Hidden convexity

1

Let $\mathbf{X} = (X_1, \ldots, X_k)$ have a multivariate normal distribution, N(0, V). Put $\lambda = \text{trace} V$. Show $\mathbb{P}|\mathbf{X}|^3 \leq \lambda^{3/2} \mathbb{P}|N(0, 1)|^{3/2}$. \mathbf{H} Wlog $V = \text{diag}(\sigma_1^2, \ldots, \sigma_k^2)$. Convex weights $\theta_i = \sigma_i^2/\lambda$. Expectation equals $\lambda^{3/2} \mathbb{P}|\sum_i \theta_i Z_i^2|^{3/2}$ for independent standard normal Z_i . Convex function of $\boldsymbol{\theta}$ maximized at extreme point.

See Pollard (1996b, Chapter 13; retrieve PROB.Coupling.ps from WWW site) for an exposition of the application to the Yurinskii coupling.

2

Bennett's Inequality: Let Y_1, \dots, Y_n be independent random variables with (i) $\mathbb{P}Y_i = 0$ and $\mathbb{P}Y_i^2 = \sigma_i^2 < \infty$ and (ii) $Y_i \leq M$ for every *i*, for some finite constant *M*. Then, for $x \geq 0$,

$$\mathbb{P}\{Y_1 + \dots + Y_n \ge x\} \le \exp\left(-\frac{x^2}{2V}\psi\left(\frac{Mx}{V}\right)\right) \quad \text{with } V = \sigma_1^2 + \dots + \sigma_n^2,$$

where $\psi(x) = ((1+x)\log(1+x) - x)/(x^2/2)$ for $x \ge -1$.

Bernstein's Inequality: Replace $\psi(x)$ by its lower bound, $\psi(x) \ge (1 + \frac{x}{3})^{-1}$. See Pollard (1996b, Chapter 4; *retrieve PROB.Exponential.ps from WWW site*) or Shorack & Wellner (1986, Chapter 11) for applications of the Bennett exponential inequality.

3
5

(Pinsker's/Csiszar's/Kemperman's inequality) Probability measures P and Q with densities p and q. Show $\int p \log(p/q) \ge \frac{1}{2} \left(\int |p-q| \right)^2$. \maltese Write $p/q = 1 + \delta$. Note $Q\delta = \int q(p-q)/q = 0$.

LHS =
$$Q((1 + \delta) \log(1 + \delta) - \delta)$$
 because $Q\delta = 0$
 $\geq Q(\frac{1}{2}\delta^2\psi(\delta))$ definition of ψ
 $\geq \frac{1}{2}Q\left(\frac{\delta^2}{1 + \delta/3}\right)Q(1 + \delta/3)$ lower bound for ψ , and $Q\delta = 0$
 $\geq \frac{1}{2}\left(Q\frac{|\delta|}{\sqrt{1 + \delta/3}}\sqrt{1 + \delta/3}\right)^2$ Cauchy-Schwarz
= RHS

4

Let f be a twice differentiable convex function defined on a convex interval $J \subseteq \mathbb{R}$ that contains the origin. Suppose f(0) = f'(0) = 0. Use the representations

$$f(t) = t \int \{0 \le u \le 1\} f'(tu) \, du = t^2 \iint \{0 \le v \le u \le 1\} f''(tv) \, dv \, du = t^2 \int_0^1 (1-v) f''(tv) \, dv$$

to establish the following facts. (i) The function f(t)/t is increasing. (ii) The function $\phi(x) := 2f(t)/t^2$ is nonnegative. (iii) If f is convex then so is ϕ . (iv) If f'' is increasing then so is ϕ . (v) Invoke Jensen's inequality for the uniform distribution on $\{0 \le v \le u \le 1\}$ to show that $\phi(t) \ge f''(t/3)$.

5

Perhaps optimization estimator defined to maximize process $G_n(t) = \frac{1}{n} \sum_{i \le n} g(x_i, t)$ over t in an index set $T \subseteq \mathbb{R}$. Empirical process $v_n g = n^{-1/2} \sum_{i \le n} (g(x_i) - \mathbb{P}g(x_i))$. Signal plus noise split: $G_n(t) = \mathbb{P}G_n(t) + n^{-1/2} v_n^x g(x, t)$. Taylor: $g(x, t) - g(x, 0) - tg'(x, 0) = t \int_0^1 (g'(x, tu) - g'(x, 0)) du$.

David Pollard: July 1995, Kingston

Stochastic Taylor: $v_n^x g(x, t) = v_n^x g(x, 0) + t v_n^x g'(x, 0) + R_n(t)$, where

$$\sup_{|t| \le \delta} \frac{|R_n(t)|}{|t|} = \sup_{|t| \le \delta} |\nu_n^x \int_0^1 \left(g'(x, tu) - g'(x, 0) \right) \, du| \le \sup_{|s| \le \delta} |\nu_n^x \left(g'(x, s) - g'(x, 0) \right)|.$$

Stochastic equicontinuity condition for empirical process indexed by $\{g'(\cdot, t) : t \in T\}$ gives $R_n(t) = o_p(|t|)$ uniformly in shrinking neighborhoods of t = 0.

See Pollard (1996a, Chapter 13; *retrieve ASY.RatesCid.ps from WWW site*) for applications of uniform stochastic approximations in the study of asymptotics for optimization estimators.

6

(Kim & Pollard 1990, Lemma 2.6). "Let $\{Z(t) : t \in T\}$ be a Gaussian process with continuous sample paths, indexed by a σ -compact metric space. If $var(Z(s) - Z(t)) \neq 0$ for all $s \neq t$ then, with probability one, no sample path can achieve its maximum at two distinct points of *T*." Reduce proof to convexity fact: "If Γ_0 and Γ_1 are convex functions on \mathbb{R} with infimum of right-hand derivative of Γ_0 strictly greater than supremum of right-hand derivative of Γ_1 , then $\Gamma_0(z) = \Gamma_1(z)$ for at most one value of *z*."

7

Unimodality of $S = X_1 + ... + X_n$, where the X_i are independent and X_i is Bin $(1, p_i)$ distributed. Show ratios $\mathbb{P}{S = k}/\mathbb{P}{S = k - 1}$ decrease as k increases. That is, show

$$\mathbb{P}\{S = k+1\}\mathbb{P}\{S = k-1\} \le \mathbb{P}\{S = k\}^2.$$

H Independent copy $T = X'_1 + \ldots + X'_n$. Condition on the $W_i = X_1 + X'_i$. Generate X_i and X'_i from W_i : toss fair coin if $W_i = 1$. If n_j of the W_i equal j (for j = 0, 1, 2) then number of heads H has Bin $(n_1, 1/2)$ conditional distribution. $\mathbb{P}\{S = k, T = k \mid \mathbf{W}\}$ is zero unless $2k = n_1 + 2n_2$, in which case conditional probability equals $\mathbb{P}\{H = n_1/2 \mid \mathbf{W}\}$, which is greater than $\mathbb{P}\{H = 1 + n_1/2 \mid \mathbf{W}\}$. For more surprising consequences see Samuels (1965) and Jogdeo & Samuels (1968).

References

- Jogdeo, K. & Samuels, S. M. (1968), 'Monotone convergence of binomial probabilities and a generalization of Ramanujan's theorem', *Annals of Mathematical Statistics* **39**, 1191–1195.
- Kim, J. & Pollard, D. (1990), 'Cube root asymptotics', Annals of Statistics 18, 191-219.
- Pollard, D. (1991), 'Asymptotics for least absolute deviation regression estimators', *Econometric Theory* **7**, 186–199.
- Pollard, D. (1996a), Asymptopia: An Exposition of Statistical Asymptotic Theory, ??? (Unpublished book manuscript.).
- Pollard, D. (1996b), An Explanation of Probability, ??? (Unpublished book manuscript.).
- Samuels, S. M. (1965), 'On the number of successes in independent trials', *Annals of Mathematical Statistics* **36**, 1272–1278.
- Shorack, G. R. & Wellner, J. A. (1986), *Empirical Processes with Applications to Statistics*, Wiley, New York.