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Hiddenconvexity
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Let X = (X1, . . . , Xk) have a multivariate normal distribution, N (0, V ). Put λ = traceV . Show
P|X|3 ≤ λ3/2

P|N (0, 1)|3/2. � Wlog V = diag(σ 2
1 , . . . , σ 2

k ). Convex weights θi = σ 2
i /λ. Expecta-

tion equals λ3/2
P| ∑i θi Z2

i |3/2 for independent standard normal Zi . Convex function of θ maximized at
extreme point.
See Pollard (1996b, Chapter 13; retrieve PROB.Coupling.ps from WWW site) for an exposition of the
application to the Yurinskii coupling.
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Bennett’s Inequality: Let Y1, · · · , Yn be independent random variables with (i) PYi = 0 and PY 2
i =

σ 2
i < ∞ and (ii) Yi ≤ M for every i , for some finite constant M . Then, for x ≥ 0,

P{Y1 + · · · + Yn ≥ x} ≤ exp

(
− x2

2V
ψ

(
Mx

V

))
with V = σ 2

1 + · · · + σ 2
n ,

where ψ(x) = ((1 + x) log(1 + x) − x) /(x2/2) for x ≥ −1.
Bernstein’s Inequality: Replace ψ(x) by its lower bound, ψ(x) ≥ (1 + x

3 )−1.
See Pollard (1996b, Chapter 4; retrieve PROB.Exponential.ps from WWW site) or Shorack & Well-
ner (1986, Chapter 11) for applications of the Bennett exponential inequality.
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(Pinsker’s/Csiszar’s/Kemperman’s inequality) Probability measures P and Q with densities p and q.
Show

∫
p log(p/q) ≥ 1/2

(∫ |p − q|)2
. � Write p/q = 1 + δ. Note Qδ = ∫

q(p − q)/q = 0.

LHS = Q ((1 + δ) log(1 + δ) − δ) because Qδ = 0

≥ Q
(

1/2δ
2ψ(δ)

)
definition of ψ

≥ 1/2Q

(
δ2

1 + δ/3

)
Q(1 + δ/3) lower bound for ψ , and Qδ = 0

≥ 1/2

(
Q

|δ|√
1 + δ/3

√
1 + δ/3

)2

Cauchy-Schwarz

= RHS
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Let f be a twice differentiable convex function defined on a convex interval J ⊆ R that contains the
origin. Suppose f (0) = f ′(0) = 0. Use the representations

f (t) = t
∫

{0 ≤ u ≤ 1} f ′(tu) du = t2
∫∫

{0 ≤ v ≤ u ≤ 1} f ′′(tv) dv du = t2
∫ 1

0
(1 − v) f ′′(tv) dv

to establish the following facts. (i) The function f (t)/t is increasing. (ii) The function φ(x) :=
2 f (t)/t2 is nonnegative. (iii) If f is convex then so is φ. (iv) If f ′′ is increasing then so is φ. (v) In-
voke Jensen’s inequality for the uniform distribution on {0 ≤ v ≤ u ≤ 1} to show that φ(t) ≥ f ′′(t/3).
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Perhaps optimization estimator defined to maximize process Gn(t) = 1
n

∑
i≤n g(xi , t) over t in an index

set T ⊆ R. Empirical process νng = n−1/2 ∑
i≤n (g(xi ) − Pg(xi )).

Signal plus noise split: Gn(t) = PGn(t) + n−1/2νx
n g(x, t).

Taylor: g(x, t) − g(x, 0) − tg′(x, 0) = t
∫ 1

0

(
g′(x, tu) − g′(x, 0)

)
du.
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Stochastic Taylor: νx
n g(x, t) = νx

n g(x, 0) + tνx
n g′(x, 0) + Rn(t), where

sup
|t |≤δ

|Rn(t)|
|t | = sup

|t |≤δ

|νx
n

∫ 1

0

(
g′(x, tu) − g′(x, 0)

)
du| ≤ sup

|s|≤δ

|νx
n

(
g′(x, s) − g′(x, 0)

) |.

Stochastic equicontinuity condition for empirical process indexed by {g′(·, t) : t ∈ T } gives Rn(t) =
op(|t |) uniformly in shrinking neighborhoods of t = 0.
See Pollard (1996a, Chapter 13; retrieve ASY.RatesCid.ps from WWW site) for applications of uniform
stochastic approximations in the study of asymptotics for optimization estimators.
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(Kim & Pollard 1990, Lemma 2.6). “Let {Z(t) : t ∈ T } be a Gaussian process with continuous sample
paths, indexed by a σ -compact metric space. If var(Z(s) − Z(t)) �= 0 for all s �= t then, with proba-
bility one, no sample path can achieve its maximum at two distinct points of T .” Reduce proof to con-
vexity fact: “If �0 and �1 are convex functions on R with infimum of right-hand derivative of �0 strictly
greater than supremum of right-hand derivative of �1, then �0(z) = �1(z) for at most one value of z.”
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Unimodality of S = X1 + . . . + Xn , where the Xi are independent and Xi is Bin(1, pi ) distributed. Show
ratios P{S = k}/P{S = k − 1} decrease as k increases. That is, show

P{S = k + 1}P{S = k − 1} ≤ P{S = k}2.

� Independent copy T = X ′
1 + . . . + X ′

n . Condition on the Wi = X1 + X ′
i . Generate Xi and X ′

i from
Wi : toss fair coin if Wi = 1. If nj of the Wi equal j (for j = 0, 1, 2) then number of heads H has
Bin(n1, 1/2) conditional distribution. P{S = k, T = k | W} is zero unless 2k = n1 + 2n2, in which case
conditional probability equals P{H = n1/2 | W}, which is greater than P{H = 1 + n1/2 | W}. For more
surprising consequences see Samuels (1965) and Jogdeo & Samuels (1968).
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