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Chapter 3

Hellinger differentiability

Modern statistical theory makes clever use of the fact that square roots of probability
density functions correspond to unit vectors in spaces of square integrable functions.
The Hellinger distance between densities corresponds to theL2 norm of the
difference between the unit vectors. This Chapter explains some of the statistical
consequences of differentiability in norm of the square root of the density, a property
known as Hellinger differentiability.

SECTION 1 relates Hellinger differentiability to the classical regularity conditions for
maximum likelihood theory.

SECTION 2 derives some subtle consequences of norm differentiability for unit vectors.
SECTION 3 shows that Hellinger differentiability of marginal densities implies existence of

a local quadratic approximation to the likelihood ratio for product measures.
SECTION 4 explains why Hellinger differentiability almost implies contiguity for product

measures.
SECTION 5 derives the information inequality, as an illustration of the elegance brought

into statistical theory by Hellinger differentiability.
SECTION 6 discusses connections between Hellinger differentiability and pointwise differ-

entiability of densities, leading to a sufficient condition for Hellinger differentiability.
SECTION 7 explains how one can dispense with the dominating measure for the definition

of Hellinger differentiability. The slightly strengthened concept—Differentiability in
Quadaratic Mean—is shown to be preserved under measurable maps.

Notation: Throughout the Chapter,P := {Pθ : θ ∈ �} will denote a family of
probability measures, on a fixed(X, A), indexed by a subset� of Rk. In all Sections
except the last,fθ will denote the density ofPθ with respect to a fixed dominating
measureλ. The functionξθ (x) will always denote the positive square root offθ (x),
and‖ · ‖2 will always denote theL2(λ) norm.

Most results in the Chapter will concern behavior near some arbitrarily chosen
point θ0 of �. For simplicity of notation, I will usually assumeθ0 = 0, except in a
few basic definitions. Thus an expression such as(θ − θ0)

′ξ̇θ0 will simplify to θ ′ξ̇0,
a form that is easier to read and occupies less space on the page. The simplification
involves no loss of theoretical generality, because the same effect could always be
achieved by a reparametrization,θ := t + θ0.
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2 Chapter 3: Hellinger differentiability

1. Heuristics

The traditional regularity conditions for maximum likelihood theory involve existence
of two or three derivatives of density functions, together with domination assumptions
to justify differentiation under integral signs. Le Cam (1970) noted that such
conditions are unnecessarily stringent. He commented:

Even if one is not interested in the maximum economy of assumptions one cannot
escape practical statistical problems in which apparently “slight” violations of
the assumptions occur. For instance the derivatives fail to exist at one pointx
which may depend onθ , or the distributions may not be mutually absolutely
continuous or a variety of other difficulties may occur. The existing literature
is rather unclear about what may happen in these circumstances. Note also that
since the conditions are imposed upon probability densities they may be satisfied
for one choice of such densities but not for certain other choices.

Probably Le Cam had in mind examples such as the double exponential density,
1/2 exp(−|x − θ |), for which differentiability fails at the pointθ = x. He showed
that the traditional conditions can, for some purposes, be replaced by a simpler
assumption ofHellinger differentiability: differentiability in norm of the square
root of the density as an element of anL2 space.

As you will soon see, much asymptotic theory can be made to work with
classical regularity assumptions relaxed to assumptions of Hellinger differentiability.
The derivation of the information inequality in Section5 illustrates the point.

<1> Definition. A map τ from a subset� of a Euclidean spaceRk into a normed
vector spaceV is said to be differentiable (in norm) at a pointθ0 with derivativeτ̇θ0

if τ(θ) = τ(θ0) + (θ − θ0)
′τ̇θ0 + r (θ), where‖r (θ)‖ = o(|θ − θ0|) as θ → θ0. The

derivativeτ̇θ0 is a k-vector (v1, . . . , vk) of elements fromV, and t ′τ̇θ0 = ∑
i ti vi .

The family P := {Pθ : θ ∈ �} (dominated byλ) is said to be Hellinger
differentiability at θ0 if the mapθ �→ ξθ (x) := √

fθ (x) is differentiable inL2(λ)

norm atθ0. That is,P is Hellinger differentiable atθ0 if there exists a vectoṙξθ0(x)

of functions inL2(λ) such that

<2> ξθ(x) = ξθ0(x) + (θ − θ0)
′ξ̇θ0(x) + rθ (x) with ‖rθ‖2 = o(|θ − θ0|) asθ → θ0.

Remark. Some authors (for example, Bickel, Klaassen, Ritov & Wellner (1993,
page 202)) adopt a slightly different definition,√

fθ (x) =
√

fθ0(x) + 1/2(θ − θ0)
′�(x)

√
fθ0(x) + rθ (x),

replacing the Hellinger derivativėξθ0 by 1/2�(x)
√

fθ0(x). As explained in Section7,
the modification very cleverly adds an extra regularity assumption to the definition.
The two definitions are not completely equivalent.

Classical statistical theory, especially when dealing with independent observa-
tions from aPθ , makes heavy use of the function�θ (x) := log fθ (x). The variance
matrix Iθ of the score function(the vector�̇θ (x) of partial derivatives with respect
to θ) is called theFisher information matrix for the model. The classical regularity
conditions justify differentiation under the integral sign to get

<3> Pθ �̇θ (x) = λ ḟθ (x) = ∂

∂θ
λ fθ (x) = 0,
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3.1 Heuristics 3

whenceIθ := varθ
(
�̇θ

) = Pθ

(
�̇θ �̇

′
θ

)
.

Under assumptions of Hellinger differentiability, the derivativeξ̇θ takes over
the role of the score vector. Ignoring problems related to division by zero and
distinctions between pointwise andL2(λ) differentiability, we would have

2ξ̇θ (x)

ξθ (x)

?= 2√
fθ (x)

∂

∂θ

√
fθ (x) = 1

fθ (x)

∂ fθ (x)

∂θ
= �̇θ (x).

The equality<3> corresponds to the assertionPθ

(
ξ̇θ /ξθ

) = λ
(
ξθ ξ̇

) = 0, which
Section2 will show to be a consequence of Hellinger differentiability and the
identity λ fθ ≡ 1. The Fisher informationIθ at θ corresponds to the matrix

Pθ0

(
�̇θ �̇

′
θ

) ?= 4Pθ0

(
ξ̇θ ξ̇

′
θ /ξ

2
θ

) ?= 4λ
(
ξ̇θ ξ̇

′
θ

)
.

Here I flag both equalities as slightly suspect, not just for the unsupported assumption
of equivalence between pointwise and Hellinger differentiabilities, but also because
of a possible 0/0 cancellation. Perhaps it would be better to insert an explicit
indicator function,{ξθ > 0}, as a factor, to protect against 0/0. To avoid possible
ambiguity or confusion, I will writẽIθ for 4λ(ξ̇θ ξ̇

′
θ ) and Ĩ◦

θ for 4λ(ξ̇θ ξ̇
′
θ {ξθ > 0}), to

hint at equivalent forms forIθ without yet giving precise conditions under which all
three exist and are equal.

The classical assumptions also justify further interchanges of integrals and
derivatives, to derive an alternative representationIθ = −Pθ �̈θ for the information
matrix. It might seem obvious that there can be no analog of this representation
for Hellinger differentiability. Indeed, how could an assumption of one-times
differentiability, in norm, imply anything about a second derivative? Surprisingly,
there is a way, if we think of second derivatives as coefficients of quadratic terms
in local approximations. As shown in Section3, the fact that‖ξθ‖2 ≡ 1 leads to a
quadratic approximation for a log-likelihood ratio—a sort of Taylor expansion to
quadratic terms without the usual assumption of twice continuous differentiability.
Remarkable.

2. Differentiability of unit vectors

Supposeτ is a map fromRk into some inner product spaceH (such asL2(λ)).
Suppose also thatτ is differentiable (in norm) atθ0,

τθ = τθ0 + (θ − θ0)
′τ̇θ0 + rθ with ‖rθ‖ = o(|θ − θ0|) nearθ0.

For simplicity of notation, supposeθ0 = 0.
The Cauchy-Schwarz inequality gives|〈τ0, rθ 〉| ≤ ‖τ0‖ ‖rθ‖ = o(|θ |). It would

usually be a blunder to assume naively that the bound must therefore be of order
O(|θ |2); typically, higher-order differentiability assumptions are needed to derive
approximations with smaller errors. However, if‖τθ‖ is constant—that is, ifτθ

is constrained to take values lying on the surface of a sphere—then the naive
assumption turns out to be no blunder. Indeed, in that case, it is easy to show that in
general〈τ0, rθ 〉 equals a quadratic inθ plus an error of ordero(|θ |2). The sequential
form of the assertion will be more convenient for the calculations in Section3.
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4 Chapter 3: Hellinger differentiability

<4> Lemma. Let {αn} be a sequence of constants tending to zero. Letτ0, τ1, . . . be
elements of norm one for whichτn = τ0 + αnW + ρn, with W a fixed element ofH
and‖ρn‖ = o(αn). Then〈τ0, W〉 = 0 and2〈τ0, ρn〉 = −α2

n‖W‖2 + o(α2
n).la théorème

du chat mort
Proof. Because bothτn andτ0 have unit length,

0 = ‖τn‖2 − ‖τ0‖2 = 2αn〈τ0, W〉 order O(αn)

+ 2〈τ0, ρn〉 ordero(αn)

+ α2
n‖W‖2 order O(α2

n)

+ 2αn〈W, ρn〉 + ‖ρn‖2 ordero(α2
n).

The o(αn) ando(α2
n) rates of convergence in the second and fourth lines come from

the Cauchy-Schwarz inequality. The exact zero on the left-hand side of the equality
exposes the leading 2αn〈τ0, W〉 as the onlyO(αn) term on the right-hand side. It
must be of smaller order,o(αn) like the other terms, which can happen only if
〈τ0, W〉 = 0, leaving

0 = 2〈τ0, ρn〉 + α2
n‖W‖2 + o(α2

n),

as asserted.�
Remark. Without the fixed length property, the difference‖τn‖2 − ‖τ0‖2 might
contain terms of orderαn. The inner product〈τ0, ρn〉, which inheritso(αn) behaviour
from ‖ρn‖, might then not decrease at theO(α2

n) rate.

<5> Corollary. If P has a Hellinger derivativėξθ0 at 0, and if 0 is an interior point
of �, thenλ

(
ξ0ξ̇0

) = 0 and8λ
(
ξ0rθ

) = −θ ′Ĩ0θ + o(|θ |2) near0.

Proof. Start with the second assertion, in its equivalent form for sequencesθn → 0.
Write θn as |θn|un, with un a unit vector inRk. By a subsequencing argument, we
may assume thatun → u, in which case,

ξθn = ξ0 + |θn|u′
nξ̇0 + rθn = ξ0 + |θn|u′ξ̇0 + (

rθn + |θn|(un − u)′ξ̇0

)
.

Invoke the Lemma (withW = u′ξ̇0) to deduce thatu′λ
(
ξ0ξ̇0

) = 0 and

−4|θn|2λ
(
u′ξ̇0

)2 + o(|θn|2) = 8λ
(
ξ0

(
rθn + |θn|(un − u)′ξ̇0

))
= 8λ

(
ξ0rθn

) + 8|θn|(un − u)′λ
(
ξ0ξ̇0

)
.

Because 0 is an interior point, for every unit vectoru there are sequencesθn → 0
through� for which u = θn/|θn|. Thus u′λ

(
ξ0ξ̇0

) = 0 for every unit vectoru,
implying that λ

(
ξ0ξ̇0

) = 0. The last displayed equation reduces the sequential
analog of the asserted approximation.�

Remark. If 0 were not an interior point of the parameter space, there might
not be enough directionsu along whichθn → 0 through�, and it might not follow
that λ(ξ0ξ̇0) = 0. Roughly speaking, the set of such directions is called thecontingent
of � at θ0. If the contingent is ‘rich enough’, we do not need to assume that 0
is an interior point. See Le Cam & Yang (1988, Section 6.2) and Le Cam (1986,
page 575) for further details. See also the discussion in Section4.
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3.3 Quadratic approximation for log likelihood ratios 5

3. Quadratic approximation for log likelihood ratios

Suppose observations{xi } are drawn independently from the distributionP0. Under
the classical regularity conditions, the log of the likelihood ratiod Pn

θ /d Pn
0 =∏

i ≤n fθ (xi )/ f0(xi ) has a local quadratic approximation in 1/
√

n neighborhoods of 0,
underPn

0 . (Remember that, in general,dQ/dP denotes the density with respect toP

of the part ofQ that is absolutely continuous with respect toP.) For example, the
following result (for one dimension) was proved in Section2.2.

<6> Theorem. Let Pn := Pn
0 and Qn := Pn

θn
, for θn := δn/

√
n with {δn} bounded.

Suppose the mapθ �→ fθ is twice differentiable in a neighborhoodU of 0 with:

(i) θ �→ f̈θ (x) is continuous at0;

(ii) there exists aλ-integrable functionM(x) with supθ∈U | f̈θ (x)| ≤ M(x) a.e. [P0];

(iii) Px
0

(
ḟθ (x)/ f0(x)

)2 → Px
0

(
ḟ0(x)/ f0(x)

)2 =: I0 < ∞ asθ → 0;

(iv) Pθ { f0 = 0} = o(θ2) asθ → 0.

Then P0�̇0(x) = 0 = P0

(
f̈ (x)/ f0(x)

)
and, under{Pn},

dQn

dPn
= (

1 + op(1)
)
exp

(
δnZn − 1

2
δ2

nI0
)
,

whereZn := ∑
i ≤n �̇0(xi )/

√
n� N(0, I0). Consequently,Qn � Pn.

The method of proof consisted of writing the likelihood ratio as∏
i ≤n

(
1 + εn(xi )

)
whereεn(x) := { f0(x) > 0}( fθn(x) − f0(x)

)
/ f0(x) ,

then showing that, underPn,

(a) maxi ≤n |εn(xi )| = op(1),

(b)
∑

i ≤n εn(xi ) = δnZn + op(1),

(c)
∑

i ≤n εn(xi )
2 = δ2

nI0 + op(1).

Result (a) plus the fact that
∑

i ≤n εn(xi )
2 = Op(1) implied that

<7>
∏

i ≤n

(
1 + εn(xi )

) = (
1 + op(1)

)
exp

(∑
i ≤n

εn(xi ) − 1
2
εn(xi )

2
)

,

from which the final assertion followed.
Le Cam (1970) established a similar quadratic approximation under an

assumption of Hellinger differentiability. The method of proof is very similar to
the method just outlined, but with a few very subtle differences. Remember that
Ĩ0 := 4λ

(
ξ̇θ ξ̇

′
θ

)
and Ĩ◦

0 := 4λ
(
ξ̇0ξ̇

′
0{ξθ > 0}).

<8> Theorem. SupposeP is Hellinger differentiable at0, with L2(λ) derivative ξ̇0.
Let Pn := Pn

0 andQn := Pn
θn

, with θn := δn/
√

n for a bounded sequence{δn}. Then,
under{Pn},

dQn

dPn
= (

1 + op(1)
)
exp

(
δ′

nZn − 1
4
δ′

n(Ĩ0 + Ĩ◦
0)δn

)
,

where
Zn := 2n−1/2

∑
i ≤n

{ξ0(xi ) > 0}ξ̇0(xi )/ξ0(xi )� N(0, Ĩ◦
0).
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6 Chapter 3: Hellinger differentiability

Remark. It is traditional to absorb the 1+ op(1) factor for the likelihood ratio
into the exponent. One then has some awkwardness with the right-hand side of the
approximation at samples for which the left-hand side is zero. The awkwardness
occurs with positivePn probability if Pθ0{ fθn = 0} > 0.

Proof. I will give the proof only for the one-dimensional case. The proof for the
multi-dimensional case is analogous.

Write τn for ξθn , andρn for rθn , and Ln for dQn/dPn. By Hellinger differentia-
bility,

τn(x) = ξ0(x) + n−1/2δnξ̇0(x) + ρn(x) with λρ2
n = o(θ2

n ).

Define

<9> ηn(x) := {ξ0(x) > 0}τn(x) − ξ0(x)

ξ0(x)
= δn√

n
D(x) + Rn(x),

where

D(x) := {ξ0(x) > 0}ξ̇0(x)/ξ0(x) and Rn(x) := {ξ0(x) > 0}ρn(x)/ξ0(x).

The indicator functions have no effect within the setAn := ∩i ≤n{ξ0(xi ) > 0}, which

has Pn-probability one, but they will protect against 0/0 ?= 1 when converting
from P0- to λ-integrals. On the setAn ,√

Ln =
∏

i ≤n
τn(xi )/ξ0(xi ) =

∏
i ≤n

(
1 + ηn(xi )

)
.

For almost the same reason as in the proof of Theorem<6>, we need to show that

(i) maxi ≤n |ηn(xi )| = op(1),

(ii)
∑

i ≤n ηn(xi ) = 1
2
δnZn − 1

8
δ2

n Ĩ0 + op(1),

(iii)
∑

i ≤n ηn(xi )
2 = 1

4
δ2

n Ĩ◦
0 + op(1).

The analog of<7>, with ηn replacingεn, will then give√
Ln = (

1 + op(1)
)
exp

(∑
i ≤n

ηn(xi ) − 1
2

∑
i ≤n

ηn(xi )
2
)

,

from which the assertion of the Theorem follows by squaring both sides.

Remark. Notice that (ii) differs significantly from its analog (b) for the proof
of Theorem<6>, through the addition of a constant term. However, the difference
is compensated by a halving of the corresponding constant in (iii), as compared
with (c). The differences occur because, on the set{ f0(x) > 0},

εn(x) = τn(x)2 − ξ0(x)2

ξ0(x)2
= τn(x) − ξ0(x)

ξ0(x)

2ξ0(x) + τn(x) − ξ0(x)

ξ0(x)
= 2ηn(x) + ηn(x)2.

Thus∑
i ≤n

εn(xi ) = 2
∑

i ≤n
ηn(xi ) +

∑
i ≤n

ηn(xi )
2 = δn Zn − 1

4δ2
nĨ0 + 1

4 Ĩ◦
0 + op(1).

As you will see in Section4, the conditions of Theorem<6> actually imply Ĩ0 = Ĩ◦
0,

a condition equivalent to the contiguityQn � Pn.

Assertions (i), (ii), and (iii) will follow from<9>, via simple probability facts,
including: if Y1, Y2, . . . are independent, identically distributed random variables
with P|Y1|r < ∞ for some constantr ≥ 1 then maxi ≤n |Yi | = op(n1/r ). (The proof
appeared as a Problem to Chapter 2.)
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3.3 Quadratic approximation for log likelihood ratios 7

First note that

P0D(x) = λ

(
ξ0(x)2

ξ̇0(x)

ξ0(x)
{ξ0(x) > 0}

)
= λ

(
ξ0ξ̇0

) = 0 by Corollary<5>,

P0D(x)2 = λ

(
ξ0(x)2

ξ̇0(x)2

ξ0(x)2
{ξ0(x) > 0}

)
= λ

(
ξ̇2
0 {ξ0(x) > 0}) = 1

4
Ĩ◦
0,

8P0R(x) = 8λ (ξ0(x)ρn(x)) = −δ2
n Ĩ0/n + o(1/n),

P0R(x)2 ≤ λρn(x)2 = o(1/n).

From the expressions involvingD we get

Zn = 2
∑

i ≤n
D(xi )/

√
n� N(0, 1

4
Ĩ◦),

n−1
∑

i ≤n
D(xi )

2 = 1
4
Ĩ◦ + op(1),

max
i ≤n

|D(xi )| = op(n
1/2).

From the expressions involvingRn we get

Pn

(∑
i ≤n

Rn(xi )
)

= −δ2
n Ĩ0 + o(1),

var
(∑

i ≤n
Rn(xi )

)
≤

∑
i ≤n

Pn Rn(xi )
2 → 0,

which together imply that∑
i ≤n

R(xi ) = − 1
8
δ2

n Ĩ0 + op(1),

(
maxi ≤n |Rn(xi )|

)2 ≤
∑

i ≤n
Rn(xi )

2 = op(1).

Assertions (i), (ii), and (iii) now follow easily.
For (i):

maxi ≤n |ηn(xi )| ≤ |δn| maxi ≤n
|D(xi )|√

n
+ maxi ≤n |Rn(xi )| = op(1).

For (ii):
∑

i ≤n
ηn(xi ) = 1

2
δn

∑
i ≤n

D(xi )√
n

+
∑

i ≤n
Rn(xi ) = 1

2
δnZn − 1

8
δ2

n Ĩ0 + op(1).

For (iii):
∣∣∣(∑

i ≤n
ηn(xi )

2
)1/2

−
(

δ2
n

∑
i ≤n

D(xi )
2

n

)1/2∣∣∣ ≤
(∑

i ≤n
Rn(xi )

2
)1/2

= op(1),

implying that
∑

i ≤n
ηn(xi )

2 = δ2
n

∑
i ≤n

D(xi )
2

n
+ op(1) = 1

4
δ2

n Ĩ◦
0 + op(1).

The asserted quadratic approximation follows.�

4. Contiguity

Consider once more the product measuresPn := Pn
0 and Qn := Pn

θn
, as defined in

Theorem<8>, under the assumption of Hellinger differentiability atθ = 0. For
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8 Chapter 3: Hellinger differentiability

contiguity we needPL = 1 for every limit in distribution of a subsequence of
Ln := dQn/dPn. Along a further subsequenceδn → δ ∈ Rk, so we must haveL of
the form

exp
(
δ′Z − 1

4
δ′

(
Ĩ0 + Ĩ◦

0

)
δ
)

with Z distributedN(0, Ĩ◦
0).

This random variable has expected value equal to 1 if and only if

δ′Ĩ0δ = 1
2
δ′

(
Ĩ0 + Ĩ◦

0

)
δ,

which rearranges to the condition

λ
(
(δ′ξ̇0)

2{ξ0 = 0}) = 0

or, equivalently(δ′ξ̇0){ξ0 = 0} = 0 a.e. [λ].
We also have a necessary condition for contiguity, from Section2.2, namely,

nPθn{ f0 = 0} = o(1/n). With Hellinger differentiability, we have another way to
express this condition. Ifθn := δn/

√
n then ξθn(x) = n−1/2δnξ̇0(x) + rθn(x) when

ξ(x) = 0, so that

nPθn{ f0 = 0} = nλ
(
ξ2
θn

{ξ0 = 0}) = δ′
nλ

(
ξ̇0ξ̇

′
0{ξ0 = 0}) δn + o(1).

If δn → δ, the necessary condition for contiguity becomesδ′ξ̇0{ξ0 = 0} = 0 a.e. [λ].
Putting the two arguments together we get a neater form of Theorem<8>.

<10> Corollary. If P is Hellinger differentiable at0, and if θn = δn/
√

n, with {δn}
bounded, thenPn

θn
� Pn

0 if and only if nPθn{ f0 = 0} → 0. In that case,

d Pn
θn

/d Pn
0 = (

1 + op(1; Pn)
)
exp

(
δ′

nZn − 1
2
δ′

nĨ0δn

)
.

Hellinger differentiability alone does not imply contiguity, as shown by a
simple counterexample.

<11> Example. DefineP := {Pθ : 0 ≤ θ ≤ 1} via the densities

fθ (x) = ξθ (x)2 := (1 − θ2) (1 − |x|)+ + θ2 (1 − |x − 2|)+

with respect to Lebesgue measureλ on [−1, 3], The densitiesf0 and f1 have disjoint
support, andξθ = (

1 − θ2
)1/2

ξ0 + θξ1. By direct calculation

λ |ξθ (x) − ξ0(x) − θξ1(x)|2 =
(√

1 − θ2 − 1
)2

= O(θ4).

Thus P is Hellinger differentiable atθ = 0 with L2(λ) derivative ξ̇0 := √
f1, but

Pθ { f0 = 0} = θ2. The random variableZn is equal to zero a.e. [Pn
0 ], and Ĩ0 = 1,

and Ĩ0 = 0. What happens to the likelihhood ratio whenθ = δ/
√

n?�
You might suspect that the extreme behavior in the previous Example is caused

by the fact that the parameter value 0 lies on the boundary of�. That suspicion
would be well founded. At interior points the nonnegativity of the density forces
the L2(λ) to behave well, leading to a sistuation where Corollary<10> applies.

<12> Corollary. Let P be Hellinger differentiable at0, with L2(λ) derivative ξ̇0. If
0 ∈ int(�), then ξ̇0{ξ0 = 0} = 0 a.e. [λ], which implies thatPθn{ f0 = 0} = o(1/n) if
θn := δn/

√
n, with {δn} bounded.
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3.4 Contiguity 9

Proof. Let u be a unit vector inRk. Considerθn := αnu, with αn decreasing to zero
so fast that

∑
n ‖rθn‖2/αn < ∞, which impliesrθn(x)/αn → 0 a.e. [λ]. We can then

draw the pointwise conclusionu′ξ̇ (x){ξ0(x) = 0} ≥ 0 a.e. [λ] from the inequality

0 ≤ α−1
n ξθn(x){ξ0(x) = 0} = u′ξ̇ (x){ξ0(x) = 0} + rθn(x)/αn a.e. [λ].

The conclusion holds for every unit vector. The assertion of the Corollary follows.�

5. Information inequality

The information inequality for the modelP := {Pθ : θ ∈ �} bounds the variance of
an estimatorT(x) from below by an expression involving the expected value of the
statistic and the Fisher information: under suitable regularity conditions,

varθ (T) ≥ γ̇ ′
θ I

−1
θ γ̇θ whereγθ := Pθ T(x).

The classical proof of the inequality imposes assumptions that derivatives can
be passed inside integral signs, typically justified by more primitive assumptions
involving pointwise differentiability of densities and domination assumptions about
their derivatives.

By contrast, the proof of the information inequality based on an assumption of
Hellinger differentiability replaces the classical requirements by simple properties of
L2(λ) norms and inner products. The gain in elegance and economy of assumptions
illustrates the typical benefits of working with Hellinger differentiability. The main
technical ideas are captured by the following Lemma. Once again, with no loss of
generality I consider only behavior atθ = 0.

Remark. The measurePθ might itself be a product measure, representing the
joint distribution of a sample of independent observations from some distributionµθ .
As shown by Problem[4], Hellinger differentiability ofθ �→ µθ at θ = 0 would then
imply Hellinger differentiability ofθ �→ Pθ at θ = 0. We could substitute an explicit
product measure forPθ in the next Lemma, but there would be no advantage to
doing so.

<13> Lemma. SupposeP is Hellinger differentiable at0 with L2(λ) derivative ξ̇0.
Supposesupθ∈U Pθ T(x)2 < ∞, for some neighborhoodU of 0. Then the expected
value,γθ := Px

θ T(x), has derivativeγ̇0 = 2λ(ξ0ξ̇0T) at 0.

Remark. Notice that Pθ T is well defined throughoutU , because of the bound

on the second moment. Also
(
λ|ξ0ξ̇0T |)2 ≤ (

λξ2
0 T2

) (
λ|ξ̇0|2

)
< ∞.

Proof. Write C2 for supθ∈U Pθ T(x)2, so that‖ξθ T‖2 ≤ C for eachθ in U . For
simplicity, I consider only the one-dimensional case. The proof forRk differs only
notationally.
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10 Chapter 3: Hellinger differentiability

The proof is easy ifT is bounded by a finite constantK .

|γθ − γ0 − 2θλ(ξ0ξ̇0T)|
= |λ (

ξ2
θ − ξ2

0 − 2θξ0ξ̇0

)
T |

= λ
∣∣θ2ξ̇2

0 + r 2
θ + 2ξ0rθ + 2θ ξ̇0rθ

∣∣ |T |<14>

≤ K θ2‖ξ̇0‖2
2 + K‖rθ‖2

2

+ 2K
(‖ξ0‖2 ‖rθ‖2 + |θ |‖ξ̇0‖2 ‖rθ‖2

)
by Cauchy-Schwarz

= o(|θ |).
Notice thatK need not be fixed for the last conclusion. It would suffice if we

had|T | ≤ Kθ = o(1/|θ |), which suggests a truncation argument to handle the case of
unboundedT . Let Kθ increase to∞ asθ → 0, in such a way that|θ |Kθ → 0. The
contributions to the remainder fromT{|T | ≤ Kθ } are of ordero(|θ |). To complete
the proof we have only to show that

<15> λ(ξ2
θ − ξ2

0 )T{|T | > Kθ } − 2θλ
(
ξ0ξ̇0T{|T | > Kθ }

) = o(|θ |).
On the left-hand side, the coefficient of 2θ in the second term is bounded in absolute
value by

λ|ξ0ξ̇0T{|T | > Kθ }| ≤ ‖ξ̇0{|T | > Kθ }‖2 ‖ξ0T‖2 ≤ o(1)C,

the o(1) term on the right-hand side coming via Dominated Convergence and the
λ-integrability of ξ̇2

0 . For the first term on the left-hand side of<15>, factorize
ξ2
θ − ξ2

0 as (θ ξ̇0 + rθ )(ξθ + ξ0) then expand, to get

|λ(ξ2
θ − ξ2

0 )T{|T | > Kθ }|
≤ λ|θ ξ̇0{|T | > Kθ } + rθ | |ξθ T + ξ0T |
≤ (|θ | · ‖ξ̇0{|T | > Kθ }‖2 + ‖rθ‖2

)(‖ξθ T‖2 + ‖ξ0T‖2

)
,

the last bound following from several applications of the Cauchy-Schwarz inequality.
Both terms in the leading factor are of ordero(|θ |); both terms in the other factor
are bounded byC. The contribution to the remainder is of ordero(|θ |), as required
for differentiability.�

Remember from Section1 that 4λ(ξ̇0ξ̇
′
0) corresponds to the Fisher information

matrix Ĩ0.

<16> Corollary. In addition to the conditions of the Lemma, supposeĨ0 is nonsingular.
Thenvarθ0T ≥ γ̇0Ĩ−1

0 γ̇0.

Proof. The special case whereT ≡ 1 givesλ(ξ0ξ̇0) = 0 (or use Lemma<4>). Let
interior point?

α be a fixed vector inRk. From Lemma<13> deduce that

(α′γ̇0)
2 = 4

(
λ

(
α′ξ̇0

)
(T − γ0)ξ0

)2
≤ 4α′λ(ξ̇0ξ̇

′
0)α λ

(
ξ2
0 (T − γ0)

2
)

by Cauchy-Schwarz

= α′Ĩ0αPθ0 (T − γ0)
2

Chooseα := Ĩ−1
0 γ̇0 to complete the proof.�

Variations on the information inequality lead to other useful lower bounds for
variances and mean squared errors of statistics.
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3.5 Information inequality 11

<17> Example. Van Trees inequality—needs to be reworked.
...

The information inequality for the one-parameter family takes an elegant form,

mθq(θ)Pθ (T(x) − θ)2 ≥ 1
Iq + mθq(θ)I(θ)

,

whereIq = 4µη̇2 = µq̇2/q denotes the information function for the shift family, and
I(θ) = λ�2

θ denotes the information function for theP model.
The inequality is known as thevan Trees inequality. It has many statistical

applications. See Gill & Levit (1995) for details.�

6. A sufficient condition for Hellinger differentiability

How does Hellinger differentiability relate to the classical assumption of pointwise
differentiability?

Consider the case where� is one-dimensional, withθ as an interior point.
SupposeP is hellinger differentiable at 0, withL2(λ) derivativeξ̇0. That is,

ξθ (x) = ξ0(x) + θ ξ̇0(x) + rθ (x) with ‖rθ‖2 = o(|θ |).
If a sequence{θn} tends to zero fast enough, then

∑
n ‖rθn‖2/|θn| < ∞, from which it

follows that |rθn(x)| = o(|θn|) a.e. [λ]. Unfortunately the aberrant negligible set ofx
might depend on{θn}, so we cannot immediately invoke the usual subsequencing
argument to deduce that|rθ (x)| = o(|θ |) a.e. [λ]. That is, it does not follow
immediately thatθ �→ ξθ (x) is differentiable atθ = 0 for λ-almost allx. However,
if by some means we can show that the pointwise derivativeξ ′

0(x) does exist then
we must havėξ(x) = ξ ′

0(x) a.e. [λ].
For example, ifθ �→ fθ (x) has derivativef ′

0(x) at θ = 0, and if fθ (x) > 0, then
2ξ ′

0(x) = f ′
0(x)/ξ0(x). At pointsx where f0(x) = 0, both derivativesf ′

0(x) andξ ′
0(x),

if they exist, must be zero, for otherwisefθ (x) or ξθ (x) would be strictly negative
for some smallθ , either positive or negative. Thus, if the pointwise derivatives
exists then1

2
f ′
0(x){ξ0(x) > 0}/ξ0(x) is, up to aλ-equivalence, the only candidate for

a Hellinger derivative atθ = 0.
Now consider the situation where we have pointwise differentiability, and

we wish to deduce Hellinger differentiability. What more is needed? The answer
requires careful attention to the problem of when functions of a real variable can be
recovered as integrals of their derivatives.

<18> Definition. A real valued functionH defined on an interval[a, b] of the real
line is said to beabsolutely continuousif to eachε > 0 there exists aδ > 0 such
that

∑
i |H(bi ) − H(ai )| < ε for all finite collections of nonoverlapping subintervals

[ai , bi ] of [a, b] for which
∑

i (bi − ai ) < δ.
Absolute continuity of a function defined on the whole real line is taken to

mean absolute continuity on each finite subinterval.

The following connection between absolute continuity and integration of
derivatives is one of the most celebrated results of classical analysis (UGMTP §3.4).
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12 Chapter 3: Hellinger differentiability

<19> Theorem. A real valued functionH defined on an interval[a, b] is absolutely
continuous if and only if the following three conditions hold.

(i) The derivativeH ′(t) exists at Lebesgue almost all points of[a, b].

(ii) The derivativeH ′ is Lebesgue integrable

(iii) H(t) − H(a) = ∫ t
a H ′(s) ds for eacht in [a, b]

Put another way, a functionH is absolutely continuous on an interval [a, b] if
and only if there exists an integrable functionh for which

<20> H(t) =
∫ t

a
h(s) ds for all t in [a, b]

The function H must then have derivativeh(t) at almost allt . As a systematic
convention we could takeh equal to the measurable function

Ḣ(t) =
{

H ′(t) at pointst where the derivative exists,
0 elsewhere.

I will refer to Ḣ as thedensity. Of course it is actually immaterial hoẇH is defined
on the Lebesgue negligible set of points at which the derivative does not exist, but
the convention helps to avoid ambiguity.

Now consider anonnegativefunction H that is differentiable at a pointt . If
H(t) > 0 then the chain rule of elementary calculus implies that the function 2

√
H

is also differentiable att , with derivativeH ′(t)/
√

H(t). At points whereH(t) = 0,
the question of differentiability becomes more delicate, because the mapy �→ √

y is
not differentiable at the origin. Ift is an internal point of the interval andH(t) = 0
then we must haveH ′(t) = 0. ThusH(y) = o(|y− t |) neart . If

√
H had a derivative

at t then
√

H(y) = o(|y − t |) neart , and henceH(y) = o(|y − t |2). Clearly we need
to take some care with the question of differentiability at points whereH equals
zero.

Even more delicate is the fact that absolute continuity of a nonnegative
function H need not imply absolute continuity of the function

√
H , without further

assumptions—even ifH is everywhere differentiable (Problem[1]).

<21> Lemma. Suppose a nonnegative functionH is absolutely continuous on an
interval [a, b], with density Ḣ . Let �(t) := 1/2Ḣ(t){H(t) > 0}/√H(t). If∫ b

a |�(t)| dx < ∞ then
√

H is absolutely continuous, with density�, that is,

√
H(t) −

√
H(a) =

∫ t

a
�(s) ds for all t in [a, b]

Proof. Fix an η > 0. The functionHη := η + H is bounded away from zero,
and hence

√
Hη has derivativeH ′

η = H ′/(2
√

H + η) at each point where the
derivativeH ′ exists. Moreover, absolute continuity ofHη follows directly from the
Definition <18>, because

|√Hη(bi ) − √
Hη(ai )| = |Hη(bi ) − Hη(ai )|√

Hη(bi ) + √
Hη(ai )

≤ |H(bi ) − H(ai )|
2
√

η

for each interval [ai , bi ]. From Theorem<19>, for eacht in [a, b],
√

H(t) + η −
√

H(a) + η =
∫ t

a

Ḣ(s)

2
√

H(s) + η
ds.
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3.6 A sufficient condition for Hellinger differentiability 13

As η decreases to zero, the left-hand side converges to
√

H(t) − √
H(a). The

integrand on the right-hand side converges to�(s) at points whereH(s) > 0. For
almost alls in {H = 0} the derivativeH ′(s) exists and equals zero; the integrand
converges to 0= �(s) at those points. By Dominated Convergence, the right-hand
side converges to

∫ t
a �(s) ds.�

The integral representation for the square root of an absolutely continuous
function is often the key to proofs of Hellinger differentiability.

<22> Theorem. SupposeP = {Pθ (x) : |θ | < δ} for someδ > 0, with eachPθ dominated
by a sigma-finite measureλ. Suppose also that

(i) there exist densities such that(x, θ) �→ fθ (x) is product measurable;

(ii) for λ almost allx, the functionθ �→ fθ (x) is absolutely continuous on[−δ, δ],
with density ḟθ (x);

(iii) for λ almost allx, the functionθ �→ fθ (x) is differentiable atθ = 0;

(iv) for eachθ the function�θ(x) := 1
2

ḟθ (x){ fθ (x) > 0}/√ fθ (x) belongs toL2(λ)

andλ�2
θ → λ�2

0 asθ → 0.

ThenP has Hellinger derivative�0(x) at θ = 0.

Remark. Assumption (iii) might appear redundant, because (ii) implies
differentiability of θ �→ fθ (x) at Lebesgue almost allθ , for λ-almost all x. A
mathematical optimist (or Bayesian) might be prepared to gamble that 0 does
not belong to the bad negligible set; a mathematical pessimist might prefer
Assumption (iii).

Proof. As before writeξθ (x) for
√

fθ (x), and definerθ (x) := ξθ (x)−ξ0(x)−θ�0(x).
We need to prove thatλr 2

θ = o(|θ |2) asθ → 0.
For simplicity of notation, consider only positiveθ . The arguments for

negativeθ are analogous. Writem for Lebesgue measure on [−δ, δ]
With no loss of generality (or by a suitable decrease inδ) we may assume that

λ�2
θ is bounded, so that, by Tonelli,∞ > msλx�s(x)2 = λxms�s(x)2, implying

ms�s(x)2 < ∞ a.e. [λ]. From Lemma<21> it then follows that

ξθ (x) − ξ0(x)

θ
= 1

θ

∫ θ

0

�s(x) ds a.e. [λ].

By Jensen’s inequality for the uniform distribution on [0, θ ], and (iv),

<23> λ

∣∣∣∣ξθ (x) − ξ0(x)

θ

∣∣∣∣
2

≤ 1
θ

∫ θ

0

λ�s(x)2 ds → λ�2
0 asθ → 0.

Define nonnegative, measurable functions

gθ (x) := 2 |ξθ (x) − ξ0(x)|2 /θ2 + 2�0(x)2 − |rθ (x)/θ |2 .

By (iii), rθ (x)/θ → 0 at almost allx whereξ0(x) > 0, and hencegθ (x) → 4�0(x)2;
and�0(x) = 0 whenξ0(x) = 0. Thus lim infgθ (x) ≥ 4�0(x)2 a.e. [λ]. By Fatou’s
Lemma (applied along subsequences), followed by an appeal to<23>,

4λ�2
0 ≤ lim inf

θ→0
λgθ ≤ 4λ�2

0 − lim sup
θ→0

λ |rθ (x)/θ |2 .

That is,λr 2
θ = o(θ2), as required for Hellinger differentiability.�
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14 Chapter 3: Hellinger differentiability

<24> Example. Let f be a probability density with respect to Lebesgue measureλ

on the real line. Supposef is absolutely continuous, with densitẏf for which
I := λ

({ f > 0} ḟ 2/ f
)

< ∞. Define Pθ to have densityfθ (x) := f (x − θ) with
respect toλ, for eachθ in R. The conditions of Theorem<22> are satisfied, with
λ�2

θ ≡ I. The family {Pθ : θ ∈ R} is Hellinger differentiable atθ = 0. In fact, the
same argument works at everyθ ; the family is everywhere Hellinger differentiable.�

7. An intrinsic characterization of Hellinger differentiability

For the definition of Hellinger differentiability, the choice of dominating measureλ

for the family of probability measuresP = {Pθ : θ ∈ �} is somewhat arbitrary. In
fact, there is really no need for a single dominatingλ, provided we guard against
contributions fromP⊥

θ , the part ofPθ that is singular with respect toP0. As you
saw in Section4, the assumptionP⊥

θ X = o(|θ |2) is needed to ensure contiguity.
We lose little by building the assumption into the definition. Following Le Cam &
Yang (2000, Section 7.2), I will call the slightly stronger propertydifferentiability
in quadratic mean (DQM), to stress that the definition requires a little more than
Hellinger differentiability.

The definition makes no assumption that the family of probability measures
P := {Pθ : θ ∈ �} is dominated. Instead it is expressed directly in terms of the
Lebesgue decomposition ofPθ with respect toPθ0, for a fixedθ0 in �. As before, I
will assumeθ0 = 0 to simplify notation. Remember thatPθ = P̃θ + P⊥

θ , where the
absolutely continuous part̃Pθ has a densitypθ with respect toP0 and the singular
part P⊥

θ concentrates on aP0-negligible setNθ ,

Pθ g = P̃θ

(
g(x)pθ (x){x ∈ Nc

θ }
) + P⊥

θ

(
g(x){x ∈ Nθ }

)
,

at least for nonnegative measurable functionsg on X.

<25> Definition. Say thatP is differentiability in quadratic mean (DQM) at0 if

(i) P⊥
θ (X) = o(|θ |2) as |θ | → 0,

(ii) there is a vector� of k functions fromL2(P0) for which√
pθ (x) = 1 + 1

2
θ ′�(x) + rθ (x) with P0

(
r 2
θ

) = o(|θ |2) near 0.

Remark. Some authors (for example, Bickel et al. 1993, page 457) use the term
DQM as a synonym for differentiability inL2 norm. The factor of 1/2 simplifies
some calculations, by making the vector� correspond to thescore functionat 0.

WhenP is dominated by a sigma-finite measure, the definition agrees with the
definition of Hellinger differentiability under the assumption (i), which is needed
for contiguity of product measures.

<26> Theorem. SupposeP is dominated by a sigma-finite measureλ, with correspond-
ing densitiesfθ (x).

(i) SupposePθ { f0 = 0} = o(|θ |2) and, for some vectoṙξ of functions inL2(λ),√
fθ (x) =

√
f0 + θ ′ξ̇ (x) + Rθ (x) whereλ

(
R2

θ

) = o(|θ |2) with θ = 0.
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3.7 An intrinsic characterization of Hellinger differentiability 15

ThenP satisfies the DQM condition at0, with � := 2{ f0 > 0}ξ̇ /
√

f0 and
rθ := { f0 > 0}Rθ /

√
f0.

(ii) If P satisfies the DQM condition at0 then it is also Hellinger differentiable
at 0, with L2(λ) derivativeξ̇ := 1

2
�

√
f0.

Proof. For the Lebesgue decomposition we can takepθ := { f0 > 0} fθ / f0 and
Nθ := { f0 = 0}. Thus P⊥

θ X = λ fθ { f0 = 0}.
If P is Hellinger differentiability, as in (i), the

P0

∣∣√pθ − 1 − 1
2
θ ′�

∣∣2 = λ f0
∣∣∣{ f0 > 0}

√
fθ / f0 − 1 − 1

2
θ ′ξ̇{ f0 > 0}/

√
f0

∣∣∣2

= λ

(
{ f0 > 0}

∣∣∣√ fθ −
√

f0 − θ ′ξ̇
∣∣∣2

)
= o(|θ |2).

Conversely, ifP satisfies DQM then

λ

∣∣∣√ fθ −
√

f0 − θ ′ξ̇
∣∣∣2 = λ{ f0 = 0}

(√
fθ − 0

)2

+ λ{ f0 > 0}
∣∣∣√ f0 pθ −

√
f0 − 1

2
θ ′�

√
f0

∣∣∣2
= o(|θ |2) + P0

∣∣√pθ − 1 − 1
2
θ ′�

∣∣2 = o(|θ |2).
�

Remark. The proof of the previous Theorem is almost trivial, once one
realizes that contributions from{ f0 = 0} need separate consideration. Both� and ξ̇

vanish on that set. For the definition of Hellinger differentiability it is not, a priori,
necessary thaṫξ{ f0 = 0} = 0. Indeed, it is contributions from that term that can
upset contiguity. Some authorsdefineHellinger differentiability atθ = 0 to mean

λ|
√

fθ −
√

f0 − 1
2θ ′�

√
f0|2 = o(|θ |2) with P0|�|2 < ∞,

thereby forcing theL2(λ) derivative to vanish on{ f0 = 0}. In effect, such a definition
makes contiguity for the product measures a requirement of differentiability in the
L2(λ) sense.

The definition of DQM has some advantages over the definition of Hellinger
differentiability, even beyond the elimination of the dominating measureλ. For θ

near zero,pθ ≈ 1, a simplification that has subtle consequences, as illustrated by
the next Theorem.

The result concerns preservation of the DQM property under measurable maps.
Specifically, if T is a measurable map from(X, A) to (Y, B)) then eachPθ induces
an image measureQθ := T(Pθ ) on B, defined byQθ g := Px

θ g(T x) for eachg in
M+(Y, B). For eachh in M+(X, A) we can also define a measureνh on B by

νh(g) := Px
0 (h(x)g(T x)) for eachg in M+(Y, B).

The measureνh is absolutely continuous with respect toQ0, because ifQ0g = 0,
for a g in M+(Y, B), theng(T x) = 0 a.e. [P]. I will denote the densitydνh/d Q0 by
πt (h). That is,

<27> Px
0

(
h(x)g(T x)

) = Qt
0 (g(t)πt (h)) for eachg ∈ M+(Y, B), andh ∈ M+(X, A).

In fact, πt (h) is the Kolmogorov conditional expectation, usually denoted by
P0(h | T = t). (Compare withUGMTP §5.6.)

Pollard@Paris2001 20 March 2001



16 Chapter 3: Hellinger differentiability

As a particular case, the image measureT(P̃θ ) is absolutely continuous with
respect toQ0, with densityP0(pθ | T = t) = πt (pθ ). Under DQM,

√
πt (pθ ) =

(
πt

(
1 + 1

2
θ ′� + rθ

)2)1/2

= (
1 + θ ′πt� + . . .

)1/2 = 1 + 1
2
θ ′πt� + . . .

If all the omitted terms can be ignored, in anL2(Q0) sense, then{T P̃θ : θ ∈ �}
would be Hellinger differentiable at 0, withL2(Q0)-derivativeπt (�). The image
of the singular parts,T(P⊥

θ ), has total masso(θ |2), which does not disturb the
approximation.

<28> Theorem. SupposeP = {Pθ : θ ∈ �} is DQM at 0 with score function�.
SupposeT is a measurable map from(X, A) into (Y, B). Then {T Pθ : θ ∈ �} is
DQM at 0, with score functionP0(� | T = t).

Proof. To simplify notation, I will assume� is one-dimensional. No extra
conceptual difficulties arise in higher dimensions.

Define Qθ := T Pθ and Q̃θ := T P̃θ . Write ξθ for
√

pθ , so that

ξθ (x) = 1 + 1
2
θ�(x) + rθ (x) with P0r 2

θ = o(θ2).

Use a bar to denote “averaging” with respect toπt ,

�̄θ (t) := πt (�), r̄θ (t) := πt (rθ ), ξ̄θ (t) := πt (ξθ ) = 1 + 1
2
θ�̄(t) + r̄θ (t).

Define conditional variances similarly,

σ 2
θ (t) := πt

(
ξθ − ξ̄θ

)2
, J(t) := πt

(
� − �̄

)2
, εθ (t)

2 := πt (rθ − r̄θ )
2 .

Notice that
Q0σ

2
θ ≤ Q0

(
πtξ

2
θ

) = P0ξ
2
θ = P̃θX ≤ 1,

and
Q0 J ≤ Q0

(
πt�

2
) = P0�

2 < ∞,

and
Q0ε

2
θ ≤ Q0

(
πt r

2
θ

) = P0r 2
θ = o(θ2).

The density ofQ̃θ with respect toQ0 equals

η2
θ (t) := πt (ξ

2
θ ) = πt (ξθ − ξ̄θ )

2 + ξ̄2
θ .

Thusδθ (t) := ηθ (t) − ξ̄θ (t) is nonnegative, and
(
ξ̄θ + δθ

)2 = η2
θ = σ 2

θ + ξ̄2
θ , implying

<29> 2ξ̄θ δθ + δ2
θ = σ 2

θ = πt
(
1
2
θ(� − �̄) + (rθ − r̄θ )

)2 ≤ 1
2
θ2 J(t) + 2ε2

θ (t).

Remark. The cancellation of the leading constants whenξ̄θ is subtracted
from ξθ seems to be vital to the proof. For general Hellinger differentiability, the
cancellation does not occur.

DQM for the Q̃θ measures meansQ0

(
ηθ − 1 − 1

2
θ�̄

)2 = o(θ2). The difference
ηθ − 1 − 1

2
θ�̄ equalsδδ + r̄θ . The r̄θ is easily handled:

Q0r̄ 2
θ = Q0 (πt rθ )

2 ≤ Q0πt r
2
θ = P0r 2

θ = o(θ2).
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3.7 An intrinsic characterization of Hellinger differentiability 17

For δθ we need to argue from<29>, using the fact that̄ξθ should be close to 1.
More precisely, letMθ be a positive constant (depending onθ) for which Mθ → ∞
and 1/2 ≥ |θ |Mθ → 0 asθ → 0. Then the set

�θ := {t : J(t) ≤ Mθ , |�̄(t)| ≤ Mθ , |r̄θ | ≤ 1
4
, |εθ | ≤ 1},

hasQ0 measure tending to 1, and on�θ ,

ξ̄θ (t) ≥ 1 − 1
2
|θ�̄(t)| − |r̄θ (t)| ≥ 1

2
.

Splitting the integrand according to whethert is in �θ or not, and reducing the
left-hand side of<29> to 2ξ̄θ δθ ≥ δθ in the first case andδ2

θ in the second, we have

Q0δ
2
θ ≤ Q0

((
1
2
θ2 J(t) + 2ε2

θ (t)
)2 {t ∈ �θ }

)
+ Q0

(
1
2
θ2 J(t) + 2ε2

θ (t){t ∈ �c
θ }

)
≤ 2

(
1
2
θ2Mθ

)2 + 1
2
θ2Q0 (J(t){J(t) > Mθ }) + 6Q0ε

2
θ

= o(θ2).

Dominated Convergence takes care of the middle term.
The part ofQθ that is absolutely continuous with respect toQ0 might be slightly

larger thanQ̃θ , because the image measureT P⊥
θ might also make a contribution.

That is, the density for the Lebesgue decomposition ofQθ with respect toQ0 might
actually equalη2

θ + sθ , wheresθ ≥ 0 andQ0sθ ≤ (T P⊥
θ )(Y) = P⊥

θ (X) = o(θ2).
The contribution fromsθ gets absorbed into the remainder term, and adds further
o(θ2) terms to the bounds in the previous paragraph. The modification has an
asymptotically negligible effect on the argument. The family{Qθ : θ ∈ �} inherits
DQM from the family {Q̃θ : θ ∈ �}.�

8. Problems

Problems not yet checked.

[1] (Construction of an absolutely continuous density whose square root is not absolutely
continuous.) Fori ≥ 3 define

αi = 1
i (log i )2

and βi = 1
i (log i )5

,

Define Bi = 2
∑

j ≥i βj . Define functions

Hi (t) = αi (1 − |t − Bi − βi |/βi )
+ and H(t) = (1 ∧ t)+ +

∑
i ≥3

Hi (t).
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18 Chapter 3: Hellinger differentiability

(i) Show thatBi decreases like(log i )−4.

(ii) Use the fact that
∑

i αi < ∞ to prove thatH is absolutely continuous.

(iii) Show thatαi /Bi → 0, then deduce thatH has derivative 1 at 0.

(iv) Show that
√

H(Bi −1 − βi ) −
√

H(Bi −1) = αi − βi√
H(Bi −1 + βi ) + √

H(Bi −1)
,

which decreases like 1/ i , then deduce that
k+m∑
i =k

|
√

H(Bi −1 − βi ) −
√

H(Bi −1)|

can be made arbitrarily large while keeping
∑k+m

i =k |βi | arbitrarily small. Deduce
that

√
H is not absolutely continuous.

(v) Show, by an appropriate “rounding off of the corners” at each point whereH
has different left and right derivatives followed by some smooth truncation and
rescaling, that there exists an absolutely continuous, everywhere differentiable
probability density functionf for which

√
f is not absolutely continuous.

[2] Let fθ (x) = 1/2 exp(−|x − θ |), for θ ∈ R (the double-exponential location family of
densities with respect to Lebesgue measure).

(i) Show that
∫ √

fθ (x) fθ+δ(x) dx = (1 + δ/2) exp(−δ/2).

(ii) Deduce that the densityfθ is Hellinger differentiable at everyθ .

(iii) Show thatθ �→ fθ (x) is not differentiable, for each fixedx, at θ = x.

(iv) Prove Hellinger differentiability by a direct Dominated Convergence argument,
without the explicit calculation from (i).

(v) Prove Hellinger differentiability by an appeal to Example<24>, without the
explicit calculation from (i).

[3] SupposeF = { fθ : θ ∈ �} is a familiy of densities indexed by a subset�

of Rk. Suppose 0 is an interior point of� and thatF is Hellinger differentiable
at θ = 0, with derivative�. Show that�(x) = 0 almost everywhere on{ f0 = 0}.
Hint: Approach 0 from each direction inRk. Deduce that bothP0�{ f0 = 0} and
P0�

2{ f0 = 0} equal zero.

[4] SupposeF = { ft (x) : t ∈ T} is a family of probability densities with respect to
a measureλ, G = {gs(x) : s ∈ S} is a family of probability densities with respect
to a measureµ. SupposeF is Hellinger differentiable att = 0 andG is Hellinger
differentiable ats = 0. Show that the family of densities{ fs(x)gt (y) : (s, t) ∈ S⊗ T}
with respect toλ ⊗ µ is Hellinger differentiable at(s, t) = (0, 0). Hint: Use
Cauchy-Schwarz to bound contributions from most of the cross-product terms in the
expansion of

√
ft (x)gs(y).

[5] SupposeF = { fθ : θ ∈ Rk} has Hellinger derivative� at θ0. Show thatF is also
differentiable inL1 norm with derivative�1 = 2

√
fθ0�, that is, show

λ| fθ − fθ0 − (θ − θ0)
′�1| = o(|θ − θ0|) nearθ0
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3.8 Problems 19

[6] If F is L1 differentiable andλ ḟ 2/ f0 < ∞ is F also Hellinger differentiable?
[Expand.]

[7] Let Pθ be the probability measure defined by the densityfθ (·). A simple application
of the Cauchy-Schwarz inequality shows that

H(Pθ , Pθ0)
2 = (θ − θ0)

′λ
(
ξ̇ (x)ξ̇ (x)′

)
(θ − θ0) + o(|θ − θ0|2).

Provided the matrix� = λ
(
�(x)�(x)′

)
is nonsingular, it then follows that there

exist nonzero constantsC1 andC2 for which

C1|θ − θ0| ≤ H(Pθ , Pθ0) ≤ C2|θ − θ0| nearθ0.

If such a pair of inequalities holds, with fixed strictly positive constantsC1 andC2,
throughout some subset of�, then Hellinger distance plays the same role as ordinary
Euclidean distance on that set.

[8] SupposeF = { fθ : θ ∈ �} is a family of probability densities with respect to a
measureλ, with index set� a subset of the real line. As in Theorem<22>, suppose

√
fθ+β(x) −

√
fθ (x) =

∫ θ+β

θ

�t (x) dt mod[λ], for |β| ≤ δ, a ≤ θ ≤ b,

with supt λ�2
t = C < ∞, where [a − δ, b + δ] ⊆ �. Let Q = {qα : −δ < α < δ}

be a family of probability densities with respect to Lebesgue measureµ on [a, b],
each bounded by a fixed constantK , and with Hellinger derivativėη at α = 0.
Create a new familyP = {pα,β(x, θ) : max(|α|, |β|) < δ} of probability densities
pα,β(x, θ) = qα(θ) fθ+β(x) with respect toλ ⊗ µ.

(i) Show thatP is Hellinger differentiable atα = 0, β = 0 with derivative having
componentṡη

√
fθ and

√
f0�θ .

(ii) Try to relax the assumptions onQ.

[9] SupposeP = {Pθ : θ ∈ �}, with 0 ∈ � ⊆ Rk, is a dominated family of probability
measures on a spaceX, having densitiesfθ (x) with respect to a sigma-finite
measureλ. DefineU as the set of unit vectors

U = {u : there exists a sequence{θi } in � such thatθi /|θi | → u as i → ∞}
Write P̃θ for the part ofPθ that is absolutely continuous with respect toP0

and P⊥
θ = Pθ − P̃θ for the part that is singular with respect toP0. Write p̃θ for the

densitydP̃θ /d P0.
The following are equivalent.

(i) For some vectoṙξ of functions inL2(λ),√
fθ =

√
f0 + θ ′ξ̇ + rθ whereλ

(
r 2
θ

) = o(|θ |2) nearθ = 0,

andu′ξ̇ = 0 a.e. [λ] on { f0 = 0}, for eachu in U.

(ii) For some vector� of functions inL2(P0),√
fθ =

√
f0 + 2θ ′�

√
f0 + Rθ whereλ

(
R2

θ

) = o(|θ |2) nearθ = 0,

and P⊥
θ X = o(|θ |2).
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20 Chapter 3: Hellinger differentiability

(iii) For some vector�̃ of functions inL2(P0),√
p̃θ = 1 + 2θ ′�̃ + r̃θ where P0

(
r̃ 2
θ

) = o(|θ |2) nearθ = 0,

and P⊥
θ X = o(|θ |2).

9. Notes

Incomplete

I borrowed the exposition Section2 from Pollard (1997). The essential
argument is fairly standard, but the interpretation of some of the details is novel.
Compare with the treatments of Le Cam (1970, and 1986 Section 17.3), Ibragimov
& Has’minskii (1981, page 114), Millar (1983, page 105), Le Cam & Yang (1990,
page 101), or Strasser (1985, Chapter 12).

Hájek (1962) used Hellinger differentiability to establish limit behaviour of rank
tests for shift families of densities. Most of results in Section6 are adapted from the
Appendix to Hájek (1972), which in turn drew on H´ajek & Šidák (1967, page 211)
and earlier work of H´ajek. For a proof of the multivariate version of Theorem<22>

see Bickel et al. (1993, page 13). A reader who is puzzled about all the fuss over
negligible sets, and behaviour at points where the densities vanish, might consult
Le Cam (1986, pages 585–590) for a deeper discussion of the subtleties.

The proof of the information inequality (Lemma<13>) is adapted from
Ibragimov & Has’minskii (1981, Section 1.7), who apparently gave credit to Blyth
& Roberts (1972), but I could find no mention of Hellinger differentiability in that
paper.

Cite van der Vaart (1988, Appendix A3) and Bickel et al. (1993, page 461) for
Theorem<28>. Ibragimov & Has’minskii (1981, page 70) asserted that the result
follows by “direct calculations”. Indeed my proof uses the same truncation trick
as in the proof of Lemma<13>, which is based on the argument of Ibragimov
& Has’minskii (1981, page 65). Le Cam & Yang (1988, Section 7) deduced an
analogous result (preservation of DQM under restriction to sub-sigma-fields) by
an indirect argument using equivalence of DQM with the existence of a quadratic
approximation to likelihood ratios of product measures (an LAN condition).

References

Bickel, P. J., Klaassen, C. A. J., Ritov, Y. & Wellner, J. A. (1993),Efficient and
Adaptive Estimation for Semiparametric Models, Johns Hopkins University Press,
Baltimore.

Blyth, C. & Roberts, D. (1972), On inequalities of Cram´er-Rao type and admissibility
proofs, in L. Le Cam, J. Neyman & E. L. Scott, eds, ‘Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability’, Vol. I,
University of California Press, Berkeley, pp. 17–30.

Pollard@Paris2001 20 March 2001



3.9 Notes 21

Gill, R. & Levit, B. (1995), ‘Applications of the van Trees inequality: a Bayesian
Cramér-Rao bound’,Bernoulli 1, 59–79.
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Hájek, J. &Šidák, Z. (1967),Theory of Rank Tests, Academic Press. Also published
by Academia, the Publishing House of the Czechoslavak Academy of Sciences,
Prague.

Hawkins, T. (1979),Lebesgue’s Theory of Integration: Its Origins and Development,
second edn, Chelsea, New York.

Ibragimov, I. A. & Has’minskii, R. Z. (1981),Statistical Estimation: Asymptotic
Theory, Springer, New York.

Le Cam, L. (1970), ‘On the assumptions used to prove asymptotic normality of
maximum likelihood estimators’,Annals of Mathematical Statistics41, 802–828.

Le Cam, L. (1986),Asymptotic Methods in Statistical Decision Theory, Springer-
Verlag, New York.

Le Cam, L. & Yang, G. L. (1988), ‘On the preservation of local asymptotic normality
under information loss’,Annals of Statistics16, 483–520.

Le Cam, L. & Yang, G. L. (1990),Asymptotics in Statistics: Some Basic Concepts,
Springer-Verlag.

Le Cam, L. & Yang, G. L. (2000),Asymptotics in Statistics: Some Basic Concepts,
2nd edn, Springer-Verlag.

Millar, P. W. (1983), ‘The minimax principle in asymptotic statistical theory’,
Springer Lecture Notes in Mathematicspp. 75–265.

Pollard, D. (1997), Another look at differentiability in quadratic mean,in D. Pollard,
E. Torgersen & G. L. Yang, eds, ‘A Festschrift for Lucien Le Cam’, Springer-
Verlag, New York, pp. 305–314.

Strasser, H. (1985),Mathematical Theory of Statistics: Statistical Experiments and
Asymptotic Decision Theory, De Gruyter, Berlin.

van der Vaart, A. (1988),Statistical estimation in large parameter spaces, Center for
Mathematics and Computer Science. (CWI Tract 44).

Pollard@Paris2001 20 March 2001


