
Chapter 7

Contiguity

Section 1 defines contiguity as a property of two sequences of probability
measures, {Pn} and {Qn}, that transfers op(·) assertions under {Pn} to
op(·) under {Qn}. Various equivalent forms of the definition, which are
useful for establishing contiguity, are derived.

Section 2 establishes conditions for contiguity of sequences of product mea-
sures for a sequence of parametric alternatives.

Section 3 derives useful consequences of contiguity, which transfer conver-
gence in distribution under {Pn} to analogous convergence under {Qn}.
In a special asymptotic normal case (the so-called Third Lemma of Le Cam)
the change in limiting distribution involves only a shift in the vector of
means.

7.1 Definition and equivalences

In many asymptotic problems one needs to study estimators under variousSect.contiguity.defn
sequences of probability models. For example, in Chapter 1, we saw that
the Hodges estimator θ∗n behaves badly under a sequence of alternatives
θn := θ0 + δ/

√
n. For a careful analysis we would have to consider behavior

of θ∗n(x1, . . . , xn) under the product measure Pn,θn := Pnθn
on Xn. Ignoring

the limitations of the heuristic arguments, we already know a lot about the
behavior under the product measure Pn,θ0 := Pnθ0 . We could repeat the
arguments with θn taking over the role played by θ0, following closely the
steps used for the θ0 analysis, to derive the asymptotics under the alterna-
tive. There is, however, a more elegant approach, whereby the analysis is
concentrated into a study of the density dPθn/dPθ0 . The underlying magic is
called contiguity, a subtle (see the Notes in Section 5) invention of Le Cam
(1960).

As you will learn in the next few Chapters, contiguity lies at the root of a
number of well known asymptotic facts. Rather than following the tradition
of presenting one monolithic theorem collecting together all the interesting
equivalences and consequences, I will split the ideas into a sequence of small
lemmas, each focussing on one key idea.

The contiguity idea is not restricted to independent sampling. It makes
sense—and has interesting consequences—for any two sequences {Pn} and
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2 Contiguity

{Qn} of probability measures. For each n, both Pn and Qn should live on
the same space (Ωn,Fn), but there need be no constraint on how the spaces
change with n. For example, Pn and Qn might be the joint distributions
of random vectors with dimension kn, corresponding to parametric models
whose dimensions change with sample size.

As a convenient abreviation, I will write o(1; Pn) instead of “op(1) under
the sequence of models {Pn}”, with analogous interpretations for Op(1; Pn)
and other stochastic order symbols.

<1> Definition. A sequence {Qn} is said to be contiguous to {Pn} if every se-little.oh.contig
quence of random variables {Yn} of order op(1; Pn) is also of order op(1; Qn).
That is, if Pn{|Yn| > η} → 0 for each η > 0, then Qn{|Yn| > η} → 0 for
each η > 0. Write {Qn} C {Pn}, or just Qn C Pn, to denote contiguity.

Rewriting the limiting requirements of the definition as explicit δ, ε in-
equalities, we get a more cumbersome (but more versatile) characterization.

<2> Lemma. The contiguity Qn C Pn is equivalent to the assertion: for eachexplicit.contig
ε > 0 there exists an n0 and a δ > 0, both depending on ε, such that

sup{QnF : PnF < δ and n ≥ n0} ≤ ε,

with the supremum ranging over all n ≥ n0 and all sets F in Fn for which
PnF < δ.

Proof The δ, ε condition implies contiguity: if Pn{|Yn| > η} → 0 then
{|Yn| > η} is eventually one of the F sets over which the supremum is
taken.

If the δ, ε condition is violated then, for some ε > 0, there exists a
subsequence N1 and sets Fn in Fn for n ∈ N1 such that QnFn > ε and
PnFn → 0 along N1. Take Yn as the indicator of Fn for n ∈ N1, and put
Yn := 0 for other values of n, to define a sequence {Yn} that violates the
contiguity property.

�

Remark. Most authors use a sequential analog of Lemma <2> as the
definition of contiguity. That is, they define Qn C Pn to mean
that QnFn → 0 for each sequence {Fn} for which PnFn → 0.

<3> Example. Let Pn denote the N(αn, 1) distribution and Qn denote thenormal.ctgty
N(βn, 1) distribution, both on the real line. Under what conditions on the
sequences of constants {αn} and {βn} do we have Qn C Pn?
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If the sequence δn := βn − αn is not bounded then contiguity fails. For
example, suppose δn →∞ along some subsequence N1. Define Fn := [βn,∞)
if n ∈ N1 and Fn := ∅ otherwise. Then PnFn → 0 but QnFn = 1/2 along
the subsequence.

We will soon have elegant ways to show that Qn C Pn if δn is bounded
in absolute value by some finite constant C. For the moment, brute force
will suffice. Then

QnF = (2π)−1/2

∫
{x ∈ F} exp

(
−(x− βn)2/2

)
dx

= (2π)−1/2

∫
{x ∈ F} exp

(
δn(x− αn)− δ2n/2− (x− αn)2/2

)
dx

≤ Pxn ({x ∈ F} exp (C|x− αn|)) .

If we split the last integrand according to whether |x − αn| ≤ M or not,
for some constant M , then make the change of variable z = x − αn in the
second contribution, we get a bound for the expectation:

exp(CM)PnF + (2π)−1/2

∫
{|z| > M} exp

(
C|z| − z2/2

)
dz.

If M is large enough, the second contribution is smaller than ε/2. The first
contribution is also smaller than ε/2 if PnF < ε exp(−CM)/2.

�

The δ, ε formulation of contiguity broadens its applicability to cover se-
quences of events that are eventually small for Pn, not just those sequences
with Pn probabilities tending to zero. The fine difference is of the type that
distinguishes between op(·) and Op(·) assertions.

<4> Lemma. The contiguity Qn C Pn is equivalent to the assertion: every se-big.oh.contig
quence of random variables {Yn} of order Op(1; Pn) is also of order Op(1; Qn).

Proof Under contiguity, if M is chosen so that Pn{|Yn| > M} < δ eventu-
ally then Qn{|Yn| > M} ≤ ε eventually, by virtue of Lemma <2>.

For the converse, suppose Yn = op(1; Pn). Then (see Problem [3]) there
exists a sequence {δn} of positive numbers converging to zero for which
Pn{|Yn| > δn} → 0. The sequence {Yn/δn} is of order Op(1; Pn), and hence
also of order Op(1; Qn). That is, Yn = Op(δn; Qn) = op(1; Qn), as required
for contiguity.

�



4 Contiguity

Remark. A sequence of real random variables {Yn} of order Op(1; Pn) is
sometimes said to be stochastically bounded (under {Pn}), or uniformly
tight. Such a sequence must have a subsequence that converges in
distribution to a probability measure concentrated on R. For real-
valued random variables the proof is easy: a Cantor diagonalization
argument applied to the sequence of distribution functions evaluated
on a countable dense subset of R. The analog for more general spaces
is often called the Prohorov/Le Cam theorem (UGMTP §7.5).

The preceding Lemma shows that contiguity is a matter of inheritance
of a Op(1): to verify contiguity we could check the Op(1; Qn) property for
all Op(1; Pn) sequences. The next characterization simplifies the task by
allowing us to check the inheritance for just one particular case, the sequence
of likelihood ratios, which is automatically Op(1; Pn) but is Op(1; Qn) only
when contiguity holds.

It pays to be quite precise in the definition of a likelihood ratio, to avoid
later ambiguities concerning singular parts. Suppose both P and Q are
probability measures defined on the same space (Ω,F). There is a unique
decomposition of Q into a sum Qa + Qs, where Qa is absolutely continuous
with respect to P and Qs is singular with respect to P, that is, Qs concen-
trates on a set NP with zero P measure. At the slight risk of misleading you
into thinking that Q equals Qa, I will follow conventional usage by writing
dQ/dP for the density of Qa with respect to P. At least for nonnegative
measurable functions f ,

Qf = Qaf + Qsf = P
(
f
dQ
dP

Nc
P

)
+ Q (fNP)

Q.lr.P

Of course the Nc
P is irrelevant for the P contribution, but it sometimes helps

to be reminded indirectly that the density applies only to the contribution
from Qa.

If both P and Q are absolutely continuous with respect to a measure λ,
with densities p and q, then we can take

dQ
dP

:= (q/p){p 6= 0} and NP := {p = 0}.

In the Statistics literature, the density dQ/dP is usually called the likelihood
ratio and is often denoted by a letter like L or L. The definition of the
likelihood ratio on the set NP has no effect on the equality <1>. We could
even define it as +∞, taking L := (q/p){p 6= 0}+∞{p = 0}. This definition
would lead to some economy of notation. For example, with likelihood ratios
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{Ln} for sequences {Pn} and {Qn}, a statement like Ln = Op(1; Qn) would
imply both

dQn

dPn
= Op(1; Qn) and QnNPn → 0.

The set NPn = {Ln = ∞} would get absorbed into the set {Ln > M} for
each finite constant M .

Remark. After some experimentation on live audiences, I have decided
that the possibilities for confusion outweigh the notational disadvan-
tages of the more explicit treatment of singular parts of the {Qn}. I
will always regard the likelihood ratio as a real-valued random variable.

<5> Definition. For probability measures Q and P defined on the same space,lr.def
the likelihood ratio is defined as L := dQ/dP, the density of the absolutely
continuous part of Q with respect to P. The value of L on the singularity
set NP can be defined arbitrarily.

In what follows, Ln will always denote the likelihood ratio dQn/dPn, and
Nn will denote the singularity set NPn . Note that PnLn = QNc

n, so that the
sequence {Ln} is always Op(1; Pn).

<6> Lemma. Qn C Pn if and only if both Ln = Op(1; Qn) and Qn(Nn)→ 0.lr.contig

Proof From Lemma<4>, contiguity and the automatic Op(1; Pn) property
for Ln, deduce that Ln = Op(1; Qn). And QnNn → 0 because PnNn ≡ 0.

Conversely, for a fixed finite M , and an F in Fn,

QnF = Pn (LnFNc
n{Ln ≤M}) + Qn (FNc

n{Ln > M}) + Qn (FNn)
≤MPnF + Qn{Ln > M}+ QnNn.

If Ln = Op(1; Qn), we can find M to make Qn{Ln > M} < ε/2 eventually.
Then the choice δ = ε/(2M) leads to the characterization of contiguity in
Lemma <2>.

�

Remark. If I had adopted the convention that Ln = ∞ on Nn, the
proof would have been slightly shorter. The case where QnNn = 1,
with Ln ≡ 0, shows that the condition Ln = Op(1; Qn) by itself would
not suffice for contiguity.

<7> Example. For the Pn and Qn from Example <3>,normal.ctgty2

Ln = exp
(
δn(x− αn)− δ2n/2

)
where δn := βn − αn.

Under Qn the random variable x − αn has a N(δn, 1) distribution. If {δn}
is bounded then δn(x− αn), and hence Ln, is of order Op(1; Qn).

�



6 Contiguity

The automatic Op(1; Pn) property of {Ln} implies existence of subse-
quences that converge in distribution. Suppose L, on some probability
space (Ω,A,P), represents the limit distribution along some such subse-
quence {Ln : n ∈ N1}. Be careful: P need not be a limit of the Pn in any
sense; the probability P exists only to give L a distribution. The image of
Pn under Ln converges, along the subsequence, to the image of P under L,
that is, Ln(Pn) L(P).

For each finite constant M ,

P (L ∧M) = lim
n∈N1

Pn (Ln ∧M) ≤ lim inf
n∈N1

PnLn ≤ 1.

Let M increase to infinity to deduce that PL ≤ 1. Equality here will trans-
late into a Op(1; Qn) property of {Ln : n ∈ N1}. Equality for all such
subsequences will translate into contiguity.

<8> Lemma. The contiguity Qn C Pn is equivalent to the equality PL = 1cluster.contig
for every L that is a limit in distribution of a subsequence of the likelihood
ratios {Ln} under {Pn}.

Proof Problems [1] and [2] show (via subsequencing arguments) that there
is no loss of generality in considering only the case where Ln itself converges
in distribution to some random variable L on a probability space (Ω,A,P).

Fix a finite M with P{L = M} = 0. Fix ε > 0. From the definition
of Ln,

Qn{Ln ≤M} = PnLn{Ln ≤M}+ QnNn{Ln ≤M}L.le.M<9>

If Qn C Pn, then by Lemma <6> we can choose M so large that the
left-hand side of <9> is eventually greater that 1−ε and the second term on
the right-hand side is less than ε. In the limit, via the Continuous Mapping
Theorem (UGMTP §7.1) we get 1 ≥ PL ≥ PL{L ≤ M} ≥ 1 − 2ε, whence
PL = 1.

Conversely, if PL = 1 we may choose M so that PL{L ≤ M} ≥ 1 − ε,
which implies that PnLn{Ln ≤M} > 1−ε eventually. When this inequality
holds we have both Q{Ln ≤M} > 1− ε and QnNn < ε.

�

The last Lemma has an interesting interpretation, which lends support to
the idea that contiguity is a form of asymptotic absolute continuity. For sim-
plicity, suppose Ln converges in distribution under Pn to an L on (Ω,F,P).
Contiguity requires PL = 1, a condition that begs for interpretation of L as
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the density of another probability measure Q with respect to P. The limit
assertion then becomes

dQn

dPn
(under {Pn} ) 

dQ
dP

(under P),limit.abs.cty<10>

with Q a probability measure absolutely continuous with respect to P.
Contiguity is also closely related to convergence in Le Cam’s sense. In

fact, under regularity assumptions ensuring existence of conditional distri-
butions, Problem [6] shows that the convergence <10> implies existence of
Markov kernels Kn for which KnP = Pn and ‖KnQ−Qn‖1 → 0. In fact, it
can easily be shown (Le Cam and Yang 2000, Section 3.1) that contiguity
is equivalent to absolute continuity of Q with respect to P, for every (P,Q)
that is a limit of a subsequence of (Pn,Qn) in Le Cam’s sense.

<11> Example. Once again consider the Pn and Qn from Example <3>, withnormal.ctgty3
likelihood ratio Ln = exp

(
δn(x− αn)− δ2n/2

)
, where δn := βn − αn. The

difference x − αn has a N(0, 1) distribution, and thus logLn is distributed
as N(−δ2n/2, δ2n), under Pn. For Ln to converge in Pn-distribution we must
have δ2n → δ2 < ∞ (compare with Problem [4]). The limit distribution is
that of L := exp(δx − δ2/2) under the N(0, 1) distribution P on the real
line. By direct calculation, PL = 1. (Compare with the moment generating
function of the normal distribution.) The corresponding Q is the N(δ, 1)
distribution.

�

The form of the limit distribution in the previous Example is not coin-
cidental.

<12> Example. In many classical situations, logLn has a limiting normal distri-normal.contig
bution, or, more precisely, Ln  exp(X), with X defined on some (Ω,A,P),
with distribution N(µ, σ2). For contiguity we must have 1 = P exp(X) =
exp(µ+ 1

2σ
2). That is, µ = −1

2σ
2 is equivalent to contiguity in this setting.

�

7.2 Contiguity for product measures

For the study of asymptotic behavior under sequences of alternatives, weSect.product.space
often need to consider sequences of probability measures Qn := Pnθn

and
Pn := Pnθ0 , where θn is a sequence converging to θ0 at a 1/

√
n rate. For

simplicity suppose θ is a real parameter, and Pθ has a smooth density fθ
with respect to a dominating measure λ.
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Classical approximation arguments can be used to establish contiguity,
Qn C Pn, when the density is twice continuously differentiable. The argu-
ments become a little subtle when the densities do not all have the same
support. The difficulties are avoided when {fθ > 0} does not change with θ.
For this case, by restricting λ to the common support set, we may even
suppose fθ(x) > 0 for all θ and x, which ensures that there are no log 0
problems when defining `θ(x) := log fθ(x).

<13> Theorem. Suppose the density fθ is everywhere strictly positive, and thatctgy.product1
`θ(x) is twice differentiable in some neighborhood U of θ0, with

(i) J0 := Pθ0
˙̀2
θ0
<∞

(ii) θ 7→ ῭
θ(x) is continuous at θ0

(iii) there exists a P0-integrable function M(x) for which supθ∈U |῭θ(x)| ≤
M(x) .

Then P xθ0
˙̀(x) = 0, and

Zn :=
∑

i≤n
˙̀
θ0(xi)/

√
n N(0, J0) under Pn.

If θn = θ0 + δn/
√
n, with {δn} bounded, then

log
dQn

dPn
= δnZn − 1

2δ
2
nJ1 + op(1; Pn),

where J1 := −P xθ0 ῭
θ0(x). If J1 = J0 then Qn C Pn.

Proof For simplicity of notation, suppose θ0 = 0. We may also suppose
that θn ∈ U . By Taylor’s theorem,

`θ(x) = `0(x) + θ ˙̀
0(x) + 1

2θ
2 ῭

0(x) + 1
2θ

2r(x, θ),Taylor<14>

where, for some t (depending on x and θ) with |t| ≤ |θ|,

2M(x) ≥ |῭t(x)− ῭
0(x)| = |r(x, θ)| → 0 as θ → 0.

By Dominated Convergence, P0|r(x, θ)| → 0 as θ → 0, and hence

n−1∑
i≤nrθ(xi) = op(1 : Pn) as θ → 0.small.rem<15>

Also, by integrating both sides of <14> we get

−D(P0‖Pθ) = P x0
(
`θ(x)− `0(x)

)
= −θP x0 ˙̀

0(x)− 1
2θ

2P x0
῭
0(x) + o(θ2).

For D(P0‖Pθ) to achieves its minimum of zero at θ = 0 we must have the
coefficient P x0 ˙̀

0(x) of the linear term equal to zero.
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Remark. The argument about the linear term at the minimum tacitly
assumes that 0 is an interior point of the parameter set.

The logarithm of the likelihhod ratio Ln := dQn/dPn equals∑
i≤n

(
`θn(xi)− `0(xi)

)
= θn

∑
i≤n

˙̀
0(xi) + 1

2θ
2
n

∑
i≤n

(
῭
0(xi) + r(xi, θn)

)
= δnZn + 1

2δ
2
n

(
n−1∑

i≤n
῭
0(xi) + n−1∑

i≤nr(xi, θn)
)
.

The Law of Large Numbers and <19> let us replace the coefficient of δ2n by
P xθ0

῭
θ0(x) + op(1; Pn).

For contiguity, according to Lemma<8> we need to prove that if Ln  L
along a subsequence then PL = 1. By a further subsequencing we may also
assume that δn → δ, a finite limit. Along the sub-subsequence we then have

logLn  δN(0, J0)− 1
2δ

2J1.

Example 12 then shows why J1 = J0 is equivalent to contiguity.
�

The equality J1 = P xθ0
῭
θ0(x) = −varθ0

(
˙̀
θ0(x)

)
= J0 is the classical dual

representation for the information function Iθ0 at θ0. As Le Cam and Yang
(2000, page 41) commented,

The equality . . . is the classical one. One finds it for instance in the standard
treatment of maximum likelihood estimation under Cramér’s conditions. There it
is derived from conditions of differentiability under the integral sign. The classical

equality is nothing more than contiguity in disguise.
The statement of the Theorem left unresolved the conditions on the

densities under which we must have −P xθ0 ῭
θ0(x) = Iθ0 . The usual ar-

gument starts from the identity λx
(
fθ ˙̀

θ(x)
)

= 0, then justifies differ-
entiation under the integral by a domination condition, to deduce that
λ
(
ḟθ(x) ˙̀

θ(x) + fθ(x)῭
θ(x)

)
= 0. Many authors just assume, even more

directly, that differentiation under the integral is justified, without impos-
ing explicit conditions. There are more elegant, indirect, ways to derive the
identity. The next Theorem will provide an example.

The analysis becomes more complicated if the sets {fθ > 0} are not all
the same. We then need to impose a condition regarding the mass of the
part of Pθ that is singular with respect to Pθ0 .

For simplicity of notation, again suppose θ0 = 0. Write N0 for the set
{x : f0(x) = 0}, and α(θ) for PθN0, the total mass of the part of Pθ that
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is not absolutely continuous with respect to P0. The Fn-measurable set
Fn :=

⋃
i≤n{xi ∈ N0} has zero Pn0 probability, but

Pnθ F
c
0 =

∏
i≤n

PθN
c
0 =

(
1− α(θ)

)n
.

If α(θ) were not of order o(θ2) we could find a sequence {θn} of order
O(n−1/2) and an ε > 0 for which α(θn) ≥ ε/n infinitely often. We would
then have a sequence for which lim infn Pnθn

Fn ≥ 1− e−ε > 0 but Pn0 Fn ≡ 0,
ruling out contiguity. Thus a necessary condition for contiguity, Pnθn

C Pn0
whenever θn = O(n−1/2) is

Pθ{x : f0(x) = 0} = o(θ2) as θ → 0.ctg.nec<16>

Assumption <16> takes care of one difficulty in the the case when the
sets {fθ > 0} are not the same as {f0 > 0}. Another, more subtle, problem
arises with the defintion of log fθ. If f0(x) > 0 then, by continuity, we know
that fθ(x) > 0 for |θ| ≤ δ(x). There might be no fixed δ, not depending
on x, for which fθ(x) > 0 when |θ| ≤ δ. We might have P0 log fθ(x) = −∞
for all θ 6= 0, which would cast doubt on some of the calculations used to
prove Theorem <13>. For example, how could assumption (iii) hold? The
function `θ(x) := log fθ(θ) might only be defined on an interval of θ values
that depend on x. It still makes sense to work with the pointwise derivative
˙̀
0(x), but we might encounter the value −∞ with positive P0 probability

when studying `θ(x) for a fixed θ 6= 0. It appears that we have to impose
the regularity conditions directly on fθ(x), and not on log fθ(x).

<17> Theorem. Suppose the map θ 7→ fθ is twice differentiable in a neighbor-ctgy.product2
hood U of 0 with:

(i) θ 7→ f̈θ(x) is continuous at 0;

(ii) there exists a measurable function M(x) with P x0 (M(x)/f0(x)) < ∞
for which supθ∈U |f̈θ(x)| ≤M(x);

(iii) P x0

(
ḟθ(x)/f0(x)

)2
→ P x0

(
ḟ0(x)/f0(x)

)2
<∞ as θ → 0;

(iv) Pθ{f0 = 0} = o(θ2) as θ → 0.

Then P0
˙̀
0(x) = 0 = P0

(
f̈(x)/f0(x)

)
.

Define Pn := Pn0 and Qn := Pnθn
. If θn := θ0+δn/

√
n, with {δn} bounded,

then
dQn

dPn
= (1 + op(1; Pn)) exp

(
δnZn − 1

2δ
2
nI0
)
,
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where I0 := var0( ˙̀
0) and Zn :=

∑
i≤n

˙̀
0(xi)/

√
n N(0, I0) under Pn. Con-

sequently, Qn C Pn.

Proof There are several useful ways to write the Taylor expansion of fθ
around 0. When θ ∈ U ,

fθ(x) = f0(x) + θḟ0(x) + 1
2θ

2f̈0(x) + 1
2θ

2r(x, θ),Taylor1<18>

where, for some t (depending on x and θ) with |t| ≤ |θ|,

2M(x) ≥ |f̈t(x)− f̈0(x)| = |r(x, θ)| → 0 as θ → 0.

Dominated Convergence and (ii) then gives

P0|r(x, θ)/f0(x))| → 0 as θ → 0.small.rem<19>

From <18> we also have

{f0(x) > 0}fθ(x)− f0(x)− θḟ0(x)
θ2f0(x)

→ f̈0(x)
f0(x)

{f0(x) > 0} as θ → 0.

Moreover, the ratio is bounded in absolute value by the P0-integrable func-
tion {f0(x) > 0}M(x)/f0(x). By Dominated Convergence for P0, followed
by a cancellation of the f0(x) factor in the first term, we have

θ−2
(
Pθ{f0 > 0} − P01− θP0

˙̀
0

)
→ P x0

(
f̈0/f0

)
.

Assumption (iv) simplifies the assertion to o(1) − θ−1P0
˙̀
0 → P x0

(
f̈0/f0

)
,

from which it follows that P0
˙̀
0 = 0 (because P x0 |f̈0/f0| ≤ P0 (M/f0) <∞),

and hence P x0
(
f̈0(x)/f0(x)

)
= 0.

It will also be helpful to have the Taylor expansion with the remainder
written in the Lagrange style,

fθ(x) = f0(x) + θ
∫ 1
0 ḟθt(x) dt,Taylor2<20>

a form that will be useful because it does not involve the second derivative.
The likehood ratio Ln := dQn/dPn can be written as∏
i ≤ nfθn(xi)

f0(xi)
=
∏

i ≤ n (1 + εn,i) where εn,i := {f0(xi) > 0}fθn(xi)− f0(xi)
f0(xi)

.

The indicator functions are not really need if we consider only behavior
under Pn, but they will prevent inadvertent appeals to 0/0? →= 1. Until



12 Contiguity

further notice, all calculuations are carried out under Pn, so I will temporar-
ily dispense with the indicators, and write op(·) instead of op(· ; Pn).

By <18>,

εn,i = θn ˙̀
0(xi) + 1

2θ
2
n

(
f̈0(xi) + r(xi, θn)

)
/f0(xi),eps.rep<21>

whence

|εn,i| ≤ |θn ˙̀
0(xi)|+ 1

2θ
2
nZi where Yi :=

(
|f̈0(xi)|+ 2M(xi)

)
/f0(xi).

Under Pn, the random variables ˙̀
0(xi) are identically distributed, with finite

second moments, and the random variables Yi are identically distributed,
with finite first moments. Problem [7] shows that

maxi≤n | ˙̀0(xi)| = op(n−1/2) and maxi≤n |Yi| = op(n−1).

from which it follows that

maxi≤n |εn,i| = op(1) when θn = δn/
√
n = O(n−1/2).max.eps<22>

Expansion <21> also gives∑
i≤nεn,i = δnZn + 1

2δ
2
n

(
n−1∑

i≤nf̈(xi)/f0(xi) + n−1∑
i≤nr(xi, θn)/f0(xi)

)
max.eps<23>

= δnZn + op(1),max.eps<24>

with the Law of Large Numbers and the fact that P0

(
f̈(x)/f0(x)

)
= 0

disposing of the first average in parentheses, and <19> disposing of the
second.

Assumption (iii) will lead to a neat asymptotic form for the sum of
squares of the ε’s. Define Wθ := {f0 > 0}ḟθ/f0. By Fatou’s Lemma (along
a sequence of θ values, if you prefer),find the source of the Fatou trick;

Blyth? I&H?

4P0W
2
0 − lim supθ→0 P0|Wθ −W0|2

= lim infθ→0 P0

(
2W 2

θ + 2W 2
0 − |Wθ −W0|2

)
≥ P0 lim infθ→0

(
2W 2

θ + 2W 2
0 − |Wθ −W0|2

)
= 4P0W

2
0 .

That is,

γ(θ)2 := P0|Wθ −W0|2 → 0 as θ → 0, where Wθ := {f0 > 0}ḟθ/f0.L2P0.cgce<25>
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From <20>, we also have the representation εn,i = θn
∫ 1
0 Wθnt(xi) dt. Hence

Pn|ε2n,i − θ2
nW0(xi)2| = θ2

nP
x
0

∣∣∣∫ 1
0

∫ 1
0 Wθt(x)Wθs(x)−W0(x)2 ds dt

∣∣∣
≤ θ2

n

∫ 1
0

∫ 1
0

(
Cγ(θnt) + Cγ(θnt) + γ(θnt)γ(θns)

)
ds dt,

where C2 := P0W
2
0 = I0. It follows that∑

i≤nPn|ε2n,i − θ2
nW0(xi)2| → 0,

implying ∑
i≤nε

2
n,i = δ2nn

−1∑
i≤nW0(xi)2 + op(1) = δ2nI0 + op(1).sum.eps2<26>

The results <22>, <24>, and <26> lead rapidly to the desired approx-
imation for Ln, via the inequality

| log(1 + t)− t+ 1
2 t

2| ≤ |t|3 for |t| ≤ 1/2..

When maxi≤n |εn,i| ≤ 1/2 we have

| log(Ln)−
∑
i≤n

εn,i + 1
2

∑
i≤n

ε2n,i| ≤
∑
i≤n
|εn,i|3 ≤ max

i≤n
|εn,i|

∑
i≤n

ε2n,i = op(1),

that is,

Ln{max
i≤n
|εn,i| ≤ 1/2} = {max

i≤n
|εn,i| ≤ 1/2} exp

(
δnZn − 1

2δ
2
nI0 + op(1)

)
.

The 1 + op(1) factor in the statement of the Theorem absorbs the op(1) in
the exponent, as well as allowing for arbitrarily bad behavior of Ln when
maxi≤n |εn,i| > 1/2.

Example <12> gives contiguity.
�

7.3 Limit distributions under contiguous alternatives

Contiguity was introduced in Section 1 as a way to transfer either op(·) orSect.ctgs.limit
Op(·) assertions from {Pn} to {Qn}. It can also be used to transfer assertions
of convergence in distribution for sequences of random vectors {Yn}, if we
control the joint behaviour of Yn and the likelihood ratio. The idea behind
the proof is straightforward if we ignore complications such as unbounded
likelihoods: for bounded, uniformly continuous g,

Qng(Yn)?→= PnLng(Yn) ?−→PLg(Y ).
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In a rigorous proof, contiguity controls the contributions from regions of
large Ln, and from the singularity region Nn, and then convergence in dis-
tribution of (Ln, Yn) takes care of the convergence assertion. The limit ex-
pression becomes Qg(Y ), where Q is the probability measure defined to have
density L with respect to P. That is, the limit distribution of Yn under Qn

is given by Y , as a random vector on (Ω,A,Q).
We will need the result only for random vectors Yn, but the proof actually

works for random elements more general spaces.

<27> Lemma. Suppose (Yn, Ln) converges in distribution under {Pn} to a limitcid.contig
represented by a pair (Y,L) on a probability space (Ω,A,P), with PL = 1.
Then {Yn} converges in distribution under {Qn} to the limit represented
by Y as a random element on the probability space (Ω,A,Q), where Q has
density L with respect to P. That is, Qng(Yn)→ Qg(Y ) := PLg(Y ), at least
for bounded, continuous g.

Proof The condition PL = 1 ensures that Qn C Pn. Fix ε > 0 and let g be
a bounded, continuous function. For convenience suppose 0 ≤ g ≤ 1. Invoke
contiguity to find a finite M such that P{L = M} = 0 and Q{L > M} < ε
and Qn{Ln > M} < ε eventually. Then from the definition of Ln,

|Qng(Yn)−PnLng(Yn){Ln ≤M}| ≤ Qn{Ln > M}+QNn < 2ε eventually.

By the Continuous Mapping Theorem,

PnLng(Yn){Ln ≤M} → PLg(Y ){L ≤M},

which differs from PLg(Y ) = Qg(Y ) by at most ε.
�

Remark. By the same argument (or just by substitution of (Yn, Ln)
for Yn in the conclusion of the Lemma), the pair (Y,L) under Q also
represents the limit distribution for the pairs (Yn, Ln) under {Qn}.

Convergence in distribution of (Yn, Ln) is equivalent to convergence in
distribution of (Yn, logLn). When the joint limit is normal, the assertion of
the preceding Lemma takes a particularly simple form. The result is known
as Le Cam’s Third Lemma.

<28> Example. Suppose (Yn, Ln) (Y, eZ) under {Pn}, where the pair (Y, Z),LeCam3
defined on (Ω,A,P), has a joint normal distribution. To ensure contiguity,
the marginal Z distribution must be N(−1/2σ2, σ2) for some σ2 > 0. Let the
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marginal Y distribution be N(µ, V ), and let γ denote the vector of covari-
ances between Y and Z. Under P the pair (Y,Z) has moment generating
function

M(s, t) := P exp(s′Y + tZ) = exp
(
s′µ+ 1

2s
′V s+ s′γt− 1

2σ
2t+ 1

2σ
2t2
)
.

The limiting distribution under {Qn} has moment generating function

Q exp(s′Y + tZ) = P exp(Z) exp(s′Y + tZ)
= M(s, t+ 1)

= exp
(
s′(µ+ γ) + 1

2s
′V s+ s′γt+ 1

2σ
2t+ 1

2σ
2t2
)
.

That is, the variances and covariances stay the same, but the mean of Y is
shifted to µ+ γ.

�

<29> Example. In Chapter 1, a heuristic argument gave the asymptotic be-Mest.ctg.alternatives
havior of the estimator θ̂n defined to minimize

∑
i≤ng(xi, θ). Assuming

θ = argmin
t

Pθg(x, t) for each θ, I argued that θ̂n should converge in Pnθ

probability to θ, and also

√
n
(
θ̂n − θ

)
= n−1/2mθ(xi) + op(1),

where mθ(x) = −ġ(x, θ)/Jg(θ), with Jg(θ) := Pθg̈(x, θ), and the op(1) is an
abbreviation for op(1;Pnθ ).

For a fixed θ and δ, let θn := θ + δ/
√
n, and Pn := Pnθ , and Qn := Pnθn

.
Assume that the conditions of Theorem <17> are satisfies, so that

Ln = (1 + op(1; Pn)) exp(δZn − 1
2δ

2Iθ),

with
Zn = n−1/2∑

i≤n
˙̀
θ(xi) N(0, Iθ) under Pn.

Write Yn for
√
n
(
θ̂n − θ

)
. Under Pn, the pair (Yn, Zn) is approximated

by a standardized sum of random vectors,

(Yn, Zn) = op(1) + n−1/2∑
i≤n

(
m(xi), ˙̀

θ(xi)
)
,

which has a limiting bivariate normal distribution (Y,Z) with Z distributed
N(−δ2Iθ/2, δ2Iθ), and Y distributed N(0, vθ) for vθ := Pθġ(x, θ)2/Jg(θ)2,

and cov(Y,Z) = γθ := −δPθ
(
ġ(x, θ) ˙̀

θ(x)
)
/Jg(θ).
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Under Qn the Yn has a N(γθ, vθ) limit distribution, by Example <28>.
Thus √

n
(
θ̂n − θn

)
= Yn − δ  N(γθ − δ, vθ) under Qn.

The limit distribution for
√
n
(
θ̂n − θn

)
is the same under Qn as under Pn

if γθ = δ, that is, if Jg(θ) = −Pθ
(
ġ(x, θ) ˙̀

θ(x)
)

. This equality is precisely
the condition derived in Chapter 1 from the assumption that Pθg(x, t) is
minimized at t = θ.

Thus, insofar as the heuristics can be believed, we have the limiting
distribution of

√
n
(
θ̂n − θn

)
under Pnθn

the same as the limiting distribution
of
√
n
(
θ̂n − θ

)
under Pnθ . Estimators with this property are usually said

to be Hájek regular, a property that we will later meet as one of the
assumptions for the Hájek-Le Cam Convolution Theorem.

�

7.4 Problems

Sect.Problems

[1] Suppose {Pn} and {Qn} are sequences of probability measures with the
following property: for each subsequence N1 ⊆ N there exists a subsubse-
quence N2 ⊆ N1 for which {Qn : n ∈ N2} C {Pn : n ∈ N2}. Show that
{Qn : n ∈ N} C {Pn : n ∈ N}. Hint: If contiguity fails, there is subsequence
for which there are sets with PnFn → 0 but QnFn > ε, for some ε > 0.

[2] Suppose {Xn} is a sequence of random variables with the following property:
for each subsequence N1 ⊆ N there exists a subsubsequence N2 ⊆ N1 for
which {Xn : n ∈ N2} = Op(1). Show that {Xn : n ∈ N} = Op(1).

[3] If {Xn} = op(1), show that there exists a sequence {εn} that converges to
zero slowly enough to ensure P{|Xn| > εn} → 0. Hint: Build εn using an
increasing sequence n(k) such that P{|Xn| > 1/k} < 1/k for n ≥ n(k).

[4] Suppose Zn  N(0, Ik) and that αnZn + βn has a nondegenerate limit
distribution, for a pair of deterministic sequences {αn} and {βn}. Show
that both |αn| and βn must converge to finite limits.

[5] Let Pn denote the N(αn, 1) distribution and Qn denote the N(βn, 1) distri-
bution, both on the real line. Under what conditions on the sequences of
constants {αn} and {βn} do we have {Qn} C {Pn}?
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[6] Suppose Pn and Qn are probability measures on (Ωn,Fn), for n ∈ N :=
N ∪ {∞}, with Qn � Pn. Write Ln for the corresponding densities. Define
Fn(x) := Pn{Ln ≤ x}, and write F−1

n for the corresponding quantile func-
tion. Suppose the conditional distributions τn,t(·) := Pn (· | Ln = t) exists,
as Markov kernels from R to Ωn. For each n ∈ N define a Markov kernel
Kn,ω from Ω∞ to Ωn, as follows.

Given ω∞ ∈ Ω∞, define T∞ := L∞(ω∞); then generate U ∈ (0, 1)
with U | T∞ = t ∼ Unif[F∞(t−), F∞(t)]; then define Tn = F−1

n (U);
then generate ωn | Tn = t ∼ τn,t.

(i) Show that KnP∞ = Pn. That is, the probability measure Mn := P∞ ⊗Kn

on Ω∞ × Ωn has marginals P∞ and Pn.
(ii) For each measurable function with |f | ≤ 1 on Ωn, show that

|KnQ∞f −Qnf | = |Pω∞
(
L∞(ω)Kx

n,ωf(x)
)
− Pxn

(
Ln(x)f(x)

)
|

≤Mω,x|L∞(ω)− Ln(x)|

=
∫ 1

0
|F−1
∞ (u)− F−1

n (u)| du.

(iii) Deduce that ifLn(Pn) L∞(P∞) then ‖KnQ∞ −Qn‖1 → 0.
(iv) Extend the result (iii) to the case where Qn C Pn, for n ∈ N, with Q∞ � P∞.

[7] Let Z1, Z2, . . . be a sequence of independent, identically distributed random
variables with P|Zi|r < ∞ for a constant r ≥ 1. Prove that maxi≤n |Zi| =
op(n1/r). Hint: Show that P{maxi≤n |Zi| > εn1/r} is smaller than ε−rP|Z1|r{|Z1| >
εn1/r}, then invoke Dominated Convergence.

7.5 Notes

Le Cam (1960) defined contiguity and derived its most important properties,Sect.Notes
in a few pages. The name “Le Cam’s Third Lemma” seems due to Hájek and
Šidák (1967, Chapter VI). It was the third of the lemmas in their chapter
describing contiguity. The numbering now should have little significance.

Lucien Le Cam himself felt that describing contiguity as a subtle in-
vention was an exaggeration. In a private letter to me he wrote “Really,
contiguity is a very trivial affair. I just gave it a name that pleased people.”
Maybe the only subtlety lies in the recognition that something so trivial
is worth noticing. To my chagrin, I ignored the concept for many years,
because it seemed hardly worth bothering about. Moreover, I have found
that I was not alone in my oversight. Maybe subtlety lies in the eye of the
beholder.
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