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Densities fθ (x) = d Pθ /dμ for θ ∈ �, an open subset of R.
Hellinger differentiability/DQM:

ξθ+δ(x) :=
√

fθ+δ(x) =
√

fθ (x) + δξ̇θ (x) + rθ (x, δ) with rθ = o(|δ|) in L2(μ) norm as δ → 0.

Equivalently,√
d Pθ+δ

d Pθ

= 1 + 1
2δ�θ(x) + Rθ (x, δ) with Rθ = o(|δ|) in L2(Pθ ) norm as δ → 0,

where �θ(x) := {ξθ > 0}2ξ̇θ (x)/ξθ (x) (the score function). cf. ∂
√

fθ /∂θ
?= ḟθ /2

√
fθ

Fisher information I (θ) := 4μ(ξ̇ 2
θ ) = 4Pθ (�

2
θ ) = 4

∫
�θ(x)2 Pθ (dx).
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Statistic T with distribution Qθ under Pθ .√
d Qθ+δ

d Qθ

= 1 + 1
2δ�̃θ (x) + R̃θ (x, δ) with R̃θ = o(|δ|) in L2(Qθ ) norm as δ → 0,

where �̃θ (t) := Pθ (� | T = t), the conditional expectation of �θ given T = t .

See: Ibragimov & Has’minskii (1981, Section 1.7??); van der Vaart (1988, page 181); Le Cam &
Yang (1988, Section 7); Bickel, Klaassen, Ritov & Wellner (1993, page 461).

Fisher information Ĩ (θ) := 4Qθ �̃
2
θ = 4Pθ �̃θ (T x)2.
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Geometry:

I (θ) = 4Pθ

(
�θ(x) − �̃θ (T x) + �̃θ (T x)

)2 = 4Pθ

(
�θ(x) − �̃θ (T x)

)2 + Ĩ (θ).

No loss of Fisher information if and only if �θ(x) = �̃θ (T x) a.s. [Pθ ]. cf. Pitman (1979, page 19)
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No loss of Fisher information if T is a sufficient statistic.
Kagan & Shepp (2005): example of zero loss of Fisher information without sufficiency.
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Example based on K&S. Densities {gθ (t) : θ ∈ �} and {hθ (t) : θ ∈ �} with respect to λ, both DQM:

ξθ+δ,g(t) :=
√

gθ+δ(t) =
√

gθ (t) + δξ̇θ,g(t) + o(|δ|) in L2(λ)

ξθ+δ,h(t) :=
√

hθ+δ(t) =
√

hθ (t) + δξ̇θ,h(t) + o(|δ|) in L2(λ)

Put x = (t, y) with y ∼ ν, for a known (nondegenerate) probability measure ν on (0, 1), mean α �= 1/2.
Define fθ (x) = ygθ (t) + (1 − y)hθ (t), a density with respect to μ := λ ⊗ ν. The corresponding marginal
density for the statistic T (x) = t is αgθ (t) + (1 − α)hθ (t).

If we make sure that Gθ := {t : gθ (t) > 0} is disjoint from Hθ := {t : gθ (t) > 0}, for each θ , then

√
fθ (x) = ξθ (x) = √

y ξθ,g(t){t ∈ Gθ } +
√

1 − y ξθ,h(t){t ∈ Hθ }
ξ̇θ (x) = √

y ξ̇θ,g(t){t ∈ Gθ } +
√

1 − y ξ̇θ,h(t){t ∈ Hθ }

�θ(x) = 2
ξ̇θ (x)

ξθ (x)
{t ∈ Gθ ∪ Hθ } = 2

ξ̇θ,g(t)

ξθ,g(t)
{t ∈ Gθ } + 2

ξ̇θ,h(t)

ξθ,h(t)
{t ∈ Hθ }.



The score function does not depend on y. There is no loss of Fisher information but T is not sufficient:

y | t ∼ νg{t ∈ Gθ } + νh{t ∈ Hθ } under Pθ (· | T = t),

where νg and νh are the probability measures defined by

dνg

dν
= y

α
and

dνh

dν
= 1 − y

1 − α
.
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Take independent observations x1 = (t1, y1), . . . , xn = (tn, yn) from Pθ . The statistic T = (t1, . . . , tn) is
not sufficient but there is no loss of Fisher information. The yi ’s are conditionally independent given T ,
with

(∗) yi | ti ∼ νg{ti ∈ Gθ } + νh{ti ∈ Hθ }.
How much more about θ do we learn from the yi ’s once we know T ? Not much. For example, the
asymptotic distributions for efficient estimators are the same with or without the yi ’s.
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K&S example: gθ (t) = ψ(t − θ) and hθ (t) = ψ(θ − t) where ψ(t) = 1
2 t2e−t {t > 0} and λ equal to

Lebesgue measure on the real line. Thus Gθ = (θ, ∞) and Hθ = (−∞, θ).

Generate independent observations y′
1, . . . , y′

n from νg and y′′
1 , . . . , y′′

n from νh .

Given T (and secret knowledge of θ ), define y∗
i = y′

i {ti > θ} + y′′
i {ti < θ} and x∗

i := (ti , y∗
i ).

The variables x∗
1 , . . . , x∗

n have the same joint distribution as the sample x1, . . . , xn .

Given a
√

n-consistent estimator θ̂n for θ , define y∗∗
i = y′

i {ti > θ̂n} + y′′
i {ti < θ̂n} and x∗∗

i := (ti , y∗∗
i ).

Use the fact that mini≤n |ti − θ | is of order n−1/3 to show that

Pθ {x∗
i = x∗∗

i for each i ≤ n } = Pθ { no ti ’s between θ and θ̂n } → 1 as n → ∞.

More concretely, for θ̂n = sample median − cα , with a suitable constant cα that depends on α, get

Pθ {x∗
i �= x∗∗

i for at least one i ≤ n } = O

(
log3/2 n√

n

)
We can almost reproduce the behaviour of any statistic based on x1, . . . , xn by a (randomized) statistic
based on x∗∗

1 , . . . , x∗∗
n .

Compare with the Le Cam distance between experiments.
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