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Another Look at
Differentiability
in Quadratic Mean
David Pollard1

ABSTRACT This note revisits the delightfully subtle interconnections be-
tween three ideas: differentiability, in an L2 sense, of the square-root of a
probability density; local asymptotic normality; and contiguity.

19.1 A mystery

The traditional regularity conditions for maximum likelihood theory involve
existence of two or three derivatives of the density functions, together with domi-
nation assumptions to justify differentiation under integral signs. Le Cam (1970)
noted that such conditions are unnecessarily stringent. He commented:

Even if one is not interested in the maximum economy of assumptions
one cannot escape practical statistical problems in which apparently
“slight” violations of the assumptions occur. For instance the derivatives
fail to exist at one point x which may depend on θ , or the distributions
may not be mutually absolutely continuous or a variety of other
difficulties may occur. The existing literature is rather unclear about
what may happen in these circumstances. Note also that since the
conditions are imposed upon probability densities they may be satisfied
for one choice of such densities but not for certain other choices.

Probably Le Cam had in mind examples such as the double exponential
density, 1/2 exp(−|x − θ |), for which differentiability fails at the pointθ = x.
He showed that the traditional conditions can be replaced by a simpler
assumption of differentiability in quadratic mean (DQM): differentiability in
norm of the square root of the density as an element of anL2 space. Much
asymptotic theory can be made to work under DQM. In particular, as Le Cam
showed, it implies a quadratic approximation property for the log-likelihoods
known as local asymptotic normality (LAN).

Le Cam’s idea is simple but subtle. When I first encountered the LAN
property I wrongly dismissed it as nothing more than a Taylor expansion to
quadratic terms of the log-likelihood. Le Cam’s DQM result showed otherwise:
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one appears to get the benefit of the quadratic expansion without paying the
twice-differentiability price usually demanded by such a Taylor expansion.
How can that happen?

My initial puzzlement was not completely allayed by a study of several
careful accounts of LAN, such as those of Le Cam (1970; 1986, Section 17.3),
Ibragimov & Has’minskii (1981, page 114), Millar (1983, page 105), Le Cam
& Yang (1990, page 101), or Strasser (1985, Chapter 12). None of the proofs
left me with the feeling that I really understood why second derivatives are not
needed. (No criticism of those authors intended, of course.)

Eventually it dawned on me that I had overlooked a vital ingredient in the
proofs: the square root of a density is not just an element of anL2 space:it
is an element with norm1. By rearranging some of the standard arguments I
hope to convince the gentle reader of this note that the fixed norm is the real
reason for why an assumption of one-times differentiability (in quadratic mean)
can convey the benefits usually associated with two-times differentiability. I
claim that the Lemma in the next Section is the key to understanding the role
of DQM.

19.2 A lemma

The concept of differentiability makes sense for maps into an arbitrary normed
space(L, ‖ · ‖). For the purposes of my exposition, it suffices to consider the
case where the norm is generated by an inner product,〈·, ·〉. In fact, L will be
L2(λ), the space of functions square-integrable with respect to some measureλ,
but that simplification will play no role for the moment.

A map ξ from Rk into L is said to be differentiable at a pointθ0 with
derivative	, if ξ(θ) = ξ(θ0) + 	(θ − θ0) + r (θ) nearθ0, where‖r (θ)‖ =
o(|θ − θ0|) as θ tends toθ0. The derivative	 is linear; it may be identified
with a k-vector of elements fromL.

For a differentiable map, the Cauchy-Schwarz inequality implies that
〈ξ(θ0), r (θ)〉 = o(|θ − θ0|). It would usually be a blunder to assume naively
that the bound must therefore be of orderO(|θ − θ0|2); typically, higher-order
differentiability assumptions are needed to derive approximations with smaller
errors. However, if‖ξ(θ)‖ is constant—that is, if the function is constrained to
take values lying on the surface of a sphere—then the naive assumption turns
out to be no blunder. Indeed, in that case,〈ξ(θ0), r (θ)〉 can be written as a
quadratic inθ − θ0 plus an error of ordero(|θ − θ0|2). The sequential form of
the assertion is more convenient for my purposes.

(1) Lemma Let {δn} be a sequence of constants tending to zero. Letξ0, ξ1,
. . . be elements of norm one for whichξn = ξ0+δnW+rn, with W a Æxed element
of L and‖rn‖ = o(δn). Then〈ξ0, W〉 = 0 and〈ξ0, rn〉 = − 1

2δ2
n‖W‖2 + o(δ2

n).
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Proof. Because bothξn andξ0 have unit length,

0 = ‖ξn‖2 − ‖ξ0‖2 = 2δn〈ξ0, W〉 order O(δn)

+ 2〈ξ0, rn〉 ordero(δn)

+ δ2
n‖W‖2 order O(δ2

n)

+ 2δn〈W, rn〉 + ‖rn‖2 ordero(δ2
n).

On the right-hand side I have indicated the order at which the various
contributions tend to zero. (The Cauchy-Schwarz inequality delivers theo(δn)

and o(δ2
n) terms.) The exact zero on the left-hand side leaves the leading

2δn〈ξ0, W〉 unhappily exposed as the onlyO(δn) term. It must be of smaller
order, which can happen only if〈ξ0, W〉 = 0, leaving

0 = 2〈ξ0, rn〉 + δ2
n‖W‖2 + o(δ2

n),

as asserted.�
Without the fixed length property, the inner product〈ξ0, rn〉, which inherits

o(δn) behaviour from‖rn‖, might not decrease at the O(δ2
n) rate.

19.3 A theorem

Let {Pθ : θ ∈ �} be a family of probability measures on a space(X, A),
indexed by a subset� of Rk. SupposePθ has densityf (x, θ) with respect to
a sigma-finite measureλ.

Under the classical regularity conditions—twice continuous differentiability
of log f (x, θ) with respect toθ , with a dominated second derivative—the
likelihood ratio ∏

i ≤n

f (xi , θ)

f (xi , θ0)

enjoys the LAN property. WriteLn(t) for the likelihood ratio evaluated at
θ equal toθ0 + t/

√
n. The property asserts that, if the{xi } are sampled

independently fromPθ0, then

(2) Ln(t) = exp
(
t ′Sn − 1

2t ′t + op(1)
)

for eacht,

where is a fixed matrix (depending onθ0) and Sn has a centered asymptotic
normal distribution with variance matrix.

Formally, the LAN approximation results from the usual pointwise Taylor
expansion of the log densityg(x, θ) = log f (x, θ), following a style of
argument familiar to most graduate students. For example, in one dimension,

log Ln(θ0 + t/
√

n) =
∑
i ≤n

(
g(xi , θ0 + t/

√
n) − g(xi , θ0)

)

= t√
n

∑
i ≤n

g′(xi , θ0) + t2

2n

∑
i ≤n

g′′(xi , θ0) + . . . ,
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which suggests thatSn be the standardized score function,

1√
n

∑
i ≤n

g′(xi , θ0)� N
(
0, varθ0g

′(x, θ0)
)
,

and should be the information function,

−Pθ0g
′′(x, θ0) = varθ0g

′(x, θ0).

The dual representation for allows one to eliminate all mention of second
derivatives from the statement of the LAN approximation, which hints that two
derivatives might not really be needed, as Le Cam (1970) showed.

In general, the family of densities is said to be differentiable in quadratic
mean atθ0 if the square rootξ(x, θ) = √

f (x, θ) is differentiable in theL2(λ)

sense: for some k-vector	(x) of functions inL2(λ),

(3) ξ(x, θ) = ξ(x, θ0) + (θ − θ0)
′	(x) + r (x, θ),

where
λ|r (x, θ)|2 = o(|θ − θ0|2) asθ → θ0.

Let us abbreviateξ(x, θ0) to ξ0(x) and	(x)/ξ0(x) to D(x). From (3) one
almost gets the LAN property.

(4) Theorem Assume the DQM property (3). For each Æxed t the likelihood
ratio has the approximation, under{Pn,θ0},

Ln(t) = exp
(
t ′Sn − 1

2t ′t + op(1)
)
,

where

Sn = 2√
n

∑
i ≤n

D(xi )� N(0, I0) and  = 1
2I0 + 1

2I,

with I0 = 4λ(		′{ξ0 > 0}) andI = 4λ(		′).
Notice the slight difference between and the limiting variance matrix

for Sn. At least formally, 2D(x) equals the derivative of logf (x, θ): ignoring
problems related to division by zero and distinctions between pointwise
andL2(λ) differentiability, we have

2D(x) = 2√
f (x, θ0)

∂

∂θ

√
f (x, θ0) = ∂

∂θ
log f (x, θ0).

Also,  again corresponds to the information matrix, expressed in its variance
form, except for the intrusion of the indicator function{ξ0 > 0}. The extra
indicator is necessary if we wish to be careful about 0/0. Its presence is related
to the property called contiguity—another of Le Cam’s great ideas—as is
explained in Section 5.
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At first sight the derivation of Theorem 4 from assumption (3) again appears
to be a simple matter of a Taylor expansion to quadratic terms of the log
likelihood ratio. Writing Rn(x) = r (x, θ0 + t/

√
n)/ξ0(x), we have

log Ln(t) =
∑
i ≤n

2 log
ξ(xi , θ0 + t/

√
n)

ξ(xi , θ0)

=
∑
i ≤n

2 log

(
1 + t ′

√
n

D(xi ) + Rn(xi )

)
.

From the Taylor expansion of log(·) about 1, the sum of logarithms can be
written as a formal series,

2
∑
i ≤n

(
t√
n

D(xi ) + Rn(xi )

)
−

∑
i ≤n

(
t ′

√
n

D(xi ) + Rn(xi )

)2

+ . . .

= 2t ′
√

n

∑
i ≤n

D(xi ) + 2
∑
i ≤n

Rn(xi ) − 1

n

∑
i ≤n

(
t ′D(xi )

)2 + . . .(5)

The first sum on the right-hand side gives thet ′Sn in Theorem 4. The law
of large numbers gives convergence of the third term tot ′ Pθ0 DD′t . Mere
one-times differentiability might not seem enough to dispose of the second sum.
Each summand has standard deviation of order o(1/

√
n), by DQM. A sum ofn

such terms could crudely be bounded via a triangle inequality, leaving a quantity
of order o(

√
n), which clearly would not suffice. In fact the sum of theRn(xi )

does not go away in the limit; as a consequence of Lemma 1, it contributes a
fixed quadratic int . That contribution is the surprise behind DQM.

19.4 A proof

Let me write Pn to denote calculations under the assumption that the
observationsx1, . . . , xn are sampled independently fromPθ0. The ratio
f (xi , θ0 + t/

√
n)/ f (xi , θ0) is not well defined whenf (xi , θ0) = 0, but

underPn the problem can be neglected because

Pn{ f (xi , θ0) = 0 for at least onei } = 0.

For other probability measures that are not absolutely continuous with respect
to Pn, one should be more careful. It pays to be quite explicit about behaviour
when f (xi , θ0) = 0 for somei , by including an explicit indicator function
{ξ0 > 0} as a factor in any expressions with aξ0 in the denominator.

Define Di to be the random vector	(xi ){ξ0(xi ) > 0}/ξ0(xi ), and, for a
fixed t , define

Ri,n = r (ξi , θ0 + t/
√

n){ξ0(xi ) > 0}/ξ0(xi ).

Then
ξ(xi , θ0 + t/

√
n)

ξ0(xi )
{ξ0(i ) > 0} = 1 + t ′Di + Ri,n.
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The random vectorDi has expected valueλ(ξ0	), which, by Lemma 1, is
zero, even without the traditional regularity assumptions that justify differenti-
ation under an integral sign. It has variance1

4I0. It follows by a central limit
theorem that

Sn = 2√
n

∑
i ≤n

Di � N(0, I0).

Also, by a (weak) law of large numbers,

(6)
1

n

∑
i ≤n

Di D
′
i → Pn(D1D′

1) = 1
4I0 in probability.

To establish rigorously the near-LAN assertion of Theorem 4, it is merely a
matter of bounding the error terms in (5) and then justifying the treatment of
the sum of theRn(xi ). Three facts are needed.

(7) Lemma Under{Pn}, assuming DQM,
(a) maxi ≤n |Di | = op(

√
n),

(b) maxi ≤n |Ri,n| = op(1),
(c)

∑
i ≤n 2Ri,n → − 1

4t ′It in probability.

Let me first explain how Theorem 4 follows from Lemma 7. Together the
two facts (a) and (b) ensure that with high probability logLn(t) does not involve
infinite values. For(t ′Di /

√
n) + Ri,n > −1 we may then an appeal to the

Taylor expansion
log(1 + y) = y − 1

2 y2 + 1
2β(y),

whereβ(y) = o(y2) as y tends to zero, to deduce that logLn(t) equals

2√
n

∑
i ≤n

t ′Di + 2
∑
i ≤n

Ri,n −
∑
i ≤n

(
t ′Di√

n
+ Ri,n

)2

+
∑
i ≤n

β

(
t ′Di√

n
+ Ri,n

)
,

which expands to

t ′Sn + 2
∑
i ≤n

Ri,n − 1

n

∑
i ≤n

(t ′Di )
2

− 2√
n

∑
i ≤n

t ′Di Ri,n −
∑
i ≤n

R2
i,n + op(1)

∑
i ≤n

( |Di |2
n

+ R2
i,n

)
.

Each of the last three sums is of order op(1) because
∑

i ≤n |Di |2/n = Op(1)

and

Pn

∑
i ≤n

R2
i,n = nλ

(
ξ2

0r (x1, θ0 + t/
√

n){ξ0 > 0}/ξ2
0

)
(8)

≤ nλ|r (·, θ0 + t/
√

n)|2
= o(1).

By virtue of (6) and (c), the expansion simplifies to

t ′Sn − 1
4t ′It − 1

4t ′I0t + op(1),

as asserted by Theorem 4.
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Proof of Lemma 7. Assertion (a) follows from the identical distributions:

Pn{max
i ≤n

|Di | > ε
√

n} ≤
∑
i ≤n

Pn{|Di | > ε
√

n}

= nPn{|	1| > ε
√

n}
≤ ε−2λ	2

1{|	1| > ξ0ε
√

n}
→ 0 by Dominated Convergence.

Assertion (b) follows from (8):

Pn{max
i ≤n

|Ri,n| > ε} ≤ ε−2Pn

∑
i ≤n

R2
i,n → 0.

Only Assertion (c) involves any subtlety. The variance of the sum is bounded
by 4

∑
i ≤n Pn Rn(xi )

2, which tends to zero. The sum of the remainders must lie
within op(1) of its expected value, which equals

2nPθ0 R1,n = 2nλ
(
ξ0r (·, θ0 + t/

√
n)

)
,

an inner product between two functions inL2(λ). Notice that theξ0 factor
makes the indicator{ξ0 > 0} redundant.

It is here that the unit length property becomes important. Specializing
Lemma 1 to the caseδn = 1/

√
n, with ξn(x) = ξ(x, θ0 + t/

√
n) andW = t ′	,

we get the approximation to the sum of expected values of theRi,n, from which
Assertion (c) follows.�

A slight generalization of the LAN assertion is possible. It is not necessary
that we consider only parameters of the formθ0 + t/

√
n for a fixed t . By

arguing almost as above along convergent subsequences of{tn} we could prove
an analog of Theorem 4 ift were replaced by a bounded sequence{tn} such
that θ0 + tn/

√
n ∈ �. The extension is significant because (Le Cam 1986, page

584) the slightly stronger result forces a form of differentiability in quadratic
mean.

19.5 Contiguity and disappearance of mass

For notational simplicity, consider only the one-dimensional case with the
typical value t = 1. Let ξ2

n be the marginal density, andQn be the joint
distribution, for x1, . . . , xn sampled with parameter valueθ0 + 1/

√
n. As

before,ξ2
0 andPn correspond toθ0. The measureQn is absolutely continuous

with respect toPn if and only if it puts zero mass in the set

An = {ξ0(xi ) = 0 for at least onei ≤ n}.
Writing αn for λξ2

n {ξ0 = 0}, we have

Qn An = 1 −
∏
i ≤n

(
1 − Qn{ξ0(xi ) = 0}) = 1 − (1 − αn)

n.
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By direct calculation,

αn = λ
(
rn + 	/

√
n
)2{ξ0 = 0} = λ	2{ξ0 = 0}/n + o(1/n).

The quantityτ = λ	2{ξ0 = 0} has the following significance. UnderQn,
the number of observations landing inAn has approximately a Poisson(τ )
distribution; andQn An → 1 − e−τ .

In some asymptotic sense, the measureQn becomes more nearly absolutely
continuous with respect toPn if and only if τ = 0. The precise sense is called
contiguity: the sequence of measures{Qn} is said to be contiguous with respect
to {Pn} if Qn Bn → 0 for each sequence of sets{Bn} such thatPn Bn → 0.
BecausePn An = 0 for everyn, the conditionτ = 0 is clearly necessary for
contiguity. It is also sufficient.

Contiguity follows from the assertion thatL, the limit in distribution
under {Pn} of the likelihood ratios{Ln(1)}, have expected value one. (“Le
Cam’s first lemma”—see the theorem on page 20 of Le Cam and Yang, 1990.)
The argument is simple: IfPL = 1 then, to eachε > 0 there exists a finite
constantC such thatPL{L < C} > 1−ε. From the convergence in distribution,
PnLn{Ln < C} > 1 − ε eventually. IfPn Bn → 0 then

Qn Bn ≤ Pn BnLn{Ln < C} + Qn{Ln ≥ C}
≤ CPn Bn + 1 − PnLn{Ln < C}
< 2ε eventually.

For the special case of the limiting exp(N(µ, σ 2)) distribution, where
µ = − 1

4I0 − 1
4I andσ 2 = I0, the requirement becomes

1 = P exp
(
N(µ, σ 2)

) = exp
(
µ + 1

2σ 2
)
.

That is, contiguity obtains whenI0 = I (or equivalently,λ(	2{ξ0 = 0}) = 0),
in which case, the limiting variance ofSn equals. This conclusion plays the
same role as the traditional dual representation for the information function. As
Le Cam & Yang (1990, page 23) commented, “The equality. . . is the classical
one. One finds it for instance in the standard treatment of maximum likelihood
estimation under Cram´er’s conditions. There it is derived from conditions of
differentiability under the integral sign.” The fortuitous equality is nothing more
than contiguity in disguise.

From the literature one sometimes gets the impression thatλ	2{ξ0 = 0} is
always zero. It is not.

(9) Example Let λ be Lebesgue measure on the real line. Define

f0(x) = x{0 ≤ x ≤ 1} + (2 − x){1 < x ≤ 2}.
For 0≤ θ ≤ 1 define densities

f (x, θ) = (1 − θ2) f0(x) + θ2 f0(x − 2).

Notice that

(10) λ

∣∣∣√ f (x, θ) −
√

f (x, 0) − θ
√

f (x, 1)

∣∣∣2 = (
√

1 − θ2 − 1)2 = O(θ4).
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The family of densities is differentiable in quadratic mean atθ = 0 with
derivative	(x) = √

f (x, 1). For this family,λ	2{ξ0 = 0} = 1.
The near-LAN assertion of Theorem 4 degenerates:I0 = 0 and I = 4,

giving Ln(t) → exp
(−t2

)
in probability, under{Pn,θ0}. Indeed, as Aad van

der Vaart has pointed out to me, the limiting experiment (in Le Cam’s sense)
for the models{Pn,t/

√
n : 0 ≤ t ≤ √

n} is not the Gaussian translation
model corresponding to the LAN condition. Instead, the limit experiment is
{Qt : t ≥ 0}, with Qt equal to the Poisson(t2) distribution. That is, for each
finite setT and eachh, under{Pn,h/

√
n} the random vectors(

dPn,t/
√

n

dPn,h/
√

n
: t ∈ T

)

converge in distribution to (
dQt

dQh
: t ∈ T

)
,

as a random vector under theQh distribution. �
The counterexample would not work ifθ were allowed to take on negative

values; one would need	(x) = −√
f (x, 1) to get the analog of (10) for

negativeθ . The failure of contiguity is directly related to the fact thatθ = 0
lies on boundary of the parameter interval.

In general,λ		′{ξ0 = 0} must be zero at all interior points of the parameter
space where DQM holds. On the set{ξ0 = 0} we have 0≤ √

nξ(x, θ0+t/
√

n) =
t ′	+√

nrn, where‖√nrn‖ → 0. Along a subsequence,
√

nrn → 0, leaving the
conclusion thatt ′	 ≥ 0 almost everywhere on the set{ξ0 = 0}. At an interior
point, t can range over all directions, which forces	 = 0 almost everywhere
on {ξ = 0}; at an interior point,		′{ξ = 0} = 0 almost everywhere. More
generally, one needs only to be able to approachθ0 from enough different
directions to force	 = 0 on {ξ0 = 0}—as in the concept of a contingent in
Le Cam & Yang (1990, Section 6.2).

The assumption thatθ0 lies in the interior of the parameter space is not
always easy to spot in the literature.

Some authors, such as Le Cam & Yang (1990, page 101), prefer to dispense
with the dominating measureλ, by recasting differentiability in quadratic mean
as a property of the densitiesdPθ /dPθ0, whose square roots correspond to the
ratios ξ(x, θ){ξ0 > 0}/ξ0(x). With that approach, the behaviour of	 on the
set {ξ0 = 0} must be specified explicitly. The contiguity requirement—thatPθ

puts, at worst, mass of order o(|θ − θ0|2) in the set{ξ0 = 0}—is then made part
of the definition of differentiability in quadratic mean.
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