
Chapter 7

Efficiency via asymptotic
minimax bounds

SECTION 1 reminds you of the Fisherian concept of efficiency, which is invalid. It points the
way to the rescue of the concept via requirements that estimators behave reasonably at
local alternatives.

SECTION 2 establishes a general asymptotic lower bound for minimax risk of a sequence
of statistical models.

SECTION 3 solves the minimax problem for Gaussian shift families and a large class of
loss functions.

SECTION 4 proves Anderson’s lemma.

1. Efficiency: sunk and rescued

Recall from Chapter 1 the concept of efficiency according to Fisher (1922, page 277):
“The criterion of efficiency is satisfied by those statistics which, when derived from
large samples, tend to a normal distribution with the least possible standard
deviation.” More formally, for a sequence of modelsPn := {Pn,θ : θ ∈ �}, with �

a subset of the real line, reasonable estimatorsθ̂n for θ were supposed to have the
property √

n(̂θn − θ)� N(0, σ 2
θ ) underPn,θ .

The varianceσ 2
θ was supposed to be larger thanI(θ)−1, the inverse of the Fisher

information. Efficient estimators were those for whichσ 2
θ = I(θ)−1.

As you learned in Section 1.4, the unqualified assertion about the limit
distributions is not valid. There exist estimators, such as the Hodges estimator, that
beat the efficiency bound. You also learned that the Hodges construction to improve
the asymptotic behaviour of an estimator at a fixedθ0 has unwelcome consequences
at sequences oflocal alternativesθn that converge toθ0 at a 1/

√
n rate.

By excluding estimators with the unwelcome local behavior we can rescue the
Fisherian concept of efficiency. In this Chapter you will learn about one rescue
method, due to H´ajek (1972) and Le Cam (1972), which excludes superefficency
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2 Chapter 7: Asymptotic minimax bounds

by requiring reasonable behaviour of estimators uniformly over a range of param-
eter values. Chapter 8 will present an alternative approach (the H´ajek-Le Cam
convolution theorem), which derives a stronger form of efficiency under stronger
assumptions.

Consider the meaning of efficiency at a fixedθ0 in � ⊆ Rd. We wish to
make asymptotic assertions about the behavior of
n(̂θn − θ0), for some sequence
of rescaling matrices{
n}. For example, we could choose
n = √

nI
1/2
θ0

to give
efficient estimators a simpleN(0, Id) limiting distribution. The appropriate local
alternatives will turn out to be valuesθn of the formθ0+
−1

n h for a fixedh. That is,
we need to study the behavior of estimators underQn,h := Pn,θ0+
−1

n h, for fixed (or
bounded)h. The minimax theory will refer to the local modelQn := {Qn,h : h ∈ Rd}.

Remark. Here I am tacitly assuming thatθ0 + 
−1
n h ∈ � for all h. To avoid

minor notational problems, you may takePn,θ to equalPn,θ0 if θ /∈ �. If θ0 is an
interior point of �, the redefinition will eventually be unimportant, because the
main result will be stated in terms of limiting behavior for finite subsets of�.

To each estimator̂θn for θ there is a corresponding “estimator”t̂n := 
n(̂θn−θ0)

for h. Of coursêtn is not a true estimator (because it depends onθ0) but the
distinction will have no effect on the subsequent analysis. Similarly, for each
randomized estimatorσ for θ there is a randomized estimatorτ for h, defined by

<1> τ t
yg(t) = σ z

y g (
n(z − θ0)) for g ∈ M+(Rd).

That is, to generate an observationt from τy, we first generatez from σy then put
t := λn(z − θ0).

It also makes sense to incorporate the rescaling into the loss function forPn, by
defining Ln,θ (z) := ρ (
n(z − θ)), for a fixedρ, in order to compare the behavior
of estimators that converge toθ0 at a
−1

n rate. We then have

P
y
n,θn

σ z
y Ln,θn(z) = Qn,hτ

t
yρ(t − h) for θn := θ0 + 
−1

n h andτ as in<1>.

That is, Rn(θ0 +
−1
n h, σ ) = R(τ, h), where the risk forσ uses the loss functionLn

and the risk forτ uses the loss functionLh(t) := ρ(t − h).
Of course all the rescue attempts require some assumptions about the asymptotic

behaviour of thePn models. The traditional approach imposes classical regularity
assumptions: independent observations, existence of smooth densities, and require-
ments that derivatives can be taken under integral signs. The assumptions are used
to construct approximations to likelihood ratios, which could be invoked to establish
convergence in Le Cam’s sense for models indexed by finite sets ofh values.

The efficiency argument become more transparent if, instead of working via the
classical assumptions, we assume directly the Le Cam convergence for theQn models.
More precisely, we need only assume existence of a limit modelQ := {Qh : h ∈ Rd}
for which δ(Q(S), Qn(S)) → 0 for each finite subsetS of Rd. The Hájek result
corresponds to the case whereQ is a Gaussian shift family, that is, where
Qh := N(h, �) for a fixed matrix�. In particular, it covers the case of product
measuresQn,h := Pn

θ0+h/
√

n
under an LAN assumption. Limit theory for theQn

models, at a fixedθ0, is calledlocal, because it deals with behavior of estimators
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7.1 Efficiency: sunk and rescued 3

under alternatives in shrinking neighborhoods ofθ0. When specialized to models
obtained by local reparametrizations, the general result in Section 2 will provide a
local asymptotic minimax bound.

2. Asymptotic minimax lower bound

Le Cam realized that central idea behind H´ajek’s proof could be reinterpreted as
a simple semicontinuity property (under the� metric) for risk functions. The
Gaussian form of the limit is needed only to calculate a neat expression for the
asymptotic lower bound, under a mild assumption on the loss function.

For the general case, I will write the asymptotic lower bound in a form
that makes clear the role of the Le Cam convergence. Actually, we do not need
convergence in the� metric, even for the submodels, because the main Theorem
provides only a one-sided bound. As shown in Section 3, the lower bound simplifies
significantly whenQ is a Gaussian shift and the loss function satisfies a mild
convexity requirement.

In what follows, D will denote a fixed decison space, andLh(·) will be a
nonnegative loss function, not necessarily of the formρ(t − h). The index setH
can be arbitrary, and not justRd. For each finite subsetS of H , write Q(S) for
the submodel ofQ indexed byS. DefineQn(S) similarly. The modelsQn will live
on spaces(Yn, Bn), and the limitQ := {Qh : h ∈ H} will live on (Y, B). For
the Gaussian shift family,Y is a Euclidean spaceRd. The risk for a randomized
procedureτ ∈ �(Y, D) under the modelQ is defined asR(τ, h) := (τQh)

t Lh(t)
for h ∈ H . The maximum risk for a procedureτ is defined as suph∈H R(τ, h). A
minimax procedure, if it exists, has the smallest possible the maximum risk.

Remember that‖Kµ−Kν‖ ≤ ‖µ−ν‖ for eachK in �(Y, Yn) and all measures
µ, ν in L+

σ (Y).

<2> Theorem. Supposeδ(Q
(
S), Qn(S)) → 0 for each finite subsetS of H . Define

RQ := sup
C,S

inf
τ

max
h∈S

(τQh)
t (Lh(t) ∧ C) ,

the supremum running over all constantsC ∈ R+ and all finite subsetsS of H , and
the infimum running over all randomized proceduresτ in �(Y, D). Then, for each
sequence of randomized estimators, withτn ∈ �(Yn, D),

lim inf
n

sup
h∈H

R(τn, h) ≥ RQ.

More precisely, for each constantR < RQ, there exists a finite subsetS of H , a
finite constantC, and ann0 such that

inf
τn

max
h∈S

(
τnQn,h

)t
(Lh(t) ∧ C) > R whenn ≥ n0,

the infimum running over allτn in �(Yn, D), for eachn ≥ n0.

Remark. The result is really just a trivial consequence of the fact that

{τnKn : τn ∈ �(Yn, D)} ⊆ �(Y, D) for eachKn in �(Y,Yn).

Pollard@Paris2001 24 April 2001



4 Chapter 7: Asymptotic minimax bounds

For modelsQn obtained by local reparametrization, the stronger form of the
result makes it clear that good behavior is required only at local alternatives
{θ0 + 
−1

n h : h ∈ S}, for finite S.

Proof. Choose a constantR′ with RQ > R′ > R. By definition of RQ, there exists
a constantC and a finiteS for which infτ (τQh)

t (Lh(t) ∧ C) > R′. These are the
C and S of the stronger assertion; they stay fixed for the remainder of the proof.
AbbreviateLh(t)∧C to �h(t). For eachn there exist randomizationsKn ∈ �(Y, Yn)

for which
εn := 1

2 max
h∈S

‖KnQh − Qn,h‖ → 0 asn → ∞.

For everyτn in �(Yn, D), andh ∈ S, andg in M+(Y) with 0 ≤ g ≤ 1,

|τnKnQhg − τnQn,hg| ≤ 1
2‖τnKnQh − τnQn,h‖ ≤ 1

2‖KnQh − Qn,h‖ ≤ εn.

In particular, takingg equal to�h/C we get, for everyτn,(
τnQn,h

)t
�h(t) ≥ (τnKnQh)

t �h(t) − Cεn.

The lower bound is≥ R′ −Cεn becauseτnKn is a randomized procedure in�(Y, D).
For all n large enough,R′ − Cεn > R.�

Things to do:

• Asymptotic uniqueness under LAN. See H´ajek (1972) and Le Cam (1979).

3. Gaussian shift families

For simplicity, letQ := {Qh : h ∈ Rd} be a standardized Gaussian shift family
on Rd. That is,Qt := N(t, Id). For local reparametrizations under LAN, the more
general case can be reduced to the standard case by absorbing an extra factor of�1/2

into the rescaling matrix
n. AssumeD = H = Rd, so that theτ ’s from Section 2
become randomized estimators for the parameter. Local compactness ofRd and
domination ofQ ensure that eachτ in �(Y, D) can be represented by a Markov
kernel (Section 4.3). For a wide class of loss functions, the infimum in the definition
of RQ will be achieved by the very simple, nonrandom estimatorT0(y) ≡ y.

<3> Definition. Say that a nonnegative functionρ on Rd is bowl-shapedif each of the
sets{x : ρ(x) ≤ c}, for c ∈ R+, is convex and symmetric about the origin.

For example,ρ1(x) := |x|2, andρ2(x) := min(1, x′Gx), with G a positive
definite matrix, andρ1 ∨ ρ1, are all bowl-shaped. For the remainder of the Section,
assumeLh(t) := ρ(t − h), with ρ a bowl-shaped function.

For the lower boundRQ, we seek a Markov kernelτ to minimize

max
h∈S

Q
y
hτ

t
y (ρ(t − h) ∧ C) .
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7.3 Gaussian shift families 5

As you will see, the estimatorT0 minimizes for every finiteC and finite S. The
proof will use the fact thatQ is a shift family, together with the invariance property
of Lebesgue measurem on Rd,

<4> mhg(h + y) = mhg(h) for all y ∈ Rd andg ∈ M+(Rd).

If m were a finite measure, the proof would be very easy. To get some understanding
for the method, consider the heuristic based on the false assumption thatmRd = 1.
The formal proof will use a limiting form of the same idea, replacingm by
a sequence a distributions behaving more and more like “uniform probability
distributions onRd”.

<5> Example. The proof thatT0 is minimax would be easy if Lebesgue measure were
a probability. For the remainder of this Example, please suspend your disbelief and
pretend thatmRd = 1. For simplicity, taked equal to 1.

First note thatQy
hρ

(
T0(y) − h

) = Q
y
0ρ(y) for all h, so that the supremum

over h has no effect when we calculate the maximum risk forT0. However, for a
general randomized estimatorτ ,

suph R(τ, h) ≥ mh R(τ, h) becausemR = 1 ?!

= mhQ
y
0τ

t
y+hρ(t − h) shift family

= Q
y
0m

hτ t
y+hρ(t − h) by Fubini

= Q
y
0m

hτ t
hρ(t − h + y) by <4>

= mhτ t
h

(
Q

y
0ρ(t − h + y)

)
by Fubini.

Consider the innermost integral. I hope you will find it obvious—if not, you could
resort to Calculus—that the value of

Q
y
0ρ(y + β) = my

(
φ(y)ρ(y + β)

)
whereφ := N(0, 1) density,

is minimized whenβ equals 0, for then the minimum ofρ(y + β) occurs at the
location of the maximum forφ(y).

0 −β

For fixed t and h, the innermost integral,Qy
0ρ(t − h + y), is smallest when

t = h. Thus the maximium risk forτ is greater than

mhτ t
hQ

y
0ρ(y) = Q

y
0ρ(y) = suph r (h, T0) becauseτhR = 1 = mR ?!

ThusT0 is the minimax estimator.�

The same heuristic argument would work in higher dimensions, although the
fact about minimization of the inner integral might no longer seem so obvious.
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6 Chapter 7: Asymptotic minimax bounds

<6> Lemma. For ρ bowl-shaped,β �→ Q
y
0ρ(y + β) is minimized whenβ equals0.

A rigorous proof of the Lemma, due to Anderson (1955), is not too difficult. The
complete argument appears in Section 4.

To replace the false heuristic assumption thatmRd = 1 by a rigorous argument,
we must work with a sequence of probability measures that are almost invariant
in an asymptotic sense. LetBr (z) denote the closed ball of radiusr and centerz.
Write Uσ for the uniform distribution onBσ (0). Then

Uh
σ g(h + y) = mhg(σh){h ∈ B1(y/σ)}/mB1(0).

Intuitively, as σ → ∞, the measureUσ behaves increasingly like the mythical
uniform distribution. More precisely,

sup
|g|≤1

|Uh
σ g(h + y) − Uh

σ g(h)|

= sup
|g|≤1

|mhg(σh)
({h ∈ B1(y/σ)} − {h ∈ B1(0)}) |/mB1(0)

≤ m|B1(y/σ) − B1(0)|/mB1(0) =: ψ(y/σ).<7>

The functionψ(t) := m|B1(t) − B1(0)|/mB1(0) quantifies how farUσ is from
having the real invariance property. Notice that 2≥ ψ(t) ↓ 0 as|t | ↓ 0.

<8> Theorem. Let Lh(t) := ρ(t − h), with ρ(·) bowl-shaped. ThenRQ ≥ Qz
0ρ(z).

equality?

Proof. Consider first the case whereρ is bounded (0≤ ρ ≤ C) and uniformly
continuous:|ρ(x + δ) − ρ(x)| ≤ α(|δ|) → 0 as|δ| → 0. In this case, the risk is
also uniformly continuous inh, uniformly in τ :

|R(τ,h + δ) − R(τ, h)|
= |Qy

h+δτ
t
yρ(t − h − δ) − Q

y
hτ

t
yρ(t − h)|

≤ Q
y
h+δτ

t
y|ρ(t − h − δ) − ρ(t − h)| + |Qy

δ τ
t
h+yρ(t − h) − Q

y
0τ

t
h+yρ(t − h)|

≤ α(δ) + C‖Qδ − Q0‖ → 0 asδ → 0.<9>

The uniform continuity allows us to reduce suprema over continuous ranges to
maxima over discrete subranges with only a small decrease in maximum risk.

Given anε > 0, chooseσ so large thatCQ
y
0ψ(y/σ) < ε and findδ so that the

expression in the last line of<9> is also< ε. Let Sσ be aδ-net for the ballBσ (0).
Then, for everyτ ,

ε + max
h∈Sσ

R(τ, h) ≥ sup
h∈Bσ (0)

R(τ, h).

Now argue as in Example<5>, but with m replaced byUσ to reduce the lower
bound to

Q
y
0U

h
σ τ t

y+hρ(t − h) ≥ Q
y
0

(
Uh

σ τ t
hρ(t − h + y) − Cψ(y/σ)

)
cf. <7>

≥ Uh
σ τ t

h

(
Q

y
0ρ(t − h + y)

) − ε

≥ Uh
σ τ t

h

(
Q

y
0ρ(y)

) − ε by Lemma<6>.

The assertion of the Theorem follows, at least whenρ is bounded and uniformly
continuous.
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7.3 Gaussian shift families 7

For the general case, invoke the result from Problem [1] to expressρ as a
pointwise increasing limit of bounded, uniformly continuous, bowl-shaped loss
functions {ρi }. By Monotone Convergence,Q0ρi ↑ Q0ρ. Fix an i such that
Q0ρi > Q0ρ − ε, then argue as above forρi .�

*4. Anderson’s lemma

The result from Lemma<6> is a special case of a general assertion about integrals.

<10> Definition. Say that f is symmetric (about the origin) iff (−x) = f (x) for all x.
Say that a setC is symmetric (about the origin) if−x ∈ C wheneverx ∈ C. (That
is, C is symmetric if its indicator is a symmetric function.)

Write m for Lebesgue measure onRd.

<11> Theorem. Let f andg be nonnegative measurable functions onRd such that both
{ f ≥ t} and{g ≤ t} are symmetric, convex sets for eacht ∈ R+. Then the function

G(β) := my
(
g(y + β) f (y)

) = my
(
g(y) f (y − β)

)
is minimized atβ = 0.

The proof of the Theorem depends upon a strange-looking inequality involving
sums of sets,A⊕ B := {x + y : x ∈ A, y ∈ B}. Even if bothA and B are Lebesgue
measurable, there is no guarantee thatA ⊕ B is also Lebesgue measurable. To be
precise, I should use inner measure with respect tom.

<12> Brunn-Minkowski Inequality. For measurable subsetsA and B of Rd,

(m(A ⊕ B))1/d ≥ (mA)1/d + (mB)1/d.

Proof. Consider the cased = 2. The proof for higher dimensions differs only in
notational details.

The argument develops in four steps. First dispose of the easy case where both
A and B are open rectangles, with sides parallel to the coordinate axes. Call such
setscoordinate rectangles. Then argue by induction to extend the result to finite
unions of coordinate rectangles. Approximate by finite open covers to extend to the
case of compactA and B, then complete the proof by an inner approximation.

Case (i) SupposeA andB are both coordinate rectangles, with side lengths�a, wa

and�b, wb. The sumA ⊕ B is a rectangle with side lengths�a + �b, wa + wb. The
asserted inequality,

√
(�a + �b)(wa + wb) ≥ √

�awa + √
�bwb, is then a special case

of the Cauchy-Schwarz inequality.

Case (ii) SupposeA is a union ofm disjoint open rectangles with sides parallel
to the coordinate axes, andB is a similar union ofn rectangles. Argue by induction
on m + n. Case (i) coversm + n = 2. So supposem > 1.

If two open coordinate rectangles do not intersect, they must lie on opposite
sides of some line parallel to either thex- or y-axis. Thus we may assume, with
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8 Chapter 7: Asymptotic minimax bounds

no loss of generality, that at least one of theA rectangles lies in each of the open
half-space to the left and right of a linex = xA. Define

A− := A ∩ {x < xA}, and A+ := A ∩ {x > xA} and θ = mA+

mA
.

ChoosexB so that the setsB− := B ∩ {x < xB} and B+ := B ∩ {x > xB} also have
Lebesgue measures withmB+ = θmB. That is, the linex = xB divides B in the
same proportions as the linex = xA divides A.

Notice that each ofA− and A+ is a disjoint union of at mostm − 1 open
rectangles; each ofB− and B+ is a disjoint union of at mostn open rectangles.

The sumA− ⊕ B− lies in {x < xA + xB}; the sumA+ ⊕ B+ lies in the disjoint
halfspace{x > xA + xB}; and each is a subset ofA ⊕ B. By disjointness and the
inductive hypothesis,

m(A ⊕ B) ≥ m(A− ⊕ B−) + m(A+ ⊕ B+)

≥
(√

mA− +
√

mB−
)2

+
(√

mA+ +
√

mB+
)2

=
(√

1 − θ
√

mA + √
1 − θ

√
mB)

)2
+

(√
θ
√

mA +
√

θ
√

mB
)2

= (1 − θ + θ)
(√

mA +
√

mB
)2

.

Take square roots to complete the argument.

Case (iii) Suppose bothA and B are compact. Approximate by sets of the form
appearing in case (ii) by arguing as follows. Fixδ > 0. Let

Aδ = {z : d(z, A) < δ}.
Cover A by open coordinate rectangles all lying withinAδ. Extract a finite
subcover. Express the union of the covering rectangles as a finite union of disjoint
open rectangles plus a finite number of line segments. LetA∗ be the union of just the
disjoint rectangles. Notice thatmAδ ≥ mA∗ ≥ mA. In similar fashion find a finite
union B∗ of disjoint open coordinate rectangles inBδ such thatmBδ ≥ mB∗ ≥ mB.
All points of Aδ ⊕ Bδ lie within 2δ of A ⊕ B. Thus√

m
(
(A ⊕ B)2δ

) ≥
√

m(A∗ ⊕ B∗)

≥
√

mA∗ +
√

mB∗ by Case (ii)

≥
√

mA +
√

mB.

As δ → 0, the set(A ⊕ B)2δ shrinks down to the compact setA ⊕ B, and

m(A ⊕ B)2δ ↓ m(a ⊕ B).

Case (iv) Choose compact{Ai } with A1 ⊆ A2 ⊆ . . . ⊆ A andmAi ↑ m∗ A, and
similarly for {Bi }. Then√

m∗(A ⊕ B) ≥
√

m(Ai ⊕ Bi )

≥
√

mAi +
√

mBi →
√

m∗ Ai +
√

m∗Bi ,

which completes the proof.�
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7.4 Anderson’s lemma 9

<13> Corollary. For symmetric convex subsetsC and D of Rd, the functionh(β) :=
m ((β ⊕ C) ∩ D)1/d is maximized atβ = 0.

Proof. Write Cβ for the translated setβ ⊕ C. By symmetry of bothC and D, the
map x �→ −x takesCβ ∩ D onto C−β ∩ D. The two sets are reflections of each
other. They have the same Lebesgue measure. The functionh(·) is symmetric.

Convexity of bothC and D ensures that

(Cβ ∩ D) ⊕ (C−β ∩ D) ⊆ 2(C ⊕ D).

It follows from the Theorem that

(h(β) + h(−β))d ≤ m (2(C ⊕ D)) = 2dm(C ⊕ D) = (2h(0))d .

That is,h(β) = 1/2 (h(β) + h(−β)) ≤ h(0), as asserted.�

Proof of Theorem<11>. Supose first that the symmetric, convex setCt := { f ≥ t}
is bounded for eacht > 0. Let Ds := {g ≤ s}. EachCt and Ds is a symmetric,
convex set, withm(Ct ) < ∞ for eacht > 0. By Corollary<13>, for eachs and t
the d-dimensional volume

m
(
(β ⊕ Ct ) ∩ Dc

s

) = mCt − m ((β ⊕ Ct ) ∩ Ds)

is minimized atβ = 0. It follows that

G(β) = mzmsmt
({0 < t ≤ f (z − β)}{0 < s < g(z)})

= msmtmz
({z ∈ β ⊕ Ct }{z ∈ Dc

s}
)

= msmt
(
m

(
(β ⊕ Ct ) ∩ Dc

s

))
is minimized whenβ = 0.

For the general case, replacef by the functionz �→ f (z){|z| ≤ R}, to which
the special case applies, and then pass to the limit asR → ∞.�

5. Problems

[1] Show that every (nonnegative) bowl-shaped functionρ can be expressed as an
almost sure (Lebesgue) pointwise limit of an increasing sequence of bounded,
uniformly continuous, bowl-shaped functions, by following these steps.

Write T for the set of all nonnegative rational numbers. For eacht in T ,
defineCt as the convex, symmetric set{ρ ≤ t}.

(i) Define fm,t (x) := t ∧ (md(x, Ct )), for t ∈ T andm ∈ N. Show that eachfm,t

is a bounded, uniformly continuous, bowl-shaped function for whichfm,t ≤ ρ.
Hint: Show that fm,t (x) = 0 if ρ(x) ≤ t .

(ii) Show that the boundary of eachCt has zero Lebesgue measure. WriteN for
the Lebesgue-negligible set∪t∈T∂Ct .

(iii) Show that supm,t fm,t (x) = ρ(x) for eachx in Nc. Hint: If ρ(x) > t ∈ T ,
show thatx /∈ Ct ∪∂Ct . Deduce thatd(x, Ct ) > 0, and hence supm fm,t (x) = t .
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10 Chapter 7: Asymptotic minimax bounds

(iv) Show that a pointwise maximum of any two bowl-shaped functions is also
bowl-shaped.

(v) Use (iv) to build the required increasing sequence from the countable collection
of bowl-shaped functions{ fm,t : m ∈ N, t ∈ T}.

6. Notes

Check Anderson (1955). The proof of the Brunn-Minkowski inequality, in Section 4,
comes from Federer (1969, page 277).

References

Anderson, T. W. (1955), ‘The integral of a symmetric unimodal function over a
symmetric convex set and some probability inequalities’,Proceedings of the
American Mathematical Society6, 170–176.

Federer, H. (1969),Geometric Measure Theory, Springer-Verlag.
Fisher, R. A. (1922), ‘On the mathematical foundations of theoretical statistics’,

Philosophical Transactions of the Royal Society of London, A222, 309–368.
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