ)− Px0g(x)Ψn(Wn, θ)|

= |Qy
0Gn(y)Ψ(y, θ)−Qy

0Gn(y)Ψn(γn(y), θ)|
≤ Qy

0|Ψ(y, θ)−Ψn(γn(y), θ)| because |Gn(y)| ≤ 1.

By construction, the function Ψ(y, θ) = dQθ/dQ0 is nonnegative and it
integrates to one. Similarly Ψn(γn(y), θ) is nonnegative and

Qy
0Ψn(γn(y), θ) = Px0Ψn(Wn, θ) = P0

dPθ
dP0

= 1.

By Scheffé’s lemma (Pollard 2001, Exercise 3.6),

Qy
0|Ψ(y, θ)−Ψn(γn(y), θ)| = 2Qy

0 (Ψ(y, θ)−Ψn(γn(y), θ))+ ,

which converges uniformly in θ to zero because of <13> and <16>. [Is this
sketch too terse? Would more details be helpful?]

�

1.3 Facts about the Poisson distribution

The convex functionIntroduction::poisson,facts

h(t) = (1 + t) log(1 + t)− t for −1 ≤ t<17>

=
t2

2
− t3

6
+O(t4) as t→ 0

achieves its minimum value of zero at t = 0.

<18> Lemma. Suppose X has a Poisson(λ) distribution, with λ ≥ 1.Poisson.dist

(i) If ` = λ+ x ∈ N then

log
(√

2πλP{W = `}
)

= −λh(x/λ)− 1
2 log(1 + x/λ) +O(1/`)
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(ii) P{W = `} ≤ exp(−λh(x/λ)) for all ` = λ+ x ∈ N0.

(iii) For all x ≥ 0,

P{|W − λ| ≥ x} ≤ 2 exp(−λh(x/λ))

Proof By Stirling’s formula,

log(`!/
√

2π) = (`+ 1
2) log(`)− `+ r` where

1
12`+ 1

≤ r` ≤
1

12`
.

Thus

log
(√

2πλP{W = `}
)

= −λ+ ` log(λ)− log(`!/
√

2π) + 1
2 log(λ)

= −λh(u)− 1
2 log(1 + u) +O(`−1),

which gives (i).
For (ii), first note that P{W = 0} = e−λ = exp(−λh(−1)). For ` ≥ 1 we

have

log
(√

2πP{W = `}
)

= −λ+ ` log(λ)− (`+ 1
2) log(`) + `− r`

≤ −λ+ ` log(λ)− ` log(`) + ` = λh(u).

Inequality (iii) comes from two appeals to the usual trick with the mo-
ment generating function PetW = exp(λ(et − 1)). For x ≥ 0,

P{W ≥ λ+ x} ≤ inf
t≥0

Pet(W−λ−x) = inf
t≥0

exp
(
− t(λ+ x) + λ(et − 1)

)
The infimum is achieved at t = log(1+x/λ), giving the bound exp(−λh(x/λ)).
Similarly

P{W ≤ λ− x} ≤ inf
t≥0

Pet(λ−x−W ) = inf
t≥0

exp
(
t(λ− x) + λ(e−t − 1)

)
with the infimum achieved at t = − log(1− x/λ) if 0 ≤ x < λ or as t → ∞
if x = λ. The inequality is trivial for x > λ.

1.4 Normal versus Poisson

Compare with Brown, Carter, Low, and Zhang (2004).Introduction::normal.Poisson
Suppose X ∼ Poisson(λ) is independent of U ∼ Unif(−1/2, 1/2), and

suppose Y ∼ N(λ, λ). Show that

H2(X + U, Y ) = O(1/λ) as λ→∞.
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Equivalently, show that H2(X + U − λ, Y − λ) = O(1/λ).
By Problems [2] and [4], there is no loss of generality in assuming that

λ is a positive integer.
The distribution of X + λ− U has density

p(y) =
∑

k≥−λ
{|y − k| < 1/2}P{X = λ+ k}

From Lemma 18,

log
(√

2πλP{X = λ+ k}
)

= −λh(k/λ)− 1
2 log(1 + k/λ) + rλ+k

where rn = O(1/n) and

h(t) = (1 + t) log(1 + t)− t =
∑
k≥2

(−1)ktk

(k − 1)k
for |t| < 1.

Write Q for the N(0, λ) with density q. Let K be the smallest integer
for which K + 1

2 ≥
√

2λ log λ and define A = (K − 1/2,K + 1/2), so that
QAc ≤ 2/λ. Then

H2(X + U − λ, Y − λ)

≤ 2QAc +
∫
A
q log(q/p) by Problem [5](i)

= O(λ−1) +
K∑

k=−K

∫
Jk

q log(q/p) where Jk = (k − 1/2, k + 1/2)

By symmetry of q, the last sum equals∫
J0

q(y)
(
− y

2

2λ
− log

(√
2πλP{X = λ}

))
dy

+
K∑
k=1

∫
Jk

q(y)
(
−2y2

2λ
− log

[
2πλP{X = λ+ k}P{X = λ− k}

])
dy

By Lemma 18(i), the J0 contribution is at most O(1/λ) and the Jk contri-
bution is at most∫
Jk

q(y)
(
−y

2

λ
+ λ [h(k/λ) + h(−k/λ)] +

1
2

log(1− k2/λ2)− rλ+k − rλ−k
)
dy

How to finish the calculation:
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(i) Show that 1
2 log(1 − k2/λ2) − rλ+k − rλ−k contributes only a O(1/λ)

term.

(ii) Use the series <17> to kill many terms in the expansions of h(±k/λ),
leaving

λ [h(k/λ) + h(−k/λ)] = k2/λ+O(k4/λ3)

(iii) Bound
∫
Jk
q(y)k4/λ3 by a constant multiple of

∫
Jk
q(y)y4/λ3. Sum

over k, bounding by C
∫
q(y)y4/λ3 = O(1/λ).

(iv) The tricky part is the contribution from

(k2 − y2)/λ ≤ −2k(y − k)/λ+
1

4λ

Use
|
∫
Jk

q(y)(−2k)(y − k)| ≤ 2kQJk|Q(y − k | y ∈ Jk)|

Use Problem [7] to bound the contribution from the conditional ex-
pectation by 2k/(4λ). Sum over k, bound k by 2y, then bound the
whole sum by a multiple of Qy2/λ2 = O(1/λ).

Alternatively: Replace the appeal to Problem [5](i) by an appeal to Prob-
lem [5](ii) (Harry’s method). That way we don’t need to use the symmetry
to get cancellations. This method is probably better.

1.5 Variance stabilization

Introduction::rootnormal
Let P = N(λ, λ) and Q = N(2

√
λ, 1). Let ψ : R→ R be continuous and

strictly increasing, with ψ(x) = 2
√
x for x ≥ 1. Show that

H2(ψ(P ), Q) = O(1/λ) as λ→∞.

Define ` = 2
√
λ.

Note that ψ(P ) has density γ(y) with respect to Lebesgue measure, with

ψ(y) =
y

`
φ

(
y2/4− λ
`/2

)
for y ≥ 2.

Also Q has density
q(y) = φ (y − `)
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Define A = {y ∈ R : |y − `| ≤ r} with r =
√

2 log λ. Note that QAc ≤ 2/λ.
Use Problem [5].∫

{y ∈ A}q(y) log
(
q(y)
γ(y)

)
dy =

∫ r

−r
φ(x) log

(
φ(x)

γ(x+ `)

)
dx

Note that
(x+ `)2/4− λ = 1

4x
2 + 1

2x`

The log term equals

−1
2x

2 − log(1 + x/`) +
1

2λ
(
(x+ `)2/4− λ

)2
= −x

2

2
− x

`
+O

(
x2

`2

)
+

1
32λ

(x4 + 4x3`+ 4x2`2)

= O

(
x2 + x4

λ

)
+ terms in x and x3

By symmetry, the terms in x and x3 integrate out to zero, leaving a quantity
of order 1/λ.

1.6 Many Poissons

Combine the results from the last two sections to get randomizations forIntroduction::many
Pλ = ⊗i≤mPoisson(λi) with λ = (λ1, . . . , λm) ∈ Λ and Qλ = ⊗i≤mN(2

√
λi, 1).

Work with independent random variables Yi ∼ N(2
√
λi, 1) andXi ∼ Poisson(λi).

Define

Ỹi = ψ(Xi + Ui) for independent Ui ∼ Unif(−1/2, 1/2)

and
X̃i = closest integer to ψ−1(Yi)

Work directly with Hellinger distances or use affinities?∏
i≤m

α2(X̃i, Xi) = O (. . . )

or ∑
i≤m

H2(X̃i, Xi) = O
(∑

i
1/λi

)
Use idea from Brown, Carter, Low, and Zhang (2004) to avoid calcula-

tions for the Yis and Ỹi’s.
Should I also comment on conditional quantile transformations with Bi-

nomials at this point?
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1.7 Problems

Introduction::problems

• If P,Q � µ with densities p and q, Hellinger affinity is α2(P,Q) =
µ
√
pq. Note that H2(P,Q) = 2− 2α2(P,Q).

• Include facts about total variation versus Hellinger.

• Comment on convenient notation H(X,Y ) for H(P,Q) if X ∼ P and
Y ∼ Q.

[1] SupposeX,Y, U are independent random variables with U ∼ Unif(−1/2, 1/2)smooth
and both X and Y taking only integer values. Show that H2(X,Y ) =
H2(X + U, Y + U).

[2] Show that α2(Poisson(λ),Poisson(µ)) = exp(−1
2(
√
λ−√µ)2). Deduce thathell.poisson

H2(Poisson(λ),Poisson(µ)) = O(
√
λ−√µ)2.

[3] Let Pµ denote the distribution of a Poisson process with intensity measure µPoisson.proc
on [0, 1]. Show that

H2(Pλ,Pµ) = 2− 2 exp
(
−1

2
H2(λ, µ)

)
[Is this correct? Try to reduce to an affinity calculation for independent
Poissons from a nested family of partitions of [0, 1].]

[4] Hellinger distance between normals.hell.normal

(i) Show that

H2
(
N(µ1, σ

2), N(µ1, σ
2)
)

= 2− 2 exp
(
−(µ1 − µ2)2/8σ2

)
.

(ii) Show that

H2
(
N(µ, σ2

1), N(µ, σ2
2)
)

= 2− 2

√
2σ1σ2

σ2
1 + σ2

2

.

(iii) Deduce that

H2
(
N(µ1, σ

2
1), N(µ2, σ

2
2)
)
≤ (µ1 − µ2)2

2σ2
2

+
4|σ2

1 − σ2
2|2

σ4
2
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[5] Let P and Q be probability measures on (X,A) with densities p and q withhell.J.KL
respect to some dominating measure µ. Suppose P and Q are mutually
absolutely continuous on some set A ∈ A, with p = qe2η.

(i) Show that 2q − 2
√
pq = 2q(1− eη) ≤ −2qη. Deduce that

H2(P,Q) ≤ 2QAc +
∫
A
q log (q/p)

(ii) On the subset of A where η ≥ 0, show that

(
√
q −√p)2 = q(eη − 1)2 ≤ qη2e2η = pη2.

When η < 0 interchange the roles of p and q to get an analogous bound q(−η)2.
Deduce that

H2(P,Q) ≤ PAc +QAc +
∫
A

(p+ q) (log(p/q))2

[6] Suppose X is a real valued random variable such that P{X ∈ I} > 0 conditional
for every nondegenerate interval I. Show that g(a, b) := P (X | a ≤ X < b)
is an increasing function of both a and b. Hint: For t ∈ (a, b), define
α(t) = P{a ≤ X < t | a ≤ X < b} − 1− α(t). Show that

g(a, b) = α(t)g(a, t) + α(t)g(t, b) and g(a, t) ≤ t ≤ g(t, b).

[7] Suppose W has a N(µ, σ2) distribution. For each h > 0 and each x ∈ R, condit.normal
show that

|P (W − x | x− h ≤W < x+ h) | ≤ 2|x− µ|h2

σ2
.

Hint: Reduce to the case where µ = 0 and σ = 1. For that case define
F (h) :=

∫ z+h
z−h (t− z)φ(t) dt and G(h) :=

∫ z+h
z−h φ(t) dt. Show that

P (W − x | x− h ≤W < x+ h) = |F (h)/G(h)|
= |F ′(s)/G′(s)| for some 0 < s < h

= s |tanh(xs)| ≤ h (1 ∧ 2|xh|)
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