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Chapter 2

Contiguity

SECTION 1 defines contiguity as a property of two sequences of probability med®ykes,
and {Qy}, that transfersop(-) assertions undefPn} to 0p(-) under {Qn}. Various
equivalent forms of the definition, which are useful for establishing contiguity, are
derived.

SECTION 2 establishes conditions for contiguity of sequences of product measures for a
sequence of parametric alternatives.

SECTION 3 derives useful consequences of contiguity, which transfer convergence in
distribution under{lP,,} to analogous convergence undgp,}. In a special asymptotic
normal case (the so-called Third Lemma of Le Cam) the change in limiting distribution
involves only a shift in the vector of means.

Definition and equivalences

In many asymptotic problems one needs to study estimators under various sequences
of probability models. For example, in Chapter 1, we saw that the Hodges
estimatorg; behaves badly under a sequence of alternatives: 6, + §/+/n. For

a careful analysis we would have to consider behavio6@k, ..., x,) under

the product measurg, 4, := P; on X". Ignoring the limitations of the heuristic
arguments, we already know a lot about the behavior under the product measure
Png := Pg. We could repeat the arguments with taking over the role played

by 6,, following closely the steps used for tlig analysis, to derive the asymptotics
under the alternative. There is, however, a more elegant approach, whereby the
analysis is concentrated into a study of the dengRy /d P;,. The underlying magic

is calledcontiguity, a subtle (see the Notes in Sect®rinvention of Le Cam (1960).

As you will learn in the next few Chapters, contiguity lies at the root of a number
of well known asymptotic facts. Rather than following the tradition of presenting
one monolithic theorem collecting together all the interesting equivalences and
consequences, | will split the ideas into a sequence of small lemmas, each focussing
on one key idea.

The contiguity idea is not restricted to independent sampling. It makes
sense—and has interesting consequences—for any two sequ&pcesd {Q,}
of probability measures. For each both P, and Q, should live on the same
space(2n, Fn), but there need be no constraint on how the spaces change.with
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2 Chapter 2:  Contiguity

For exampleP, and Q, might be the joint distributions of random vectors with
dimensionk,, corresponding to parametric models whose dimensions change with
sample size.

As a convenient abreviation, | will write(1; P,) instead of 6,(1) under the
sequence of modelg,}”, with analogous interpretations fad,(1; P,) and other
stochastic order symbols.

Definition. A sequencdQ,} is said to be contiguous t@,} if every sequence
of random variable$Y,} of orderoy(1; P,) is also of ordeoy(1; Qn). That is, if
Po{lYnl > n} — 0O for eachn > 0O, thenQu{|Y,s| > n} — 0 for eachn > 0. Write
{Qn) < {Pn}, or justQ, < Py, to denote contiguity.

Rewriting the limiting requirements of the definition as expliit inequalities,
we get a more cumbersome (but more versatile) characterization.

Lemma. The contiguityQ, < P, is equivalent to the assertion: for each 0
there exists amy and as > 0, both depending oa, such that

SUHQHF PF <§ andn > ng} <k,
with the supremum ranging over all> ny and all sets in F,, for whichP,F < é.

Proof. Thes, € condition implies contiguity: ifP,{|Ya] > n} — 0 then{|Ya| > n}
is eventually one of thé& sets over which the supremum is taken.

If the §, ¢ condition is violated then, for some > 0, there exists a subse-
quenceN; and setsd, in F, for n € N; such thatQ,F, > ¢ andP,F, — 0 alongNj.
TakeY, as the indicator of, for n € Ny, and putY, := 0 for other values of, to
define a sequendg,} that violates the contiguity property.

REMARK. Most authors use a sequential analog of Lem#a2a- as the definition

of contiguity. That is, they defin€), < P, to mean thatQ,F, — 0 for each
sequencg F,} for which P,F, — 0.

Example. Let P, denote theN(«ap, 1) distribution andQ, denote theN(B,, 1)
distribution, both on the real line. Under what conditions on the sequences of
constantday,} and{B,} do we haveQ, < P,?

If the sequencé, := B, —apn is not bounded then contiguity fails. For example,
suppose’, — oo along some subsequenbg. DefineF, ;= [B,, 00) if n € N; and
F. := ¢ otherwise. Ther®,F, — 0 butQ,F, = 1/2 along the subsequence.

We will soon have elegant ways to show tl@at < P, if §, is bounded in
absolute value by some finite constaht For the moment, brute force will suffice.
Then

QuF = 21) / (x € F)exp(—(x — fn)/2) dx

= (2n)" /2 /{x € Fyexp(8n(x —an) — 82/2 — (X — an)?/2) dx
<P} ({x € F}exp(C|x — anl)) .
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2.1 Definition and equivalences 3

If we split the last integrand according to whether— an| < M or not, for some
constantM, then make the change of varialde- x — «,, in the second contribution,
we get a bound for the expectation:

exp(C M)P,F + (271)_1/2/{|Z| > M}exp(Clz| — 2°/2) dz

If M is large enough, the second contribution is smaller thgh The first
contribution is also smaller thaty2 if P,F < e exp(—C M)/2.

The §, € formulation of contiguity broadens its applicability to cover sequences
of events that are eventually small f&, not just those sequences wilh
probabilities tending to zero. The fine difference is of the type that distinguishes
betweeno,(-) and Op(-) assertions.

Lemma. The contiguityQ, < P, is equivalent to the assertion: every sequence
of random variable$Y,} of orderO,(1; Py) is also of orderOy(1; Q).

Proof. Under contiguity, ifM is chosen so thd®,{|Y,| > M} < § eventually then
Qn{IYnl > M} < € eventually, by virtue of Lemma:2>.

For the converse, suppoSg = 0,(1; P,). Then (see Problerj8]) there exists a
sequencds,} of positive numbers converging to zero for whiek{|Y,| > 8,} — O.
The sequencéY,/sn} is of orderOp(1; P,), and hence also of ord@,(1; Q,). That
iS, Yn = Op(8n; Qn) = 0p(1; Qn), as required for contiguity.

REMARK. A sequence of real random variabl€$,} of order Oy(1; Py) is

sometimes said to be stochastically bounded (urilifg}), or uniformly tight. Such

a sequence must have a subsequence that converges in distribution to a probability

measure concentrated @&. For real-valued random variables the proof is easy: a

Cantor diagonalization argument applied to the sequence of distribution functions

evaluated on a countable dense subseRofThe analog for more general spaces is

often called the Prohorov/Le Cam theorem (UGMTP §7.5).

The preceding Lemma shows that contiguity is a matter of inheritance of a
Op(1): to verify contiguity we could check th®,(1; Qn) property for allOy(1; Pp)
sequences. The next characterization simplifies the task by allowing us to check the
inheritance for just one particular case, the sequendieaithood ratios which is
automaticallyOp(1; Py) but is Op(1; Qn) only when contiguity holds.

It pays to be quite precise in the definition of a likelihood ratio, to avoid
later ambiguities concerning singular parts. Suppose Badihd Q are probability
measures defined on the same sp@ze¥). There is a unique decomposition Qf
into a sumQ, + Qs, whereQ, is absolutely continuous with respectfoand Qs is
singular with respect t®, that is,Qs concentrates on a st with zerolP measure.
At the slight risk of misleading you into thinking th& equalsQ,, | will follow
conventional usage by writindQ/dP for the density ofQ, with respect toP. At
least for nonnegative measurable functidns

dQ

Qf = Qaf +Quf =P<fd—PN;)+@<fNP>

Of course theNy, is irrelevant for theP contribution, but it sometimes helps to be
reminded indirectly that the density applies only to the contribution féamn
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4 Chapter 2:  Contiguity

If both P and Q are absolutely continuous with respect to a measumith

densitiesp andq, then we can take

d

ﬁ =@/pip#0 and Np:={p=0}.
In the Statistics literature, the density)/dP is usually called theikelihood ratio
and is often denoted by a letter like or L. The definition of the likelihood ratio
on the setNp has no effect on the equalitys>. We could even define it asoo,
takingL := (q/p){p # 0} +oco{p = 0}. This definition would lead to some economy
of notation. For example, with likelihood ratigt .} for sequence$P,} and {Q,},
a statement likd, = Op(1; Qn) would imply both

dQn
dpn

The setNp, = {L, = oo} would get absorbed into the sgt, > M} for each finite
constantM.

REMARK.  After some experimentation on live audiences, | have decided that the
possibilities for confusion outweigh the notational disadvantages of the more explicit
treatment of singular parts of thg€),}. | will always regard the likelihood ratio as

a real-valued random variable.

Definition. For probability measure® andP defined on the same space, the
likelihood ratio is defined a& = dQ/dP, the density of the absolutely continuous
part ofQ with respect ta®. The value oL on the singularity séWp can be defined
arbitrarily.

In what follows, L, will always denote the likelihood ratidQ,/dP,, andN,
will denote the singularity selp,. Note thatP,L, = QNt, so that the sequence
{Ln} is alwaysOp(L; Py).

Lemma. Q, <P, if and only if bothL, = Op(1; Qn) andQ,(N,) — 0.

Proof. From Lemma<4>, contiguity and the automatiO,(1; P,) property forLp,
deduce that, = Op(1; Qn). And Q,N, — 0 becausé,N,, = 0.
Conversely, for a fixed finiteM, and anF in F,

QnF =Py (LnFNﬁ{Ln = M}) + Qn (FNg{Ln > M}) + Qn (FNn)
< MPrF + Qn{Ln > M} + QnNp.

If Ln = Op(L; Qn), we can findM to makeQn{L, > M} < ¢/2 eventually. Then the
choices = ¢/(2M) leads to the characterization of contiguity in Lemraza>.

REMARK. If | had adopted the convention that, = co on N, the proof would
have been slightly shorter. The case wh&gN, = 1, with L, = 0, shows that the
condition L, = Op(L; Q) by itself would not suffice for contiguity.

Example. For theP, andQ, from Example<3>,
Ln = exp(8n(X — an) — 87/2) wheres, := B — an.

Under@, the random variable — «, has aN(é,, 1) distribution. If {§,} is bounded
thensn(x — ), and hence.,, is of orderOy(1; Qy).
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2.1 Definition and equivalences 5

The automaticO,(1; P,) property of{L,} implies existence of subsequences
that converge in distribution. Suppose on some probability spac&?, A, P),
represents the limit distribution along some such subsequidncen € N;}. Be
careful: P need not be a limit of th&, in any sense; the probabilif} exists only to
give L a distribution. The image dP, underL, converges, along the subsequence,
to the image of? underL, that is,L,(Py) ~ L(P).

For each finite constarit,

P(LAM)= r!ierQlIPn (Ln A M) <liminf P,L, < 1.

neNp

Let M increase to infinity to deduce th&L < 1. Equality here will translate into
a Op(1; Qn) property of{L, : n € N;}. Equality for all such subsequences will
translate into contiguity.

Lemma. The contiguityQ, < P, is equivalent to the equalitpL = 1 for
everyL that is a limit in distribution of a subsequence of the likelihood raiog
under{P,}.

Proof. Problems[1] and[2] show (via subsequencing arguments) that there is
no loss of generality in considering only the case whiegeitself converges in
distribution to some random variableon a probability spaceé?, A, P).

Fix a finite M with P{L = M} = 0. Fixe > 0. From the definition ot_,,

Qn{Ln = M} =PyLn{Ln < M} + QnNn{Ln < M}

If Qn < Py, then by Lemma<7> we can choosé so large that the left-hand
side of <10> is eventually greater that-1 ¢ and the second term on the right-hand
side is less thaa. In the limit, via the Continuous Mapping TheoremQMTP 8§7.1)
we get 1> PL > PL{L < M} > 1 — 2¢, whencePL = 1.

Conversely, ifPL = 1 we may chooséM so thatPL{L < M} > 1 — ¢, which
implies thatP,Ln{L, < M} > 1 — ¢ eventually. When this inequality holds we have
bothQ{L, < M} > 1—¢€ andQ,N, < .

The last Lemma has an interesting interpretation, which lends support to the
idea that contiguity is a form of asymptotic absolute continuity. For simplicity,
supposelL, converges in distribution undét, to anL on (22, F,P). Contiguity
requiresPL = 1, a condition that begs for interpretation bfas the density of
another probability measur@ with respect tdP. The limit assertion then becomes

dQn
dPy,
with Q a probability measure absolutely continuous with respeét to
Contiguity is also closely related to convergence in Le Cam’s sense. In
fact, under regularity assumptions ensuring existence of conditional distributions,
Problem[6] shows that the convergeneai> implies existence of Markov kernels,
for which K,P = P, and |K,Q —Qn|l; — 0. In fact, it can easily be shown (Le Cam
& Yang 2000, Section 3.1) that contiguity is equivalent to absolute continuity of
with respect toP, for every (P, Q) that is a limit of a subsequence @,, Q,) in
Le Cam’s sense.

dQ
(under{P,} ) ~ T (underP),
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6 Chapter 2:  Contiguity

<12> Example. Once again consider thg, andQ, from Example<3>, with likelihood
ratio L, = exp(dn(x — an) — 82/2), wheres, := B, — an. The differencex — o,
has aN(0, 1) distribution, and thus log, is distributed asN(—§2/2, §2), underP,.
For L, to converge inP,-distribution we must havé? — §? < oo (compare with
Problem[4]). The limit distribution is that ol := exp(6x —§2/2) under theN(0, 1)
distribution on the real line. By direct calculatioL = 1. (Compare with the
moment generating function of the normal distribution.) The correspor@irggthe

O N4, 1) distribution.
The form of the limit distribution in the previous Example is not coincidental.

<13> Example. In many classical situations, lag, has a limiting normal distribution,

or, more precisely., ~ exp(X), with X defined on some, A, P), with distribution

N(u, o). For contiguity we must have £ Pexp(X) = exp(u + 202). That is,
O w=—10%is equivalent to contiguity in this setting.

2. Contiguity for product measures

For the study of asymptotic behavior under sequences of alternatives, we often need

to consider sequences of probability measw@gs= P; andP, := P;, whereo,

is a sequence converging @ at a 1/,/n rate. For simplicity suppose is a real

parameter, and?, has a smooth densitfy with respect to a dominating measure
Classical approximation arguments can be used to establish conti@uityP,,

when the density is twice continuously differentiable. The arguments become a

little subtle when the densities do not all have the same support. The difficulties

are avoided wherf, > 0} does not change with. For this case, by restricting

to the common support set, we may even suppi$e) > 0 for all # and x, which

ensures that there are no log 0 problems when defifjtg = log fy(x).

<14> Theorem. Suppose the density, is everywhere strictly positive, and th&t(x)
is twice differentiable in some neighborhoddof 6,, with

(I) Jo = Pgoégo <0
(i) 6 — £4(x) is continuous af,
(i) there exists aPy-integrable functiorM (x) for which sug,., 1€y (X)| < M(x) .
ThenP){(x) = 0, and
Z = Zisn 4 (Xi)//M ~ N(O, Jp) underP,.

If 6, = 6y + 8n//N, With {8,} bounded, then

dQn
dP,

whereJ, = —PO);ZQO(X). If 3, = J, thenQ, < Py.

Proof. For simplicity of notation, suppos& = 0. We may also suppose that
6n € U. By Taylor's theorem,

<15> Lo(X) = Lo(X) + 04o(X) + 36260 (X) + 26°r (X, 0),
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where, for some (depending orx and@) with |t| < |9],
2M(X) > [£:(X) — bo(X)| = |r(x,0)] = O aso — 0.
By Dominated Convergencé&,|r (x, )| — 0 asé — 0, and hence
n-! Zifnre(xi) =o0p(l:Py)  asé — 0.
Also, by integrating both sides cf15> we get
—D(Py[|Py) = P (£9(X) — £o(X)) = —OP}Lo(X) — 367 Py Lo(X) 4 0(6%).

For D(P, || Py) to achieves its minimum of zero at= 0 we must have the coefficient
PX{o(x) of the linear term equal to zero.

REMARK. The argument about the linear term at the minimum tacitly assumes
that O is an interior point of the parameter set.

The logarithm of the likelihhod ratid, := dQ,/dP, equals
Do (€0, 00) = Lo () =60 D LoOx) + 565 Y (Eo(x) +T (X, 6n))

saza 132 (0 YL B0+ Y ek, n).
The Law of Large Numbers ane2o> let us replace the coefficient 6f by
Py Lo (X) + 0p(L; Pp).
For contiguity, according to Lemmag> we need to prove that iE,, ~ L

along a subsequence théh = 1. By a further subsequencing we may also assume
that s, — 8, a finite limit. Along the sub-subsequence we then have

logLn ~ 8N(O, Jo) — £82J;.
Example<13> then shows whyl; = J, is equivalent to contiguity.

The equalityJ; = Pgéé'go(x) = —var, ({s,(x)) = Jp is the classical dual
representation for the information functidg at 6,. As Le Cam & Yang (2000,
page 41) commented,

The equality. .. is the classical one. One finds it for instance in the standard
treatment of maximum likelihood estimation under Ceai®i’conditions. There
it is derived from conditions of differentiability under the integral sign.

The classical equality is nothing more than contiguity in disguise.

The statement of the Theorem left unresolved the conditions on the densities
under which we must have ngé};o(x) = Iy, The usual argument starts from
the identity A% (feég(x)) = 0, then justifies differentiation under the integral by a
domination condition, to deduce thaf f,(x)€s (x) + f5(X)€s(x)) = 0. Many authors
just assume, even more directly, that differentiation under the integral is justified,
without imposing explicit conditions. There are more elegant, indirect, ways to
derive the identity. The next Theorem will provide an example.

The analysis becomes more complicated if the $éts> 0} are not all the
same. We then need to impose a condition regarding the mass of the Farthat
is singular with respect t®,,.

For simplicity of notation, again supposg = 0. Write N, for the set{x :
fo(x) = 0}, anda(9) for P;Ng, the total mass of the part &% that is not absolutely
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8 Chapter 2:  Contiguity

continuous with respect t8;. The J,-measurable sef, := [ J;_,{x € No} has zero
P probability, but
PIFS =[] ., PNG = (1—a(®)".

If «(8) were not of orden(9?) we could find a sequende,} of orderO(n—'/2) and
ane > 0 for which «(6,) > ¢/n infinitely often. We would then have a sequence
for which liminf, PaFn>1-e*“>0 but PJ'F, = 0, ruling out contiguity. Thus a
necessary condition for contiguit < Py’ whenevem, = O(n~'/?) is

<17> Py{x : fo(x) = 0} = 0(6?) aso — 0.

Assumption<17> takes care of one difficulty in the the case when the sets
{fo > 0} are not the same g4, > 0}. Another, more subtle, problem arises with
the defintion of logf,. If fy(x) > 0 then, by continuity, we know thaty(x) > 0
for |6] < §(x). There might be no fixed, not depending o, for which fs(x) > 0
when || < §. We might haveP, log fys(x) = —oo for all & # 0, which would cast
doubt on some of the calculations used to prove Theotans-. For example, how
could assumption (iii) hold? The functiofy (x) := log f,(6) might only be defined
on an interval ofy values that depend ox It still makes sense to work with the
pointwise derivative/,(x), but we might encounter the valueso with positive P,
probability when studying, (x) for a fixedd # 0. It appears that we have to impose
the regularity conditions directly oy (x), and not on logfs(x).

<18> Theorem. Suppose the map+— f, is twice differentiable in a neighborhodd!
of 0 with:

() 6 — fy(x) is continuous ab;
(ii) there exists a_measurable functiom(x) with P} (M(x)/fo(X)) < oo for
which sup,cy | fo(X)| < M(X);
(i) P (£,00/f0(0)° = PE(fo(x)/fo(x))” < 00 asb — O;
(iv) Py{fy =0} =o0(h?) asé — O.
ThenPylo(x) = 0= Py (f(x)/fo(x)).

Define P, := Py andQy, := P;. If 6y 1= 6y + 8n/+/N, with {8,} bounded, then
d@n
dP,

wherel, := vary (o) andZ, := Y, _, £o(x)/+/n ~ N(O, L) underP,. Consequently,
Qn < Pp.

Proof. There are several useful ways to write the Taylor expansiofy afound 0.
Wheno € U,

<19> fo () = fo(x) + 6 fo(x) + 567 fo () + 3671 (x, 6),

= (1+ 0p(L; Pn)) exp(8nZn — 28210)

where, for some (depending orx and®) with |t| < |6],
2M(x) = [fi00 = fo()| = Ir(x,0)] > 0 asg — 0.
Dominated Convergence and (ii) then gives
<20> Polr(x,6)/fo(x))] > 0  ase — 0.
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2.2 Contiguity for product measures 9

From <19> we also have

fo(x) = fo00 =0 fo(x)  fo(0)
{f(](X) > 0} PR fO(X) — fO(X){fO(X) > 0} asf — 0.
Moreover, the ratio is bounded in absolute value by Egantegrable function
{fo(x) > O}M(x)/fo(x). By Dominated Convergence fdt, followed by a cancel-

lation of the fy(x) factor in the first term, we have
02 (Py{fo > 0} — Pyl — 0Pulo) — P (fo/fo).

Assumption (iv) simplifies the assertion twl) — 6~1Py¢y — P (fo/fo), from
which it follows thatPy¢, = 0 (becauseRy| fo/fol < Py (M/fy) < 00), and hence
PX (fox)/fo(x)) = O.
It will also be helpful to have the Taylor expansion with the remainder written
in the Lagrange style,

<21> fo(x) = fo(x) +6 [y for(x) dt,
a form that will be useful because it does not involve the second derivative.
The likehood ratioL,, := dQ,/dP, can be written as

fo, (X)) _ o _ fg, (%) — fo (X))
Hisn o0 = Hisn (1+ e€ni) wheree,; = {fo(x) > 0}—f0(xi)

The indicator functions are not really need if we consider only behavior upRgder

but they will prevent inadvertent appeals t;bOO_2 1. Until further notice, all
calculuations are carried out und@y, so | will temporarily dispense with the
indicators, and writ®,(-) instead ofo,(- ; Py).

By <19>,

<22> €ni = Onlo(x) + 362 (fo(x) +1 (X, 6n)) /To (%),
whence
lenil < 10n€o(x)| + 262Zi  whereY; = (| fo(x)] + 2M (X)) /fo(X)).

UnderP,, the random variable&)(x;) are identically distributed, with finite second
moments, and the random variabMsare identically distributed, with finite first
moments. Problerfi’] shows that

maXn [€o()] = 0p(n™"?)  and  max |Yi| = op(n7h).
from which it follows that
<23> mMaX <n leni| = 0p(1) wheng, = §,//n = O(n~/2),
Expansion<22> also gives
D in€ni = 6nZn+ 387 (rr1 Y FOO/ T 071 Y v, 6)/To ))
<24> = 8nZn + 0p(D),

with the Law of Large Numbers and the fact tHat(f(x)/fo(x)) = O disposing of
the first average in parentheses, amab> disposing of the second.
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10 Chapter 2:  Contiguity

Assumption (iii) will lead to a neat asymptotic form for the sum of squares of
the e’'s. DefineW, := {f, > 0} f,/f,. By Fatou’s Lemma (along a sequencetof
find the source of the Fatou values, if you prefer),

trick; Blyth? 1&H? Rk
4PyW7 — limsup,_, o Po|Wy — Wo!?
= liminfs_o Py (2W; + 2W75 — [Wy — Wp|?)
> Py lim inf9_>0 (ZW“)2 + 2W02 — Wy — W0|2) = 4P0W02
That is,
<25> y(6)? := Py|Wy — Wy |2 — 0 as® — 0, whereW, := {f, > 0} fy/fo.
From <21>, we also have the representatign = 6, fol Wj,t () dt. Hence
Pole?; — 03Wo(x)?| = 02 P
<02 Jo Jy (Cy(6at) + Cy @) + ¥ Oa1)y (6r9)) ds dit
whereC? := PyW? = I,,. It follows that
Y Balen = 03 Wo(x)*| — O,

fo1 fol Wit (X) Was(X) — Wo(x)2 ds dt’

implying
<26> Yo emi =Tty Wo(xi)? 4 0p(1) = 87T + 0p(D).
The results;23>, <24>, and ;26> lead rapidly to the desired approximation

for Ly, via the inequality
llog(1+1t) —t + 3t?| < |t|? for |t| <1/2..

When max., |eni| < 1/2 we have

10g(Ln) = D Jeni +5 Y enil < D lenil® < maxleni] Y en; = 0p(d),

I=n I=n I=n - I=n

that is,

La{maxien;| < 1/2} = (MaX|eni| < 1/2} €Xp(8nZn — 38710 + 0p(D)) .

The 4-0,(1) factor in the statement of the Theorem absorbsfi#) in the exponent,
as well as allowing for arbitrarily bad behavior bf, when max., |en;| > 1/2.
O Example<13> gives contiguity.

3. Limit distributions under contiguous alternatives

Contiguity was introduced in Section 1 as a way to transfer eithey or Op(-)
assertions fronfP,} to {Qy}. It can also be used to transfer assertions of convergence
in distribution for sequences of random vectfyg}, if we control the joint behaviour
of Y, and the likelihood ratio. The idea behind the proof is straightforward if we
ignore complications such as unbounded likelihoods: for bounded, uniformly
continuousg, ,

Qn(Yn) = PaLag(Yn)—>PLY(Y).
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2.3 Limit distributions under contiguous alternatives 11

In a rigorous proof, contiguity controls the contributions from regions of large
and from the singularity regioh,, and then convergence in distribution @f,, Y,)
takes care of the convergence assertion. The limit expression becgi¥s,
whereQ is the probability measure defined to have densityith respect toP.
That is, the limit distribution ofY,, under@, is given byY, as a random vector on
(Q,A,Q).

We will need the result only for random vectors, but the proof actually
works for random elements more general spaces.

<27> Lemma. SupposaY,,L,) converges in distribution und¢P,} to a limit repre-
sented by a paitY, L) on a probability spacéz, A, P), with PL = 1. Then{Y,}
converges in distribution undégf),} to the limit represented by as a random
element on the probability space, A, Q), whereQ has densityl. with respect
toP. That is,Qng(Yn) — Qg(Y) :=PLg(Y), at least for bounded, continuogs

Proof. The conditionPL = 1 ensures thaQ, < P,. Fix ¢ > 0 and letg be
a bounded, continuous function. For convenience supposed0< 1. Invoke
contiguity to find a finiteM such thatP{L = M} = 0 andQ{L > M} < ¢ and
Qn{Ln > M} < € eventually. Then from the definition af,,

|Qng(Yn) — PaLng(Yn){Ln < M}| < Qn{Ln > M} + QN, < 2¢ eventually
By the Continuous Mapping Theorem,
PaLng(Yn){Ln = M} - PLO(Y){L = M},

O which differs fromPLg(Y) = Qg(Y) by at moste.

REMARK. By the same argument (or just by substitution(¥f, L,) for Y, in
the conclusion of the Lemma), the paiv, L) underQ also represents the limit
distribution for the pairgY,, L) under{Q,}.

Convergence in distribution afY,, L) is equivalent to convergence in distri-
bution of (Y, logL,). When the joint limit is normal, the assertion of the preceding
Lemma takes a particularly simple form. The result is knowh.@sCam'’s Third
Lemma

<28> Example. SupposqY,, L,) ~ (Y, e%) under{P,}, where the pairY, Z), defined
on (22, A, P), has a joint normal distribution. To ensure contiguity, the margihal
distribution must beN (— 1402, 02) for someo? > 0. Let the marginaY distribution
be N(u, V), and lety denote the vector of covariances betwé&eand Z. UnderP
the pair(Y, Z) has moment generating function

M(s,t) :=PexpsY +tZ) = exp(su + 1sVs+ syt — Lot + 16°t7).
The limiting distribution undefQ,} has moment generating function
QexpsY +tZ) =PexpZ) expsY +t2)
= M(s, t+1)
=exp(s'(u+y)+ 35Vs+syt+ 1ot + 10°t?).
That is, the variances and covariances stay the same, but the m¥ais shifted
U tou+y.
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12 Chapter 2:  Contiguity

Example. In Chapter 1, a heuristic argument gave the asymptotic behavior of the
estimatord, defined to minimize) ; _,, g(x;, 6). Assuminged = argmin P,g(x, t) for
eachd, | argued tha®, should converge P probability tod, and also

VN (B = 6) =n"2my(x) + 0p(D),
wherem,(x) = —g(x, 6)/34(6), with Jq(6) = PyG(x,0), and theo,(1) is an
abbreviation foro,(1; P}").

For a fixedo ands, let6, := 6 +5//n, andP, := P}, andQ, := P . Assume
that the conditions of Theorerais> are satisfies, so that

Ln = (1+ 0p(L; Pn)) eXp8Z, — 25°1),

with
Zn=n"1/? Zign £y (%) ~ N(O, Iy) underP,.

Write Y, for /n (6, —6). UnderP,, the pair(Y,, Z,) is approximated by a
standardized sum of random vectors,

(Y, Zn) = 0p() +n72 Y " (m(x). £o(x)) .
which has a limiting bivariate normal distributiofy, Z) with Z distributed
N(=582Iy/2, §%I5), and Y distribyted N(O, vy) for vy = Pyg(x, 0)?/34(6)?, and
cov(Y, Z) = yy i= —8Py (9(X, 0)€s(X)) / Ig(6).
UnderQy, the Y, has aN(ys, vy) limit distribution, by Example<2s>. Thus

VN (O —6n) =Ya =8~ N(yy —8,v9)  underQn.

The limit distribution for/n (8, — 6,) is the same unde®, as undet?, if y, = 4,
that is, if Jy(9) = — Py (9(x, 0)£4(x)). This equality is precisely the condition derived
in Chapter 1 from the assumption thRig(x, t) is minimized att = 6.
Thus, insofar as the heuristics can be believed, we have the limiting distribution
of /(0 — 6,) underP; the same as the limiting distribution gfn (8, — 6) under
P,'. Estimators with this property are usually said toHb@jek regular, a property
that we will later meet as one of the assumptions for tiagekilLe Cam Convolution
Theorem.

Problems

Suppos€g{P,} and {Q,} are sequences of probability measures with the following
property: for each subsequentie C N there exists a subsubsequemtec N; for
which {Q, : n € No} < {P : n € No}. Show that{Q, : n € N} < {P, : n € N}. Hint:

If contiguity fails, there is subsequence for which there are setskyiy — O but
QnFh > €, for somee > 0.

Suppos€{X,} is a sequence of random variables with the following property: for
each subsequend€, C N there exists a subsubsequengg € N; for which
{Xn :n e Ny} = 0p(1). Show that{X, : n € N} = Op(D).
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2.4 Problems 13

If {Xn} = 0p(1), show that there exists a sequenigg that converges to zero slowly
enough to ensur®{|X,| > €.} — 0. Hint: Build ¢, using an increasing sequence
n(k) such thatP{|X,| > 1/k} < 1/k for n > n(k).

SupposeZ, ~ N(O, ) and thata,Z, + B has a nondegenerate limit distribution,
for a pair of deterministic sequencgs,} and{s,}. Show that botha,| and 8, must
converge to finite limits.

Let P, denote theN (ap, 1) distribution andQ,, denote theN (8, 1) distribution, both
on the real line. Under what conditions on the sequences of congtahtand {8}
do we have[Q,} < {P,}?

SupposeP, andQ, are probability measures @, F,,), for n e N := NU{oo}, with
Qn <« P,. Write Ly, for the corresponding densities. Defifg(x) := Py{L, < X},
and write F;! for the corresponding quantile function. Suppose the conditional
distributionsz,+(-) := P, (- | Ly = t) exists, as Markov kernels frof to ©,. For
eachn € N define a Markov kerneK,, , from Q, to Q,, as follows.
Given wy € Q0, defineTy, := Lo(ws); then generatd) € (0, 1) with
U | T =t ~ Unif[Fx(t—), Fx(t)]; then defineT, = F;1(U); then
generateo, | Th =t ~ 1.
(i) Show thatK,P,, = P,. That is, the probability measubtd, := P,, ® K, on
Qs x €5 has marginal®,, andP,,.

(i) For each measurable function witti| < 1 on Q,, show that

IKnQoo f = Qn | = P2, (Lo (@)KR, T (X)) =P (L0 F (X)) |
< M“¥|Leo(@) = La(x)]

1
= [ IFx'(w - Fwldu.
0

(iii) Deduce that it (Pn) ~ Loo(Pso) then||KnQy — Qnll1 — O.
(iv) Extend the result (iii) to the case whe@g < Py, for n € N, with Q.. « Pw..

Let Z,, Z,, ... be a sequence of independent, identically distributed random variables
with P|Z|" < oo for a constant > 1. Prove that max,|Z;j| = op(n*/"). Hint:

Show thatP{max ., |Zi| > en'/"} is smaller thane"P|Z,|"{|Z;| > en'/"}, then

invoke Dominated Convergence.

Notes

Le Cam (1960) defined contiguity and derived its most important properties, in a
few pages. The name “Le Cam’s Third Lemma” seems duedieki& Sidak (1967,
Chapter VI). It was the third of the lemmas in their chapter describing contiguity.
The numbering now should have little significance.

Lucien Le Cam himself felt that describing contiguity as a subtle invention
was an exaggeration. In a private letter to me he wrote “Really, contiguity is a very
trivial affair. | just gave it a name that pleased people.” Maybe the only subtlety
lies in the recognition that something so trivial is worth noticing. To my chagrin,
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14 Chapter 2:  Contiguity

| ignored the concept for many years, because it seemed hardly worth bothering
about. Moreover, | have found that | was not alone in my oversight. Maybe subtlety
lies in the eye of the beholder.

added Section

*6. Bahadur’s rescue of efficiency

The representation of the likelihood ratio in Theoremmsi> and <18> provides

the framework for a method to exclude the superefficiency phenomenon described
in Section1.4. In fact, the form of the underlying statistical models (indepen-
dent, identically distributed observations from a smoothly parametrized family of
densities,..) becomes almost irrelevant once we have the limit behavior

(;%” ~ exp(tZz — it?0c7%)  with Z ~ N(0, 0 ~2) underP,
n

<30>

for a constant > 0. For the cases considered in Sectiyrthe constant—2 was

the information function evaluated at the valiethat definedP,. The only other
vestige of the underlying parameter is an assumption about the asymptotic behavior
of some estimatofl,,. Specifically, suppose there is a numBgifor which

<31> VN (T = 6) ~ N(O, 72) underpP,.

With a very mild assumption—weaker than the assumption {Aa¢T, — 6,)
has a limitingN (0, z2) distribution underQ,—on the behavior off, underQ,,
Bahadur (1964) was able to rule out the possibility that< o2, the inequality
corresponding to superefficiency @f at 9.

<32> Theorem. Suppose<3o> and<31> hold, and
Iimninf Qn{v/N(Th—6n) <0} <1 whered, := 6y +t//n.

Thent? > o2.

The proof will follow as a simple consequence of the following Lemma, which
captures the essence of Bahadur's main argument.

<33> Lemma. Supposé®, andQ, are probability measures with, contiguous tdP,,.
SupposealQ, /dP,, as random variables afl,, A,, Pn), converge in distribution to a
random variablé. on (X, A, P). Then for each sequence of measurable functigns
with 0 < vy, < 1, and each positive constadt

liminf (Paym + CQnim) = IP A (CQ)1.
whereQ is the probability measure aiX, A) defined bydQ/dP = L.

Proof. Write L, for the density of the part o, that is absolutely contnuous with
respect tdP,. We are assumimg that, ~ L. Thus

Payin + CQnin = | inf B (¥ +CLa) = Bn ((CLn < 1) + CLa{CLy > 1)).
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2.6 Bahadur's rescue of efficiency 15

That is, the infimum is achieved wheh:= {CL, < 1}. Rewrite the last expectation
asP, (LA (CLy)). The mapx — 1 A (Cx) is bounded and continuous @i. The
lower bound converges B (1 A (CL)) = |P A (CQ)|1, as asserted.

Proof of Theorem<32>.  Identify the limit distribution forL,, with the distribution
of the densitydQ/dP, whereP := N(0,0?) and Q := N(t, ¢?). Invoke the
Lemma withy, = {/n(T, — 6,) > 0} andC := exp(—o*t?/2). The liminf

of Ppyrn + CQuyry is less thamP{N(—t, %) > 0} + 3C. To calculate the norm of
P A (CQ), note that theN (0, o2) density is smaller tha@ times theN(t, o?) density
at those pointx of the real line for which-1x%c =2 < —107%t? — 1o7%(x — 1)2,
that is, whenx > t. Thus

IP A (CQ)|l = P[t, 00) + CQ(—00, t] = ®(t/0) + 3C.
In order thatd(t/7) + 1C > ®(t/o) + 1C, we must have > o.

Extra note

The argument in Sectiof is an extension of the method of Bahadur (1964). He
noted that there is an easy generalization to the case where the parameter is vector
valued. Bahadur imposed classical regularity conditions to produce the required
approximation for the likelihood ratio.

Extra problems

Show that the affinity between two finite Borel measukeand 1 on a metric
spaceX equals the infimum ofig + «g taken over all continuous functiorgsfor
which 0 < g < 1. Hint: Use the fact that the bounded continuous functions are
dense inL'(x + ). Also, if 0 < f < 1 show that/f — gy| < |f — g| where
Go=1A0g"

Let P, andQ, be as in Lemma<33>. SupposgY,} is sequence of random vectors
for which Y, ~ A underP, andY, ~ n underQ,, wherex and u are probability
measures ofR. For each positive consta@t show thatjAA(Cu)|l; = |[PACQ)|;.
Deduce thatix — u|l; < |P — QJl;. Hint: Invoke the Lemma withyy, := g(Yy), with

g continuous and & g < 1, then appeal to Problefs].

Show that||N(t;, 02) — N(tz, 0?)|l; = 2P{|N(0, 1)| < |t; — t5]/o}.
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