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• Sample spaces are arbitrary. We change them at our convenience.
We like to think of random variables as functions on �.
We like expectations to follow rules for integrals with respect to countably additive measures.

• Model: P = {Pθ : θ ∈ �} on (�, F).
Statistic T taking values in (T, B). That is, T is F\B-measurable.
Qθ = distribution of T under Pθ .

• Say that T is sufficient for P if there is a randomization[t] not depending on θ , such that

t ∼ Qθ and ω̃ | t ∼ randomization[t] imply ω̃ ∼ Pθ

• Is randomization[t] given by a Markov kernel: a probability measure πt on F for which
πt {ω : T (ω) = t}, almost surely [Qθ ]?

• Is randomization[t] given by a Kolmogorov conditional expectation?

κ(t, X) is a version of Eθ (X | T = t) for which, with Qθ probability one for each θ :
κ(t, 1) = 1
κ(t, α1 X1 + α2 X2) = α1κ(t, X1) + α2κ(t, X2)

κ(t, Xn) ↑ κ(t, X) if 0 ≤ X1 ≤ X2 ≤ . . . ↑ X

Also require functions of T to act like constants?

• Only negligible sets stand between κ(t, ·) and countable additivity.

• Folklore: likelihood ratios are sufficient

• Suppose pi (ω) = dPi/dλ for i = 1, 2, . . . , k
Define T : � → Rk

+ by T (ω) = (
p1(ω), . . . , pk(ω)

)
.

• Without loss of generality, λ is a probability measure.

• Let κ(t, X) be a version of E(X | T = t) for expectations under λ. Sufficient?

• Can κ(t, ·) be represented by a (finitely additive? countably additive?) probability πt ?

• cf. Halmos (1950, problem 48.4)
Let λ = Lebesgue on Borel sigma-field B of [0, 1].
Fix a set A with λ∗ A = 1 and λ∗ A = 0. Extend λ to a probability on the sigma-field F generated
by B and A:

λ
(

AB1 + Ac B2
) = 1

2

(
λ(B1) + λ(B2)

)
for all Bi ∈ B.

Take p1(ω) = 2ω and p2(ω) = 2(1 − ω).

• Counterexample contrived? Violates typical regularity properties? Why not always assume
enough regularity properties to eliminate need for Kolmogorov conditional expectations?

• Advantages of abstraction:
Simplifications if we are only interested in a small collection of rvs X .
Reduces to Markov kernel under extra regularity conditions.
Domination and separability assumptions give at least a finitely additive πt
Composition can lead to Markov kernels.

• Disadvantages:
Can κ(t, ·) really be regarded as a randomizing mechanism?
Need topological assumptions to make πt countably additive.
Difficulties when � not finite or model not dominated.



• Countable additivity depends on choice of �.

• Why not Lebesgue measure on � = {r1, r2, . . .} = rationals in (0, 1]?
Define λ(r, s] = s − r . Extend by finite additivity.
Unfortunately An := �\{r1, r2, . . . , rn} ↓ ∅ but λAn = 1 for all n.

• Rescue countable additivity by adding more points to � so that ∩n An no longer empty. Add
enough new points to “neutralize” decreasing sequences that would violate countable additivity.

• Try to make finitely additive measures on original � correspond to countably additive measures
on augmented �.

• Markov kernels: ω ∼ P 
→ K P := ∫
Kω(·)P(dω) 
→ y ∼ K P

• (Le Cam) “Generalized randomizations”, P 
→ K P: increasing, linear, preserve total mass (also
work when P� �= 1).

• Advantages of Le Cam abstraction:
Reduces to Kolmogorov under regularity conditions.
Reduces to Markov kernel under more regularity conditions.
Domination and separability assumptions plus . . . give at least a finitely additive πt
Composition can lead to Markov kernels.
Don’t need extra topological assumptions to get nice existence theorems.
No extra difficulties when � not finite or model not dominated.

P model: probabilities on [0, 2),

Pθ =
{

point mass at 1 + θ for 0 < θ ≤ 1
Lebesgue measure on [0, 1) for θ = 0

Q model: probabilities on [0, 1),

Qθ =
{

point mass at θ for 0 < θ ≤ 1
Lebesgue measure on [0, 1) for θ = 0

• How to test hypothesis θ = 0 versus 0 < θ ≤ 1?

• A = sigma-field generated by singletons. Sufficient? Pairwise sufficient? (Torgersen 1991,
Section 1.5).

Some ways to use Le Cam framework:

• Add regularity assumptions so that all generalized objects reduce to their classial analogs.

• Use Le Cam framework as a convenient way of finding traditional solutions:
(i) Find generalized solution. (ii) Show that solution from (i) can actually be identified with a
traditional solution.

• Rethink what we mean by a statistical model. For example, what does it mean to say that data
are observations on a fixed distribution? Why are sample spaces needed? . . .

References

Halmos, P. R. (1950), Measure Theory, Van Nostrand, New York, NY. July 1969 reprinting.

Le Cam, L. (1986), Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New
York.

Torgersen, E. (1991), Comparison of Statistical Experiments, Cambridge University Press.

van der Vaart, A. (2002), ‘The statistical work of Lucien Le Cam’, Annals of Statistics 30, 631–
682.


