Chapter 7

Efficiency via asymptotic
minimax bounds

SECTION 1 reminds you of the Fisherian concept of efficiency, which is invalid. It points the
way to the rescue of the concept via requirements that estimators behave reasonably at
local alternatives.

SECTION 2 establishes a general asymptotic lower bound for minimax risk of a sequence
of statistical models.

SECTION 3 solves the minimax problem for Gaussian shift families and a large class of
loss functions.

SECTION 4 proves Anderson’s lemma.

1. Efficiency: sunk and rescued

Recall from Chapter 1 the concept of efficiency according to Fisher (1922, page 277):
“The criterion of efficiency is satisfied by those statistics which, when derived from
large samples, tend to a normal distribution with the least possible standard
deviation.” More formally, for a sequence of modéls := {P,, : 6 € ®}, with ®
a subset of the real line, reasonable estimafiprior 6 were supposed to have the
property

VN@ —6) ~ N(,52)  underP,,.

The variances? was supposed to be larger th&i@)~2, the inverse of the Fisher
information. Efficient estimators were those for Whiﬁ(ﬁ =1©)1

As you learned in Section 1.4, the unqualified assertion about the limit
distributions is not valid. There exist estimators, such as the Hodges estimator, that
beat the efficiency bound. You also learned that the Hodges construction to improve
the asymptotic behaviour of an estimator at a figgdhas unwelcome consequences
at sequences dbcal alternativest, that converge t@, at a I/./n rate.

By excluding estimators with the unwelcome local behavior we can rescue the
Fisherian concept of efficiency. In this Chapter you will learn about one rescue
method, due to Hjek (1972) and Le Cam (1972), which excludes superefficency
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by requiring reasonable behaviour of estimators uniformly over a range of param-
eter values. Chapter 8 will present an alternative approach (#jekH'e Cam
convolution theorem), which derives a stronger form of efficiency under stronger
assumptions.

Consider the meaning of efficiency at a fixéglin ® < RY. We wish to
make asymptotic assertions about the behavioA g, — 6p), for some sequence
of rescaling matrice$A,}. For example, we could choosg, = \/ﬁH;({Z to give
efficient estimators a simpl8l (0, I4) limiting distribution. The appropriate local
alternatives will turn out to be valués of the form90+Ag1h for a fixedh. That is,
we need to study the behavior of estimators urldgr := P, 5 . -1y, for fixed (or
boundedh. The minimax theory will refer to the local mode}, := {Qn : h € RY).

REMARK. Here | am tacitly assuming tha + A,th € © for all h. To avoid
minor notational problems, you may tak& , to equallP, 4, if 6 ¢ ©. If 6, is an
interior point of ®, the redefinition will eventually be unimportant, because the
main result will be stated in terms of limiting behavior for finite subset®of

To each estimatdi, for 6 there is a corresponding “estimatdg”:= A, (@ —6o)
for h. Of courset, is not a true estimator (because it dependsggnbut the
distinction will have no effect on the subsequent analysis. Similarly, for each
randomized estimatar for 6 there is a randomized estimatoifor h, defined by

7,0(t) =079 (An(z—6p))  for g e MT(R?).

That is, to generate an observatibfrom zy, we first generate from oy then put
t:=An(Zz—6p).

It also makes sense to incorporate the rescaling into the loss functiGh foy
defining L, 4(2) := p (An(z — 6)), for a fixed p, in order to compare the behavior
of estimators that converge tg at aA;* rate. We then have

P} 6,0y Lne, (2 = Quntyp(t —h)  for 6y := 6+ A *h andr as in<1>.

That is, Rn(90+A;1h, o) = R(t, h), where the risk for uses the loss functioh,
and the risk forr uses the loss functiohy(t) := p(t — h).

Of course all the rescue attempts require some assumptions about the asymptotic
behaviour of theP, models. The traditional approach imposes classical regularity
assumptions: independent observations, existence of smooth densities, and require-
ments that derivatives can be taken under integral signs. The assumptions are used
to construct approximations to likelihood ratios, which could be invoked to establish
convergence in Le Cam’s sense for models indexed by finite sdtsvafues.

The efficiency argument become more transparent if, instead of working via the
classical assumptions, we assume directly the Le Cam convergence frithadels.

More precisely, we need only assume existence of a limit madet {Qy, : h € RY)}
for which §(Q(S), Qn(S)) — 0 for each finite subse® of RY. The Hidjek result
corresponds to the case whe®eis a Gaussian shift family that is, where

Qn := N(h,I') for a fixed matrixI". In particular, it covers the case of product
measureQn, ;= P! under an LAN assumption. Limit theory for thg;,

fo+h//n
models, at a fixed, is calledlocal, because it deals with behavior of estimators
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under alternatives in shrinking neighborhoodsfgf When specialized to models
obtained by local reparametrizations, the general result in Section 2 will provide a
local asymptotic minimax bound

Asymptotic minimax lower bound

Le Cam realized that central idea behindjéK’s proof could be reinterpreted as

a simple semicontinuity property (under the metric) for risk functions. The
Gaussian form of the limit is needed only to calculate a neat expression for the
asymptotic lower bound, under a mild assumption on the loss function.

For the general case, | will write the asymptotic lower bound in a form
that makes clear the role of the Le Cam convergence. Actually, we do not need
convergence in thé\ metric, even for the submodels, because the main Theorem
provides only a one-sided bound. As shown in Section 3, the lower bound simplifies
significantly whenQ is a Gaussian shift and the loss function satisfies a mild
convexity requirement.

In what follows, D will denote a fixed decison space, abhd(-) will be a
nonnegative loss function, not necessarily of the farth— h). The index setH
can be arbitrary, and not jut®. For each finite subse$ of H, write Q(S) for
the submodel of) indexed byS. Define Q,(S) similarly. The modelsd, will live
on spacegYn, Bn), and the limitQ := {Qn : h € H} will live on (Y, B). For
the Gaussian shift familyy is a Euclidean spac®?. The risk for a randomized
procedurer € (Y, D) under the model is defined asR(z, h) := (zQn)' Ln(t)
for h € H. The maximum risk for a procedureis defined as sypy R(z, h). A
minimax procedure, if it exists, has the smallest possible the maximum risk.

Remember thatK u — Kv| < ||ju—v] for eachK in %Y, Y,) and all measures
w,vin LI Y).

Theorem. SupposeS(Q(S), Qn(S)) — 0 for each finite subses of H. Define
Rg := supinf max(tQp)! (Lh(t) A C),
csS 7 heS

the supremum running over all constafits R* and all finite subset§ of H, and
the infimum running over all randomized procedutes (Y, D). Then, for each
sequence of randomized estimators, withe R (Y,, D),

liminf supR(z,, h) > Ro.
N heH

More precisely, for each constaRt < Rq, there exists a finite subs& of H, a
finite constantC, and amg such that

inf rpasx(tn(@mh)t (Lht) AC) > R whenn > n,
Tn €

the infimum running over aft, in 1(Y,, D), for eachn > ng.

REMARK. The result is really just a trivial consequence of the fact that
{taKn i € R Yn, D)} € R(Y, D) for eachK,, in "(Y, Yn).
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For modelsQ, obtained by local reparametrization, the stronger form of the
result makes it clear that good behavior is required only at local alternatives
{60+ A th:h e S}, for finite S.

Proof. Choose a constai®r’ with Ro > R’ > R. By definition of Rq, there exists
a constanC and a finiteS for which inf, (zQp)! (Ln(t) A C) > R. These are the
C and S of the stronger assertion; they stay fixed for the remainder of the proof.
AbbreviatelL,(t) AC to £,(t). For eac there exist randomizations,, € R(Y, Yn)
for which
€n 1= %rpeasanth — Qnnll = 0 asn— oo.

For everyr, in #(Yn, D), andh € S, andg in M+ (Y) with0<g < 1,
|TnKnQ@ng — taQn gl < %”Tn KnQn — taQnnll < %”Kn(@h — Qnnll < en.
In particular, takingg equal to¢,/C we get, for everyr,,

(aQnp)' €n(t) = (2nKnaQn)' €h(t) — Cen.

The lower bound is= R'—Ce,, because;, K, is a randomized procedure Y, D).
For all n large enoughR’ — Ce, > R.

Things to do:
e Asymptotic uniqueness under LAN. Seajek (1972) and Le Cam (1979).

Gaussian shift families

For simplicity, letQ := {Qy : h € RY} be a standardized Gaussian shift family
onRY. That is,Q; := N(t, l4). For local reparametrizations under LAN, the more
general case can be reduced to the standard case by absorbing an extra fatfor of
into the rescaling matriA,. AssumeD = H = RY, so that ther’s from Section 2
become randomized estimators for the parameter. Local compactn&ss anfd
domination ofQ ensure that each in %(Y, D) can be represented by a Markov
kernel (Section 4.3). For a wide class of loss functions, the infimum in the definition
of Rg will be achieved by the very simple, nonrandom estimdigy) = v.

Definition.  Say that a nonnegative functignonRY is bowl-shapedf each of the
sets{x : p(X) < c}, forc € RT, is convex and symmetric about the origin.

For example,o1(x) := [x|?, and po(X) := min(1, X’Gx), with G a positive
definite matrix, andp; Vv p;, are all bowl-shaped. For the remainder of the Section,
assumeLh(t) := p(t — h), with p a bowl-shaped function.

For the lower boundRg, we seek a Markov kernel to minimize

y_t B
Teasx(@hry (pt—=h)AC).
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7.3 Gaussian shift families 5

As you will see, the estimatofp, minimizes for every finiteC and finite S. The
proof will use the fact thaf is a shift family, together with the invariance property
of Lebesgue measure on RY,

<4> m'gth+y) =m"gh)  forall y e RY andg € M*(RY).

If m were a finite measure, the proof would be very easy. To get some understanding
for the method, consider the heuristic based on the false assumption®at 1.

The formal proof will use a limiting form of the same idea, replacingby

a sequence a distributions behaving more and more like “uniform probability
distributions onRY”.

<5> Example. The proof thatTy is minimax would be easy if Lebesgue measure were
a probability. For the remainder of this Example, please suspend your disbelief and
pretend thamRY = 1. For simplicity, taked equal to 1.

First note thatQyp (To(y) — h) = Qfp(y) for all h, so that the supremum
over h has no effect when we calculate the maximum risk Tor However, for a
general randomized estimatey

sup, R(z,h) > m"R(r,h)  becausenR =1 ?!
=m"Qyry,pot —h)  shift family
= Qé’mht;”rhp(t —h) by Fubini
=Qm'mptt —h+y) by <4>
=m"z} (Qpt —h+y)) by Fubini.
Consider the innermost integral. | hope you will find it obvious—if not, you could
resort to Calculus—that the value of
Qoo(y + ) =m¥ (p(y)p(y +B))  whereg := N(0, 1) density,

is minimized wheng equals 0, for then the minimum @f(y 4+ 8) occurs at the
location of the maximum fop (y).

0 -8

For fixedt andh, the innermost integral@é’p(t — h +y), is smallest when
t = h. Thus the maximium risk fot is greater than

m"tt QYo (y) = Qp(y) =sup,r(h,To)  becausenR = 1 =mR ?!
O ThusTy is the minimax estimator.

The same heuristic argument would work in higher dimensions, although the
fact about minimization of the inner integral might no longer seem so obvious.
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6 Chapter 7:  Asymptotic minimax bounds
<6> Lemma. Forp bowl-shapedB — Qjp(y + B) is minimized wherp equals0.

A rigorous proof of the Lemma, due to Anderson (1955), is not too difficult. The
complete argument appears in Section 4.

To replace the false heuristic assumption th&‘ = 1 by a rigorous argument,
we must work with a sequence of probability measures that are almost invariant
in an asymptotic sense. L& (z) denote the closed ball of radiusand centerz.
Write 4, for the uniform distribution orB, (0). Then

sMg(h +y) = m"g(eh){h € Bi(y/o)}/mBy(0).

Intuitively, asoc — oo, the measuréel, behaves increasingly like the mythical
uniform distribution. More precisely,

sup ¢l g(h +y) — M g(h)|

lgl<1
= |s|u|c1>|m“g<oh) ({h € Bi(y/o)} — {h € By(0)}) |/mBy(0)
gl=
<7> < m|Bi(y/o) — B1(0)|/mBy(0) =: ¥(y/o).

The functiony (t) := m|By(t) — B1(0)]/mBy(0) quantifies how fanl, is from
having the real invariance property. Notice that 2/ (t) | 0 as|t| | O.
ity <8> Theorem. LetLy(t) := p(t —h), with p(-) bowl-shaped. TheRq > Q§p(2).
equality?
Proof. Consider first the case whegeis bounded (0< p < C) and uniformly
continuous:|p(X + 8) — p(X)| < a(|8]) — 0 as|§| — 0. In this case, the risk is
also uniformly continuous i, uniformly in z:

IR(z,h +8) — R(z, h)|
= |Q},sTip(t —h —8) — QUi p(t — h))|
< Qhstylot —h=8) — p(t — )|+ Qfh,yo(t — h) — Qi ot — )|
<9> <a(§) +CJQs — Qoll = O ass — 0.

The uniform continuity allows us to reduce suprema over continuous ranges to
maxima over discrete subranges with only a small decrease in maximum risk.
Given ane > 0, chooser so large thaCQ}y (y/o) < € and finds so that the
expression in the last line 6f9> is also< €. Let S, be as-net for the ballB, (0).
Then, for everyr,
€ + maxR(z, h) > sup R(t,h).
hes, heB, (0)

Now argue as in Example:s>, but with m replaced by, to reduce the lower
bound to

STy ot —h) > QY (U hpt —h+y) —Cy(y/o))  cf. <7>
> W7 (Qpt —h+y) —e
> 07t (Q¢p(y)) —e by Lemma<e>.

The assertion of the Theorem follows, at least wheis bounded and uniformly
continuous.
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7.3 Gaussian shift families 7

For the general case, invoke the result from Problem [1] to express a
pointwise increasing limit of bounded, uniformly continuous, bowl-shaped loss
functions {p;}. By Monotone Convergenceéopi 1+ Qop. Fix ani such that

O Qopi > Qop — €, then argue as above far.

*4. Anderson’s lemma

The result from Lemma<6> is a special case of a general assertion about integrals.

<10> Definition. Say thatf is symmetric (about the origin) if (—x) = f(x) for all x.
Say that a se€ is symmetric (about the origin) i£x € C wheneverx € C. (That
is, C is symmetric if its indicator is a symmetric function.)

Write m for Lebesgue measure d@&f'.

<11> Theorem. Let f andg be nonnegative measurable functionsRshsuch that both
{f >t} and{g < t} are symmetric, convex sets for each R*. Then the function

GB) :=wY (gy + B f(y)) =mY (g(y) f(y — B))

is minimized atg = 0.

The proof of the Theorem depends upon a strange-looking inequality involving
sums of setsA® B := {x+y:x € A,y € B}. Even if bothA andB are Lebesgue
measurable, there is no guarantee thab B is also Lebesgue measurable. To be
precise, | should use inner measure with respeat.to

<12> Brunn-Minkowski Inequality. ~ For measurable subsetsandB of RY,
m(A® B)Y! > mAY! + mB)Y.

Proof. Consider the casé = 2. The proof for higher dimensions differs only in
notational details.

The argument develops in four steps. First dispose of the easy case where both
A and B are open rectangles, with sides parallel to the coordinate axes. Call such
setscoordinate rectanglesThen argue by induction to extend the result to finite
unions of coordinate rectangles. Approximate by finite open covers to extend to the
case of compach and B, then complete the proof by an inner approximation.

Cask (i) SupposeA andB are both coordinate rectangles, with side lendgthsv,
and ¢y, wp. The sumA @ B is a rectangle with side lengtig + £, wa + wy. The
asserted inequality/(£5 + €p) (wa + wp) > /Lawa + /Lowy, iS then a special case
of the Cauchy-Schwarz inequality.

Cask (ii) SupposeA is a union ofm disjoint open rectangles with sides parallel
to the coordinate axes, arlis a similar union of rectangles. Argue by induction
onm+ n. Case (i) coversn+n = 2. So supposen > 1.

If two open coordinate rectangles do not intersect, they must lie on opposite
sides of some line parallel to either tlke or y-axis. Thus we may assume, with
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8 Chapter 7:  Asymptotic minimax bounds

no loss of generality, that at least one of tAaectangles lies in each of the open
half-space to the left and right of a line= x,. Define

_ . mA*
A” = AN {X < Xa}, and AT = AN{X > Xa} and 0 = A
m
Choosexg so that the set8™ := BN {X < xg} andB* := BN {x > xg} also have

Lebesgue measures withBT = 9mB. That is, the linex = xg divides B in the
same proportions as the line= x divides A.
Notice that each ofA~ and AT is a disjoint union of at mosin — 1 open
rectangles; each d8~ and B* is a disjoint union of at most open rectangles.
The sumA~ @ B~ lies in {x < Xa + Xg}; the sumA™ @ BT lies in the disjoint
halfspace{x > xa + Xg}; and each is a subset #® B. By disjointness and the
inductive hypothesis,

mA®B)>m(A”" @B )+m(At @ B
> <VmA— + \/mB—)2 + (VmA+ + VmB+>2

— (VI—6VmA+vVI—ymB)) + (VovmA+ VovmB)
za—9+9wdﬁl+v%§f.

Take square roots to complete the argument.

Cask (iii) Suppose bothA and B are compact. Approximate by sets of the form
appearing in case (ii) by arguing as follows. Bix- 0. Let

A ={z:d(z, A < ).
Cover A by open coordinate rectangles all lying withi’. Extract a finite
subcover. Express the union of the covering rectangles as a finite union of disjoint
open rectangles plus a finite number of line segments.Atdde the union of just the
disjoint rectangles. Notice thatA’> > mA* > mA. In similar fashion find a finite

union B* of disjoint open coordinate rectangles®i such thatmnB® > mB* > mB.
All points of A’ @ B? lie within 26 of A® B. Thus

m ((A® B)?) > /m(A* @ B¥)
> v/mA*++/mB* by Case (i)
> VmA+ v/mB.
As § — 0, the set(A @ B)? shrinks down to the compact sét® B, and
m(A® B)? | m(@@a@ B).
CasE (iv) Choose compactAj} with A; € A, € ... € AandmA 1t m.A, and
similarly for {Bj}. Then
Vm.(A® B) = ym(A & B)
> JmA +/mBj - m A +/m,B;,
which completes the proof.
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<13> Corollary. For symmetric convex subse® andD of RY, the functionh(p) :=
m((B ® C) N D)V is maximized ap = O.

Proof. Write Cy for the translated st @ C. By symmetry of bothC and D, the
map x — —x takesCg N D onto C_g N D. The two sets are reflections of each
other. They have the same Lebesgue measure. The furigtipis symmetric.

Convexity of bothC and D ensures that

CspnD)y@d(CpnND)C2Ceo D).
It follows from the Theorem that
(h(B) + h(—=B))? <m (2(C ® D)) = 2m(C @ D) = (2h(0))".
O Thatis,h(8) = YL (h(8) + h(—=p8)) < h(0), as asserted.
Proof of Theorem<11>.  Supose first that the symmetric, convexGet= {f > t}
is bounded for each > 0. Let Ds := {g < s}. EachC; and Ds is a symmetric,
convex set, withm(C;) < oo for eacht > 0. By Corollary <13>, for eachs andt
the d-dimensional volume
m ((B® C;) N Dg) = mC; —m ((B @ Cy) N D)
is minimized atg = 0. It follows that
G(B) =mm*m' ({0<t < f(z— IO <s < g@)})
=m’m'm* ({z € B ® Ci}{z € DS})
=m°’m' (m ((8 ® C;) N D))

is minimized whens = 0.

For the general case, repladeby the functionz — f(2){|z] < R}, to which

O the special case applies, and then pass to the limR as oc.

5. Problems

[1] Show that every (nonnegative) bowl-shaped functiogan be expressed as an
almost sure (Lebesgue) pointwise limit of an increasing sequence of bounded,
uniformly continuous, bowl-shaped functions, by following these steps.

Write T for the set of all nonnegative rational numbers. For etdh T,
defineC; as the convex, symmetric sgi < t}.

(i) Define fmi(X) :=t A (Md(X, C;)), fort € T andm € N. Show that eachfm
is a bounded, uniformly continuous, bowl-shaped function for wHhigh < p.
Hint: Show thatf,(X) =0 if p(X) <t.

(i) Show that the boundary of ead® has zero Lebesgue measure. Whifefor
the Lebesgue-negligible set.1C;.

(iif) Show that sup,; fmt(X) = p(x) for eachx in N¢ Hint: If p(x) >t e T,
show thatx ¢ C;UdC;. Deduce that(x, C;) > 0, and hence sypfn:(x) =t.

Pollard@Paris2001 24 April 2001



10 Chapter 7:  Asymptotic minimax bounds

(iv) Show that a pointwise maximum of any two bowl-shaped functions is also
bowl-shaped.

(v) Use (iv) to build the required increasing sequence from the countable collection
of bowl-shaped function§fm; :meN, t € T}.

Notes

Check Anderson (1955). The proof of the Brunn-Minkowski inequality, in Section 4,
comes from Federer (1969, page 277).
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