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Chapter 2

Contiguity

SECTION 1 defines contiguity as a property of two sequences of probability measures,{Pn}
and {Qn}, that transfersop(·) assertions under{Pn} to op(·) under {Qn}. Various
equivalent forms of the definition, which are useful for establishing contiguity, are
derived.

SECTION 2 establishes conditions for contiguity of sequences of product measures for a
sequence of parametric alternatives.

SECTION 3 derives useful consequences of contiguity, which transfer convergence in
distribution under{Pn} to analogous convergence under{Qn}. In a special asymptotic
normal case (the so-called Third Lemma of Le Cam) the change in limiting distribution
involves only a shift in the vector of means.

1. Definition and equivalences

In many asymptotic problems one needs to study estimators under various sequences
of probability models. For example, in Chapter 1, we saw that the Hodges
estimatorθ∗

n behaves badly under a sequence of alternativesθn := θ0 + δ/
√

n. For
a careful analysis we would have to consider behavior ofθ∗

n (x1, . . . , xn) under
the product measurePn,θn := Pn

θn
on Xn. Ignoring the limitations of the heuristic

arguments, we already know a lot about the behavior under the product measure
Pn,θ0 := Pn

θ0
. We could repeat the arguments withθn taking over the role played

by θ0, following closely the steps used for theθ0 analysis, to derive the asymptotics
under the alternative. There is, however, a more elegant approach, whereby the
analysis is concentrated into a study of the densityd Pθn/d Pθ0. The underlying magic
is calledcontiguity, a subtle (see the Notes in Section5) invention of Le Cam (1960).

As you will learn in the next few Chapters, contiguity lies at the root of a number
of well known asymptotic facts. Rather than following the tradition of presenting
one monolithic theorem collecting together all the interesting equivalences and
consequences, I will split the ideas into a sequence of small lemmas, each focussing
on one key idea.

The contiguity idea is not restricted to independent sampling. It makes
sense—and has interesting consequences—for any two sequences{Pn} and {Qn}
of probability measures. For eachn, both Pn and Qn should live on the same
space(	n, Fn), but there need be no constraint on how the spaces change withn.
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2 Chapter 2: Contiguity

For example,Pn and Qn might be the joint distributions of random vectors with
dimensionkn, corresponding to parametric models whose dimensions change with
sample size.

As a convenient abreviation, I will writeo(1; Pn) instead of “op(1) under the
sequence of models{Pn}”, with analogous interpretations forOp(1; Pn) and other
stochastic order symbols.

<1> Definition. A sequence{Qn} is said to be contiguous to{Pn} if every sequence
of random variables{Yn} of order op(1; Pn) is also of orderop(1; Qn). That is, if
Pn{|Yn| > η} → 0 for eachη > 0, thenQn{|Yn| > η} → 0 for eachη > 0. Write
{Qn} � {Pn}, or justQn � Pn, to denote contiguity.

Rewriting the limiting requirements of the definition as explicitδ, ε inequalities,
we get a more cumbersome (but more versatile) characterization.

<2> Lemma. The contiguityQn � Pn is equivalent to the assertion: for eachε > 0
there exists ann0 and aδ > 0, both depending onε, such that

sup{QnF : PnF < δ andn ≥ n0} ≤ ε,

with the supremum ranging over alln ≥ n0 and all setsF in Fn for which PnF < δ.

Proof. The δ, ε condition implies contiguity: ifPn{|Yn| > η} → 0 then{|Yn| > η}
is eventually one of theF sets over which the supremum is taken.

If the δ, ε condition is violated then, for someε > 0, there exists a subse-
quenceN1 and setsFn in Fn for n ∈ N1 such thatQnFn > ε andPnFn → 0 alongN1.
TakeYn as the indicator ofFn for n ∈ N1, and putYn := 0 for other values ofn, to
define a sequence{Yn} that violates the contiguity property.�

Remark. Most authors use a sequential analog of Lemma<2> as the definition
of contiguity. That is, they defineQn � Pn to mean thatQn Fn → 0 for each
sequence{Fn} for which Pn Fn → 0.

<3> Example. Let Pn denote theN(αn, 1) distribution andQn denote theN(βn, 1)

distribution, both on the real line. Under what conditions on the sequences of
constants{αn} and {βn} do we haveQn � Pn?

If the sequenceδn := βn −αn is not bounded then contiguity fails. For example,
supposeδn → ∞ along some subsequenceN1. Define Fn := [βn, ∞) if n ∈ N1 and
Fn := ∅ otherwise. ThenPnFn → 0 but QnFn = 1/2 along the subsequence.

We will soon have elegant ways to show thatQn � Pn if δn is bounded in
absolute value by some finite constantC. For the moment, brute force will suffice.
Then

QnF = (2π)−1/2
∫

{x ∈ F} exp
(
−(x − βn)

2/2
)

dx

= (2π)−1/2
∫

{x ∈ F} exp
(
δn(x − αn) − δ2

n/2 − (x − αn)
2/2

)
dx

≤ Px
n ({x ∈ F} exp(C|x − αn|)) .
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2.1 Definition and equivalences 3

If we split the last integrand according to whether|x − αn| ≤ M or not, for some
constantM, then make the change of variablez = x −αn in the second contribution,
we get a bound for the expectation:

exp(C M)PnF + (2π)−1/2
∫

{|z| > M} exp
(
C|z| − z2/2

)
dz.

If M is large enough, the second contribution is smaller thanε/2. The first
contribution is also smaller thanε/2 if PnF < ε exp(−C M)/2.�

The δ, ε formulation of contiguity broadens its applicability to cover sequences
of events that are eventually small forPn, not just those sequences withPn

probabilities tending to zero. The fine difference is of the type that distinguishes
betweenop(·) and Op(·) assertions.

<4> Lemma. The contiguityQn � Pn is equivalent to the assertion: every sequence
of random variables{Yn} of order Op(1; Pn) is also of orderOp(1; Qn).

Proof. Under contiguity, ifM is chosen so thatPn{|Yn| > M} < δ eventually then
Qn{|Yn| > M} ≤ ε eventually, by virtue of Lemma<2>.

For the converse, supposeYn = op(1; Pn). Then (see Problem[3]) there exists a
sequence{δn} of positive numbers converging to zero for whichPn{|Yn| > δn} → 0.
The sequence{Yn/δn} is of orderOp(1; Pn), and hence also of orderOp(1; Qn). That
is, Yn = Op(δn; Qn) = op(1; Qn), as required for contiguity.�

Remark. A sequence of real random variables{Yn} of order Op(1; Pn) is
sometimes said to be stochastically bounded (under{Pn}), or uniformly tight. Such
a sequence must have a subsequence that converges in distribution to a probability
measure concentrated onR. For real-valued random variables the proof is easy: a
Cantor diagonalization argument applied to the sequence of distribution functions
evaluated on a countable dense subset ofR. The analog for more general spaces is
often called the Prohorov/Le Cam theorem (UGMTP §7.5).

The preceding Lemma shows that contiguity is a matter of inheritance of a
Op(1): to verify contiguity we could check theOp(1; Qn) property for allOp(1; Pn)

sequences. The next characterization simplifies the task by allowing us to check the
inheritance for just one particular case, the sequence oflikelihood ratios, which is
automaticallyOp(1; Pn) but is Op(1; Qn) only when contiguity holds.

It pays to be quite precise in the definition of a likelihood ratio, to avoid
later ambiguities concerning singular parts. Suppose bothP andQ are probability
measures defined on the same space(	, F). There is a unique decomposition ofQ

into a sumQa + Qs, whereQa is absolutely continuous with respect toP andQs is
singular with respect toP, that is,Qs concentrates on a setNP with zeroP measure.
At the slight risk of misleading you into thinking thatQ equalsQa, I will follow
conventional usage by writingdQ/dP for the density ofQa with respect toP. At
least for nonnegative measurable functionsf ,

<5> Q f = Qa f + Qs f = P

(
f

dQ

dP
Nc

P

)
+ Q ( f NP)

Of course theNc
P

is irrelevant for theP contribution, but it sometimes helps to be
reminded indirectly that the density applies only to the contribution fromQa.
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4 Chapter 2: Contiguity

If both P and Q are absolutely continuous with respect to a measureλ, with
densitiesp andq, then we can take

dQ

dP
:= (q/p){p �= 0} and NP := {p = 0}.

In the Statistics literature, the densitydQ/dP is usually called thelikelihood ratio
and is often denoted by a letter likeL or L. The definition of the likelihood ratio
on the setNP has no effect on the equality<5>. We could even define it as+∞,
taking L := (q/p){p �= 0}+∞{p = 0}. This definition would lead to some economy
of notation. For example, with likelihood ratios{Ln} for sequences{Pn} and {Qn},
a statement likeLn = Op(1; Qn) would imply both

dQn

dPn
= Op(1; Qn) and QnNPn → 0.

The setNPn = {Ln = ∞} would get absorbed into the set{Ln > M} for each finite
constantM.

Remark. After some experimentation on live audiences, I have decided that the
possibilities for confusion outweigh the notational disadvantages of the more explicit
treatment of singular parts of the{Qn}. I will always regard the likelihood ratio as
a real-valued random variable.

<6> Definition. For probability measuresQ and P defined on the same space, the
likelihood ratio is defined asL := dQ/dP, the density of the absolutely continuous
part ofQ with respect toP. The value ofL on the singularity setNP can be defined
arbitrarily.

In what follows, Ln will always denote the likelihood ratiodQn/dPn, andNn

will denote the singularity setNPn . Note thatPnLn = QNc
n, so that the sequence

{Ln} is alwaysOp(1; Pn).

<7> Lemma. Qn � Pn if and only if both Ln = Op(1; Qn) andQn(Nn) → 0.

Proof. From Lemma<4>, contiguity and the automaticOp(1; Pn) property forLn,
deduce thatLn = Op(1; Qn). And QnNn → 0 becausePnNn ≡ 0.

Conversely, for a fixed finiteM, and anF in Fn,

QnF = Pn
(
LnFNc

n{Ln ≤ M}) + Qn
(
FNc

n{Ln > M}) + Qn (FNn)

≤ MPnF + Qn{Ln > M} + QnNn.

If Ln = Op(1; Qn), we can findM to makeQn{Ln > M} < ε/2 eventually. Then the
choiceδ = ε/(2M) leads to the characterization of contiguity in Lemma<2>.�

Remark. If I had adopted the convention thatLn = ∞ on Nn, the proof would
have been slightly shorter. The case whereQnNn = 1, with Ln ≡ 0, shows that the
condition Ln = Op(1; Qn) by itself would not suffice for contiguity.

<8> Example. For thePn andQn from Example<3>,

Ln = exp
(
δn(x − αn) − δ2

n/2
)

whereδn := βn − αn.

UnderQn the random variablex − αn has aN(δn, 1) distribution. If {δn} is bounded
thenδn(x − αn), and henceLn, is of orderOp(1; Qn).�
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2.1 Definition and equivalences 5

The automaticOp(1; Pn) property of{Ln} implies existence of subsequences
that converge in distribution. SupposeL, on some probability space(	, A, P),
represents the limit distribution along some such subsequence{Ln : n ∈ N1}. Be
careful: P need not be a limit of thePn in any sense; the probabilityP exists only to
give L a distribution. The image ofPn underLn converges, along the subsequence,
to the image ofP underL, that is,Ln(Pn)� L(P).

For each finite constantM,

P (L ∧ M) = lim
n∈N1

Pn (Ln ∧ M) ≤ lim inf
n∈N1

PnLn ≤ 1.

Let M increase to infinity to deduce thatPL ≤ 1. Equality here will translate into
a Op(1; Qn) property of {Ln : n ∈ N1}. Equality for all such subsequences will
translate into contiguity.

<9> Lemma. The contiguityQn � Pn is equivalent to the equalityPL = 1 for
every L that is a limit in distribution of a subsequence of the likelihood ratios{Ln}
under{Pn}.
Proof. Problems[1] and [2] show (via subsequencing arguments) that there is
no loss of generality in considering only the case whereLn itself converges in
distribution to some random variableL on a probability space(	, A, P).

Fix a finite M with P{L = M} = 0. Fix ε > 0. From the definition ofLn,

<10> Qn{Ln ≤ M} = PnLn{Ln ≤ M} + QnNn{Ln ≤ M}
If Qn � Pn, then by Lemma<7> we can chooseM so large that the left-hand

side of<10> is eventually greater that 1− ε and the second term on the right-hand
side is less thanε. In the limit, via the Continuous Mapping Theorem (UGMTP §7.1)
we get 1≥ PL ≥ PL{L ≤ M} ≥ 1 − 2ε, whencePL = 1.

Conversely, ifPL = 1 we may chooseM so thatPL{L ≤ M} ≥ 1 − ε, which
implies thatPnLn{Ln ≤ M} > 1− ε eventually. When this inequality holds we have
both Q{Ln ≤ M} > 1 − ε andQnNn < ε.�

The last Lemma has an interesting interpretation, which lends support to the
idea that contiguity is a form of asymptotic absolute continuity. For simplicity,
supposeLn converges in distribution underPn to an L on (	, F, P). Contiguity
requiresPL = 1, a condition that begs for interpretation ofL as the density of
another probability measureQ with respect toP. The limit assertion then becomes

<11>
dQn

dPn
(under{Pn} )� dQ

dP
(underP),

with Q a probability measure absolutely continuous with respect toP.
Contiguity is also closely related to convergence in Le Cam’s sense. In

fact, under regularity assumptions ensuring existence of conditional distributions,
Problem[6] shows that the convergence<11> implies existence of Markov kernelsKn

for which KnP = Pn and‖KnQ−Qn‖1 → 0. In fact, it can easily be shown (Le Cam
& Yang 2000, Section 3.1) that contiguity is equivalent to absolute continuity ofQ

with respect toP, for every (P, Q) that is a limit of a subsequence of(Pn, Qn) in
Le Cam’s sense.
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6 Chapter 2: Contiguity

<12> Example. Once again consider thePn andQn from Example<3>, with likelihood
ratio Ln = exp

(
δn(x − αn) − δ2

n/2
)
, whereδn := βn − αn. The differencex − αn

has aN(0, 1) distribution, and thus logLn is distributed asN(−δ2
n/2, δ2

n), underPn.
For Ln to converge inPn-distribution we must haveδ2

n → δ2 < ∞ (compare with
Problem[4]). The limit distribution is that ofL := exp(δx − δ2/2) under theN(0, 1)

distribution P on the real line. By direct calculation,PL = 1. (Compare with the
moment generating function of the normal distribution.) The correspondingQ is the
N(δ, 1) distribution.�

The form of the limit distribution in the previous Example is not coincidental.

<13> Example. In many classical situations, logLn has a limiting normal distribution,
or, more precisely,Ln � exp(X), with X defined on some(	, A, P), with distribution
N(µ, σ 2). For contiguity we must have 1= P exp(X) = exp(µ + 1

2σ 2). That is,
µ = −1

2σ 2 is equivalent to contiguity in this setting.�

2. Contiguity for product measures

For the study of asymptotic behavior under sequences of alternatives, we often need
to consider sequences of probability measuresQn := Pn

θn
and Pn := Pn

θ0
, whereθn

is a sequence converging toθ0 at a 1/
√

n rate. For simplicity supposeθ is a real
parameter, andPθ has a smooth densityfθ with respect to a dominating measureλ.

Classical approximation arguments can be used to establish contiguity,Qn � Pn,
when the density is twice continuously differentiable. The arguments become a
little subtle when the densities do not all have the same support. The difficulties
are avoided when{ fθ > 0} does not change withθ . For this case, by restrictingλ
to the common support set, we may even supposefθ (x) > 0 for all θ and x, which
ensures that there are no log 0 problems when defining�θ (x) := log fθ (x).

<14> Theorem. Suppose the densityfθ is everywhere strictly positive, and that�θ (x)

is twice differentiable in some neighborhoodU of θ0, with

(i) J0 := Pθ0�̇
2
θ0

< ∞
(ii) θ �→ �̈θ (x) is continuous atθ0

(iii) there exists aP0-integrable functionM(x) for which supθ∈U |�̈θ (x)| ≤ M(x) .

Then Px
θ0

�̇(x) = 0, and

Zn :=
∑

i ≤n
�̇θ0(xi )/

√
n� N(0, J0) underPn.

If θn = θ0 + δn/
√

n, with {δn} bounded, then

log
dQn

dPn
= δnZn − 1

2δ2
n J1 + op(1; Pn),

where J1 := −Px
θ0

�̈θ0(x). If J1 = J0 thenQn � Pn.

Proof. For simplicity of notation, supposeθ0 = 0. We may also suppose that
θn ∈ U . By Taylor’s theorem,

<15> �θ(x) = �0(x) + θ�̇0(x) + 1
2θ2�̈0(x) + 1

2θ2r (x, θ),
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2.2 Contiguity for product measures 7

where, for somet (depending onx andθ) with |t | ≤ |θ |,
2M(x) ≥ |�̈t (x) − �̈0(x)| = |r (x, θ)| → 0 asθ → 0.

By Dominated Convergence,P0|r (x, θ)| → 0 asθ → 0, and hence

<16> n−1
∑

i ≤n
rθ (xi ) = op(1 : Pn) asθ → 0.

Also, by integrating both sides of<15> we get

−D(P0‖Pθ ) = Px
0

(
�θ (x) − �0(x)

) = −θ Px
0 �̇0(x) − 1

2θ2Px
0 �̈0(x) + o(θ2).

For D(P0‖Pθ ) to achieves its minimum of zero atθ = 0 we must have the coefficient
Px

0 �̇0(x) of the linear term equal to zero.

Remark. The argument about the linear term at the minimum tacitly assumes
that 0 is an interior point of the parameter set.

The logarithm of the likelihhod ratioLn := dQn/dPn equals∑
i ≤n

(
�θn(xi ) − �0(xi )

) = θn

∑
i ≤n

�̇0(xi ) + 1
2θ2

n

∑
i ≤n

(
�̈0(xi ) + r (xi , θn)

)
= δnZn + 1

2δ2
n

(
n−1

∑
i ≤n

�̈0(xi ) + n−1
∑

i ≤n
r (xi , θn)

)
.

The Law of Large Numbers and<20> let us replace the coefficient ofδ2
n by

Px
θ0

�̈θ0(x) + op(1; Pn).
For contiguity, according to Lemma<9> we need to prove that ifLn � L

along a subsequence thenPL = 1. By a further subsequencing we may also assume
that δn → δ, a finite limit. Along the sub-subsequence we then have

log Ln � δN(0, J0) − 1
2δ2J1.

Example<13> then shows whyJ1 = J0 is equivalent to contiguity.�
The equality J1 = Px

θ0
�̈θ0(x) = −varθ0

(
�̇θ0(x)

) = J0 is the classical dual
representation for the information functionIθ0 at θ0. As Le Cam & Yang (2000,
page 41) commented,

The equality. . . is the classical one. One finds it for instance in the standard
treatment of maximum likelihood estimation under Cram´er’s conditions. There
it is derived from conditions of differentiability under the integral sign.

The classical equality is nothing more than contiguity in disguise.
The statement of the Theorem left unresolved the conditions on the densities

under which we must have−Px
θ0

�̈θ0(x) = Iθ0. The usual argument starts from
the identityλx

(
fθ �̇θ (x)

) = 0, then justifies differentiation under the integral by a
domination condition, to deduce thatλ

(
ḟθ (x)�̇θ (x) + fθ (x)�̈θ (x)

) = 0. Many authors
just assume, even more directly, that differentiation under the integral is justified,
without imposing explicit conditions. There are more elegant, indirect, ways to
derive the identity. The next Theorem will provide an example.

The analysis becomes more complicated if the sets{ fθ > 0} are not all the
same. We then need to impose a condition regarding the mass of the part ofPθ that
is singular with respect toPθ0.

For simplicity of notation, again supposeθ0 = 0. Write N0 for the set
{x : f0(x) = 0}, andα(θ) for Pθ N0, the total mass of the part ofPθ that is not
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8 Chapter 2: Contiguity

absolutely continuous with respect toP0. TheFn-measurable setFn := ⋃
i ≤n{xi ∈ N0}

has zeroPn
0 probability, but

Pn
θ Fc

0 =
∏

i ≤n
Pθ Nc

0 = (
1 − α(θ)

)n
.

If α(θ) were not of ordero(θ2) we could find a sequence{θn} of order O(n−1/2) and
an ε > 0 for which α(θn) ≥ ε/n infinitely often. We would then have a sequence
for which lim infn Pn

θn
Fn ≥ 1 − e−ε > 0 but Pn

0 Fn ≡ 0, ruling out contiguity. Thus a
necessary condition for contiguity,Pn

θn
� Pn

0 wheneverθn = O(n−1/2) is

<17> Pθ {x : f0(x) = 0} = o(θ2) asθ → 0.

Assumption<17> takes care of one difficulty in the the case when the sets
{ fθ > 0} are not the same as{ f0 > 0}. Another, more subtle, problem arises with
the defintion of logfθ . If f0(x) > 0 then, by continuity, we know thatfθ (x) > 0
for |θ | ≤ δ(x). There might be no fixedδ, not depending onx, for which fθ (x) > 0
when |θ | ≤ δ. We might haveP0 log fθ (x) = −∞ for all θ �= 0, which would cast
doubt on some of the calculations used to prove Theorem<14>. For example, how
could assumption (iii) hold? The function�θ (x) := log fθ (θ) might only be defined
on an interval ofθ values that depend onx. It still makes sense to work with the
pointwise derivative�̇0(x), but we might encounter the value−∞ with positive P0

probability when studying�θ (x) for a fixedθ �= 0. It appears that we have to impose
the regularity conditions directly onfθ (x), and not on logfθ (x).

<18> Theorem. Suppose the mapθ �→ fθ is twice differentiable in a neighborhoodU
of 0 with:

(i) θ �→ f̈θ (x) is continuous at0;

(ii) there exists a measurable functionM(x) with Px
0 (M(x)/ f0(x)) < ∞ for

which supθ∈U | f̈θ (x)| ≤ M(x);

(iii) Px
0

(
ḟθ (x)/ f0(x)

)2 → Px
0

(
ḟ0(x)/ f0(x)

)2
< ∞ asθ → 0;

(iv) Pθ { f0 = 0} = o(θ2) asθ → 0.

Then P0�̇0(x) = 0 = P0
(

f̈ (x)/ f0(x)
)
.

Define Pn := Pn
0 andQn := Pn

θn
. If θn := θ0 + δn/

√
n, with {δn} bounded, then

dQn

dPn
= (

1 + op(1; Pn)
)
exp

(
δnZn − 1

2δ2
nI0

)
,

whereI0 := var0(�̇0) andZn := ∑
i ≤n �̇0(xi )/

√
n� N(0, I0) underPn. Consequently,

Qn � Pn.

Proof. There are several useful ways to write the Taylor expansion offθ around 0.
Whenθ ∈ U ,

<19> fθ (x) = f0(x) + θ ḟ0(x) + 1
2θ2 f̈0(x) + 1

2θ2r (x, θ),

where, for somet (depending onx andθ) with |t | ≤ |θ |,
2M(x) ≥ | f̈t (x) − f̈0(x)| = |r (x, θ)| → 0 asθ → 0.

Dominated Convergence and (ii) then gives

<20> P0|r (x, θ)/ f0(x))| → 0 asθ → 0.
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2.2 Contiguity for product measures 9

From <19> we also have

{ f0(x) > 0} fθ (x) − f0(x) − θ ḟ0(x)

θ2 f0(x)
→ f̈0(x)

f0(x)
{ f0(x) > 0} asθ → 0.

Moreover, the ratio is bounded in absolute value by theP0-integrable function
{ f0(x) > 0}M(x)/ f0(x). By Dominated Convergence forP0, followed by a cancel-
lation of the f0(x) factor in the first term, we have

θ−2 (
Pθ { f0 > 0} − P01 − θ P0�̇0

) → Px
0

(
f̈0/ f0

)
.

Assumption (iv) simplifies the assertion too(1) − θ−1P0�̇0 → Px
0

(
f̈0/ f0

)
, from

which it follows that P0�̇0 = 0 (becausePx
0 | f̈0/ f0| ≤ P0 (M/ f0) < ∞), and hence

Px
0

(
f̈0(x)/ f0(x)

) = 0.
It will also be helpful to have the Taylor expansion with the remainder written

in the Lagrange style,

<21> fθ (x) = f0(x) + θ
∫ 1

0 ḟθ t (x) dt,

a form that will be useful because it does not involve the second derivative.
The likehood ratioLn := dQn/dPn can be written as∏
i ≤n

fθn(xi )

f0(xi )
=

∏
i ≤n

(
1 + εn,i

)
whereεn,i := { f0(xi ) > 0} fθn(xi ) − f0(xi )

f0(xi )
.

The indicator functions are not really need if we consider only behavior underPn,

but they will prevent inadvertent appeals to 0/0 ?= 1. Until further notice, all
calculuations are carried out underPn, so I will temporarily dispense with the
indicators, and writeop(·) instead ofop(· ; Pn).

By <19>,

<22> εn,i = θn�̇0(xi ) + 1
2θ2

n

(
f̈0(xi ) + r (xi , θn)

)
/ f0(xi ),

whence

|εn,i | ≤ |θn�̇0(xi )| + 1
2θ2

n Zi whereYi := (| f̈0(xi )| + 2M(xi )
)
/ f0(xi ).

UnderPn, the random variableṡ�0(xi ) are identically distributed, with finite second
moments, and the random variablesYi are identically distributed, with finite first
moments. Problem[7] shows that

maxi ≤n |�̇0(xi )| = op(n
−1/2) and maxi ≤n |Yi | = op(n

−1).

from which it follows that

<23> maxi ≤n |εn,i | = op(1) whenθn = δn/
√

n = O(n−1/2).

Expansion<22> also gives∑
i ≤n

εn,i = δnZn + 1
2δ2

n

(
n−1

∑
i ≤n

f̈ (xi )/ f0(xi ) + n−1
∑

i ≤n
r (xi , θn)/ f0(xi )

)
= δnZn + op(1),<24>

with the Law of Large Numbers and the fact thatP0
(

f̈ (x)/ f0(x)
) = 0 disposing of

the first average in parentheses, and<20> disposing of the second.
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10 Chapter 2: Contiguity

Assumption (iii) will lead to a neat asymptotic form for the sum of squares of
the ε’s. Define Wθ := { f0 > 0} ḟθ / f0. By Fatou’s Lemma (along a sequence ofθ

values, if you prefer),find the source of the Fatou
trick; Blyth? I&H?

4P0W2
0 − lim supθ→0 P0|Wθ − W0|2

= lim inf θ→0 P0

(
2W2

θ + 2W2
0 − |Wθ − W0|2

)
≥ P0 lim inf θ→0

(
2W2

θ + 2W2
0 − |Wθ − W0|2

)
= 4P0W2

0 .

That is,

<25> γ (θ)2 := P0|Wθ − W0|2 → 0 asθ → 0, whereWθ := { f0 > 0} ḟθ / f0.

From <21>, we also have the representationεn,i = θn
∫ 1

0 Wθnt (xi ) dt. Hence

Pn|ε2
n,i − θ2

n W0(xi )
2| = θ2

n Px
0

∣∣∣∫ 1
0

∫ 1
0 Wθ t (x)Wθs(x) − W0(x)2 ds dt

∣∣∣
≤ θ2

n

∫ 1
0

∫ 1
0

(
Cγ (θnt) + Cγ (θnt) + γ (θnt)γ (θns)

)
ds dt,

whereC2 := P0W2
0 = I0. It follows that∑

i ≤n
Pn|ε2

n,i − θ2
n W0(xi )

2| → 0,

implying

<26>
∑

i ≤n
ε2

n,i = δ2
nn−1

∑
i ≤n

W0(xi )
2 + op(1) = δ2

nI0 + op(1).

The results<23>, <24>, and<26> lead rapidly to the desired approximation
for Ln, via the inequality

| log(1 + t) − t + 1
2t2| ≤ |t |3 for |t | ≤ 1/2..

When maxi ≤n |εn,i | ≤ 1/2 we have

| log(Ln) −
∑
i ≤n

εn,i + 1
2

∑
i ≤n

ε2
n,i | ≤

∑
i ≤n

|εn,i |3 ≤ max
i ≤n

|εn,i |
∑
i ≤n

ε2
n,i = op(1),

that is,

Ln{max
i ≤n

|εn,i | ≤ 1/2} = {max
i ≤n

|εn,i | ≤ 1/2} exp
(
δnZn − 1

2δ2
nI0 + op(1)

)
.

The 1+op(1) factor in the statement of the Theorem absorbs theop(1) in the exponent,
as well as allowing for arbitrarily bad behavior ofLn when maxi ≤n |εn,i | > 1/2.

Example<13> gives contiguity.�

3. Limit distributions under contiguous alternatives

Contiguity was introduced in Section 1 as a way to transfer eitherop(·) or Op(·)
assertions from{Pn} to {Qn}. It can also be used to transfer assertions of convergence
in distribution for sequences of random vectors{Yn}, if we control the joint behaviour
of Yn and the likelihood ratio. The idea behind the proof is straightforward if we
ignore complications such as unbounded likelihoods: for bounded, uniformly
continuousg,

Qng(Yn)
?= PnLng(Yn)

?−→PLg(Y).
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2.3 Limit distributions under contiguous alternatives 11

In a rigorous proof, contiguity controls the contributions from regions of largeLn,
and from the singularity regionNn, and then convergence in distribution of(Ln, Yn)

takes care of the convergence assertion. The limit expression becomesQg(Y),
whereQ is the probability measure defined to have densityL with respect toP.
That is, the limit distribution ofYn underQn is given byY, as a random vector on
(	, A, Q).

We will need the result only for random vectorsYn, but the proof actually
works for random elements more general spaces.

<27> Lemma. Suppose(Yn, Ln) converges in distribution under{Pn} to a limit repre-
sented by a pair(Y, L) on a probability space(	, A, P), with PL = 1. Then {Yn}
converges in distribution under{Qn} to the limit represented byY as a random
element on the probability space(	, A, Q), whereQ has densityL with respect
to P. That is,Qng(Yn) → Qg(Y) := PLg(Y), at least for bounded, continuousg.

Proof. The conditionPL = 1 ensures thatQn � Pn. Fix ε > 0 and letg be
a bounded, continuous function. For convenience suppose 0≤ g ≤ 1. Invoke
contiguity to find a finiteM such thatP{L = M} = 0 andQ{L > M} < ε and
Qn{Ln > M} < ε eventually. Then from the definition ofLn,

|Qng(Yn) − PnLng(Yn){Ln ≤ M}| ≤ Qn{Ln > M} + QNn < 2ε eventually.

By the Continuous Mapping Theorem,

PnLng(Yn){Ln ≤ M} → PLg(Y){L ≤ M},
which differs fromPLg(Y) = Qg(Y) by at mostε.�

Remark. By the same argument (or just by substitution of(Yn, Ln) for Yn in
the conclusion of the Lemma), the pair(Y, L) under Q also represents the limit
distribution for the pairs(Yn, Ln) under{Qn}.

Convergence in distribution of(Yn, Ln) is equivalent to convergence in distri-
bution of (Yn, log Ln). When the joint limit is normal, the assertion of the preceding
Lemma takes a particularly simple form. The result is known asLe Cam’s Third
Lemma.

<28> Example. Suppose(Yn, Ln)� (Y, eZ) under{Pn}, where the pair(Y, Z), defined
on (	, A, P), has a joint normal distribution. To ensure contiguity, the marginalZ
distribution must beN(−1/2σ

2, σ 2) for someσ 2 > 0. Let the marginalY distribution
be N(µ, V), and letγ denote the vector of covariances betweenY and Z. UnderP
the pair(Y, Z) has moment generating function

M(s, t) := P exp(s′Y + t Z) = exp
(
s′µ + 1

2s′V s+ s′γ t − 1
2σ 2t + 1

2σ 2t2
)

.

The limiting distribution under{Qn} has moment generating function

Q exp(s′Y + t Z) = P exp(Z) exp(s′Y + t Z)

= M(s, t + 1)

= exp
(
s′(µ + γ ) + 1

2s′V s+ s′γ t + 1
2σ 2t + 1

2σ 2t2
)

.

That is, the variances and covariances stay the same, but the mean ofY is shifted
to µ + γ .�

Pollard@Paris2001 13 March 2001



12 Chapter 2: Contiguity

<29> Example. In Chapter 1, a heuristic argument gave the asymptotic behavior of the
estimator̂θn defined to minimize

∑
i ≤n g(xi , θ). Assumingθ = argmint Pθ g(x, t) for

eachθ , I argued that̂θn should converge inPn
θ probability toθ , and also

√
n

(̂
θn − θ

) = n−1/2mθ (xi ) + op(1),

where mθ (x) = −ġ(x, θ)/Jg(θ), with Jg(θ) := Pθ g̈(x, θ), and theop(1) is an
abbreviation forop(1; Pn

θ ).
For a fixedθ andδ, let θn := θ + δ/

√
n, andPn := Pn

θ , andQn := Pn
θn

. Assume
that the conditions of Theorem<18> are satisfies, so that

Ln = (
1 + op(1; Pn)

)
exp(δZn − 1

2δ2Iθ ),

with
Zn = n−1/2

∑
i ≤n

�̇θ (xi )� N(0, Iθ ) underPn.

Write Yn for
√

n
(̂
θn − θ

)
. UnderPn, the pair(Yn, Zn) is approximated by a

standardized sum of random vectors,

(Yn, Zn) = op(1) + n−1/2
∑

i ≤n

(
m(xi ), �̇θ (xi )

)
,

which has a limiting bivariate normal distribution(Y, Z) with Z distributed
N(−δ2Iθ /2, δ2Iθ ), and Y distributed N(0, vθ ) for vθ := Pθ ġ(x, θ)2/Jg(θ)2, and
cov(Y, Z) = γθ := −δPθ

(
ġ(x, θ)�̇θ (x)

)
/Jg(θ).

UnderQn the Yn has aN(γθ , vθ ) limit distribution, by Example<28>. Thus
√

n
(̂
θn − θn

) = Yn − δ � N(γθ − δ, vθ ) underQn.

The limit distribution for
√

n
(̂
θn − θn

)
is the same underQn as underPn if γθ = δ,

that is, if Jg(θ) = −Pθ

(
ġ(x, θ)�̇θ (x)

)
. This equality is precisely the condition derived

in Chapter 1 from the assumption thatPθ g(x, t) is minimized att = θ .
Thus, insofar as the heuristics can be believed, we have the limiting distribution

of
√

n
(̂
θn − θn

)
underPn

θn
the same as the limiting distribution of

√
n

(̂
θn − θ

)
under

Pn
θ . Estimators with this property are usually said to beHájek regular, a property

that we will later meet as one of the assumptions for the H´ajek-Le Cam Convolution
Theorem.�

4. Problems

[1] Suppose{Pn} and {Qn} are sequences of probability measures with the following
property: for each subsequenceN1 ⊆ N there exists a subsubsequenceN2 ⊆ N1 for
which {Qn : n ∈ N2} � {Pn : n ∈ N2}. Show that{Qn : n ∈ N} � {Pn : n ∈ N}. Hint:
If contiguity fails, there is subsequence for which there are sets withPnFn → 0 but
QnFn > ε, for someε > 0.

[2] Suppose{Xn} is a sequence of random variables with the following property: for
each subsequenceN1 ⊆ N there exists a subsubsequenceN2 ⊆ N1 for which
{Xn : n ∈ N2} = Op(1). Show that{Xn : n ∈ N} = Op(1).
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[3] If {Xn} = op(1), show that there exists a sequence{εn} that converges to zero slowly
enough to ensureP{|Xn| > εn} → 0. Hint: Build εn using an increasing sequence
n(k) such thatP{|Xn| > 1/k} < 1/k for n ≥ n(k).

[4] SupposeZn � N(0, Ik) and thatαnZn + βn has a nondegenerate limit distribution,
for a pair of deterministic sequences{αn} and{βn}. Show that both|αn| andβn must
converge to finite limits.

[5] Let Pn denote theN(αn, 1) distribution andQn denote theN(βn, 1) distribution, both
on the real line. Under what conditions on the sequences of constants{αn} and{βn}
do we have{Qn} � {Pn}?

[6] SupposePn andQn are probability measures on(	n, Fn), for n ∈ N := N∪{∞}, with
Qn � Pn. Write Ln for the corresponding densities. DefineFn(x) := Pn{Ln ≤ x},
and write F−1

n for the corresponding quantile function. Suppose the conditional
distributionsτn,t (·) := Pn (· | Ln = t) exists, as Markov kernels fromR to 	n. For
eachn ∈ N define a Markov kernelKn,ω from 	∞ to 	n, as follows.

Given ω∞ ∈ 	∞, defineT∞ := L∞(ω∞); then generateU ∈ (0, 1) with
U | T∞ = t ∼ Unif[ F∞(t−), F∞(t)]; then defineTn = F−1

n (U ); then
generateωn | Tn = t ∼ τn,t .

(i) Show thatKnP∞ = Pn. That is, the probability measureMn := P∞ ⊗ Kn on
	∞ × 	n has marginalsP∞ andPn.

(ii) For each measurable function with| f | ≤ 1 on 	n, show that

|KnQ∞ f − Qn f | = |Pω
∞

(
L∞(ω)K x

n,ω f (x)
) − Px

n

(
Ln(x) f (x)

) |
≤ Mω,x|L∞(ω) − Ln(x)|
=

∫ 1

0
|F−1

∞ (u) − F−1
n (u)| du.

(iii) Deduce that ifLn(Pn)� L∞(P∞) then‖KnQ∞ − Qn‖1 → 0.

(iv) Extend the result (iii) to the case whereQn � Pn, for n ∈ N, with Q∞ � P∞.

[7] Let Z1, Z2, . . . be a sequence of independent, identically distributed random variables
with P|Zi |r < ∞ for a constantr ≥ 1. Prove that maxi ≤n |Zi | = op(n1/r ). Hint:
Show thatP{maxi ≤n |Zi | > εn1/r } is smaller thanε−r P|Z1|r {|Z1| > εn1/r }, then
invoke Dominated Convergence.

5. Notes

Le Cam (1960) defined contiguity and derived its most important properties, in a
few pages. The name “Le Cam’s Third Lemma” seems due to H´ajek & Šidák (1967,
Chapter VI). It was the third of the lemmas in their chapter describing contiguity.
The numbering now should have little significance.

Lucien Le Cam himself felt that describing contiguity as a subtle invention
was an exaggeration. In a private letter to me he wrote “Really, contiguity is a very
trivial affair. I just gave it a name that pleased people.” Maybe the only subtlety
lies in the recognition that something so trivial is worth noticing. To my chagrin,
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14 Chapter 2: Contiguity

I ignored the concept for many years, because it seemed hardly worth bothering
about. Moreover, I have found that I was not alone in my oversight. Maybe subtlety
lies in the eye of the beholder.
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