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1. Fisher information (for one observation)

I Family of densities P = {pθ(x) : θ ∈ R}
I Score function

∆θ(x) =
∂

∂t
log pθ+t(x) = 2

∂

∂t

√
pθ+t(x)

pθ(x)
at t = 0

I IP(θ) = Eθ∆θ(x)2

I Distribution of statistic T under pθ has density qθ
I Q = {qθ : θ ∈ R}
I IQ(θ) ≤ IP(θ) with equality if T is a sufficient statistic



2. Preservation of Fisher information

I If IQ(θ) = IP(θ) then is T a sufficient statistic?

I Not always: Kagan and Shepp (2005)

I Counterexample: x = (y , z) ∈ R× {−1,+1} with

P{z = −1} = 1/2 = P{z = +1} (ancillary)

fθ(y | z) =

{
g(y − θ) if z = +1
g(θ − y) if z = −1

where g(w) = 1
2w

2e−w{w > 0}



3. Counterexample (≈ K&S)

z = -1

z = +1

g(y - θ)

g(θ - y)

y = θ

I P{z = −1} = 1/2 = P{z = +1}
I y is not sufficient: Pθ(z = 1 | y) = {y > θ} a.s.

I Marginal: qθ(y) = 1
2g(y − θ) + 1

2g(θ − y)

I IQ(θ) = IP(θ). Why?



4. True NSC for no loss of Fisher info, in general

I Score function for Q is (use DQM?):

∆̃θ(y) = Eθ(∆θ(x) | T (x) = y)

I No loss of Fisher information at θ iff ∆θ(x) = ∆̃θ(Tx) a.s.
[≈ Pitman (1979, pages 19–21)]

I Back to counterexample:

∆θ(x) = −{z = +1} ġ(y − θ)

g(y − θ)
{y > θ}

+ {z = −1} ġ(θ − y)

g(θ − y)
{y < θ}

z = -1

z = +1

g(y - θ)

g(θ - y)

y = θ



5. Sample of size n (local asymptotic normality)

xi = (yi , zi ) for i = 1, . . . , n

log
∏
i≤n

pθ+t/
√
n(xi )

pθ(xi )
≈ t√

n

∑
i≤n

∆θ(xi )−
t2

2
IP(θ)

log
∏
i≤n

qθ+t/
√
n(yi )

qθ(yi )
≈ t√

n

∑
i≤n

∆̃θ(yi )−
t2

2
IQ(θ)

Both models are locally asymptotically like the
{N(t, 1/I(θ)) : t ∈ R} model, in Le Cam’s weak sense.



6. What more do the zi ’s tell us about θ?

z = -1

z = +1

g(y - θ)

g(θ - y)

θ

gap of order n-1/3

Root-n consistent estimator θ̂n(y1, . . . , yn).

z∗i :=

{
+1 if yi > θ̂n
−1 if yi < θ̂n

x∗i = (yi , z
∗
i )

Pθ{zi = z∗i for i = 1, . . . , n} → 1 rapidly



7. Approximation in strong Le Cam sense

I Root-n consistent estimator θ̂n(y1, . . . , yn).

z∗i :=

{
+1 if yi > θ̂n
−1 if yi < θ̂n

x∗i = (yi , z
∗
i )

Pθ{zi = z∗i for i = 1, . . . , n} → 1 rapidly

I Only need yi ’s to construct x∗i ’s and

Pθ{xi = x∗i for i = 1, . . . , n} → 1 rapidly

I Inferences based on x∗1 , . . . , x
∗
n are

(with prob tending to one)
the same as inferences based on x1, . . . , xn.
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