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Chapter 3

Hellinger differentiability

Modern statistical theory makes clever use of the fact that square roots of probability
density functions correspond to unit vectors in spaces of square integrable functions.
The Hellinger distance between densities corresponds tdCthaorm of the
difference between the unit vectors. This Chapter explains some of the statistical
consequences of differentiability in norm of the square root of the density, a property
known as Hellinger differentiability.

SECTION 1 relates Hellinger differentiability to the classical regularity conditions for
maximum likelihood theory.

SECTION 2 derives some subtle consequences of norm differentiability for unit vectors.

SECTION 3 shows that Hellinger differentiability of marginal densities implies existence of
a local quadratic approximation to the likelihood ratio for product measures.

SECTION 4 explains why Hellinger differentiability almost implies contiguity for product
measures.

SECTION 5 derives the information inequality, as an illustration of the elegance brought
into statistical theory by Hellinger differentiability.

SECTION 6 discusses connections between Hellinger differentiability and pointwise differ-
entiability of densities, leading to a sufficient condition for Hellinger differentiability.

SECTION 7 explains how one can dispense with the dominating measure for the definition
of Hellinger differentiability. The slightly strengthened concept—Differentiability in
Quadaratic Mean—is shown to be preserved under measurable maps.

Notation: Throughout the Chaptef? := {P, : 8 € ®} will denote a family of
probability measures, on a fixgll, A), indexed by a subsé of RX. In all Sections
except the lastf, will denote the density oP, with respect to a fixed dominating
measurex. The functiong,(x) will always denote the positive square root ix),
and| - || will always denote the?(1) norm.

Most results in the Chapter will concern behavior near some arbitrarily chosen
point 8, of ®. For simplicity of notation, | will usually assum& = 0, except in a
few basic definitions. Thus an expression suclivas 90)’590 will simplify to 6'&,
a form that is easier to read and occupies less space on the page. The simplification
involves no loss of theoretical generality, because the same effect could always be
achieved by a reparametrizatiah;=t + 6.
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2 Chapter 3:  Hellinger differentiability

Heuristics

The traditional regularity conditions for maximum likelihood theory involve existence
of two or three derivatives of density functions, together with domination assumptions
to justify differentiation under integral signs. Le Cam (1970) noted that such
conditions are unnecessarily stringent. He commented:

Even if one is not interested in the maximum economy of assumptions one cannot
escape practical statistical problems in which apparently “slight” violations of
the assumptions occur. For instance the derivatives fail to exist at onepoint
which may depend o®, or the distributions may not be mutually absolutely
continuous or a variety of other difficulties may occur. The existing literature

is rather unclear about what may happen in these circumstances. Note also that
since the conditions are imposed upon probability densities they may be satisfied
for one choice of such densities but not for certain other choices.

Probably Le Cam had in mind examples such as the double exponential density,
hexp(—|x — 8]), for which differentiability fails at the poiné = x. He showed
that the traditional conditions can, for some purposes, be replaced by a simpler
assumption oHellinger differentiability: differentiability in norm of the square
root of the density as an element of &f space.

As you will soon see, much asymptotic theory can be made to work with
classical regularity assumptions relaxed to assumptions of Hellinger differentiability.
The derivation of the information inequality in Sectirillustrates the point.

Definition. A mapt from a subse® of a Euclidean spacgX into a normed
vector spacé’ is said to be differentiable (in norm) at a poégtwith derivativety,
if T(0) = t(0o) + (6 — 6p)' 14, + 1 (9), Where|r ()| = o(|0 — 6y|) asé — 6y. The
derivativety, is ak-vector(vy, ..., v) of elements fronV, andt'ty, = >, tiv;.

The family ? := {P, : 6 € ®} (dominated by)) is said to be Hellinger
differentiability at6, if the mapé — & (x) := /T,(x) is differentiable inL2(x)
norm até,. That is,? is Hellinger differentiable a#, if there exists a vecta, (x)
of functions in£2() such that

£ (X) = &3(X) + (6 — 60)'Egp (X) +T5(X) with [Irell2 = 0(16 — 6o]) ase — 6.

REMARK. Some authors (for example, Bickel, Klaassen, Ritov & Wellner (1993,
page 202)) adopt a slightly different definition,

V 1) =/ T, (00 + %2(0 — 60) A(X)/ fo (X) +T9(X),

replacing the Hellinger derivativé},O by LA (x),/ fe,(X). As explained in Section,
the modification very cleverly adds an extra regularity assumption to the definition.
The two definitions are not completely equivalent.

Classical statistical theory, especially when dealing with independent observa-
tions from aP,, makes heavy use of the functién(x) := log f,(x). The variance
matrix I, of the score function(the vectoré,(x) of partial derivatives with respect
to 9) is called theFisher information matrix for the model. The classical regularity
conditions justify differentiation under the integral sign to get

. . 0
Polo(x) = A Te(X) = ﬁlfe(x) =0,
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3.1 Heuristics 3

whencel, := var (£5) = Py (€o}).

Under assumptions of Hellinger differentiability, the derivatiyetakes over
the role of the score vector. Ignoring problems related to division by zero and
distinctions between pointwise ard (1) differentiability, we would have

26(x) 2 2 9 1 ofsx)
= —/ fo(X) = —— = £y (X).
600 vhooa' VT g0 se T
The equality<a> corresponds to the asserti®® (£/&) = A (££) = 0, which
Section2 will show to be a consequence of Hellinger differentiability and the
identity Af, = 1. The Fisher informatiofi, at6 corresponds to the matrix

P (606)) 2 4y (606 /52) 2 4 (60
Here | flag both equalities as slightly suspect, not just for the unsupported assumption
of equivalence between pointwise and Hellinger differentiabilities, but also because
of a possible PO cancellation. Perhaps it would be better to insert an explicit
indicator function,{&, > 0}, as a factor, to protect against@ To avoid possible
ambiguity or confusion, | will writel, for 4x(£,£}) and Ty for 4r(:&){&s > 0)), to
hint at equivalent forms fof, without yet giving precise conditions under which all
three exist and are equal.

The classical assumptions also justify further interchanges of integrals and
derivatives, to derive an alternative representafios- —Py¢, for the information
matrix. It might seem obvious that there can be no analog of this representation
for Hellinger differentiability. Indeed, how could an assumption of one-times
differentiability, in norm, imply anything about a second derivative? Surprisingly,
there is a way, if we think of second derivatives as coefficients of quadratic terms
in local approximations. As shown in Secti@nthe fact that|& ||, = 1 leads to a
quadratic approximation for a log-likelihood ratio—a sort of Taylor expansion to
guadratic terms without the usual assumption of twice continuous differentiability.
Remarkable.

Differentiability of unit vectors

Supposer is a map fromR* into some inner product spadé (such ast?(1)).
Suppose also that is differentiable (in norm) ag,,

Ty = Ty + @ — 90),1:',90 + Iy with Irell = 0(|@ — 6y]) neardy,.

For simplicity of notation, suppos® = O.

The Cauchy-Schwarz inequality giveso, ry)| < llzoll lIrell = 0(]6]). It would
usually be a blunder to assume naively that the bound must therefore be of order
0(6)%); typically, higher-order differentiability assumptions are needed to derive
approximations with smaller errors. However,||ify|| is constant—that is, ify
is constrained to take values lying on the surface of a sphere—then the naive
assumption turns out to be no blunder. Indeed, in that case, it is easy to show that in
general(zy, ry) equals a quadratic ie plus an error of ordeo(||?). The sequential
form of the assertion will be more convenient for the calculations in Se@ion
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4 Chapter 3:  Hellinger differentiability

<4> Lemma. Let{a,} be a sequence of constants tending to zero.tbet,, ... be
elements of norm one for whicty = ty + anW + pn, With W a fixed element of{

la théoréme and||pnll = o(an). Then(zy, W) = 0 and?2(zy, pn) = _Olr%”\/\/”2 + 0(05%)-
du chat mort Proof. Because both, andr, have unit length,
0=lml* - lloll* = 20n(z0. W) order O(an)
+ 2(t9, pn) ordero(ay)
+an W2 order O(a2)
+ 200 (W, pn) + [l onll® ordero(a?).

The o(an) ando(a?) rates of convergence in the second and fourth lines come from
the Cauchy-Schwarz inequality. The exact zero on the left-hand side of the equality
exposes the leadingrg{zg, W) as the onlyO(«y,) term on the right-hand side. It
must be of smaller orden(«;,) like the other terms, which can happen only if
(t0, W) = 0, leaving

0 = 2(o, pn) + a5 [WII* + o(er),

O as asserted.

REMARK. Without the fixed length property, the differenge, ||? — ||zo/|> might
contain terms of ordet,. The inner productz, pn), which inheritso(«,) behaviour
from [|pn|l, might then not decrease at ti@«?) rate.

<5> Corollary. If P has a Hellinger derivaliivég0 at0, and if0 is an interior point
of ©, theni (&%) = 0 and8x (&ry) = —0'100 + 0(|6|%) nearO.

Proof. Start with the second assertion, in its equivalent form for sequehcesO.
Write 6, as |6,|u,, With u, a unit vector inRX. By a subsequencing argument, we
may assume that, — u, in which case,

Eg, = Eo + |OnlUno + g, = &0 + 16n|U'E0 + (1o, + 16n](Un — W)'&p) .
Invoke the Lemma (withW = u'&;) to deduce that's (£,&,) = 0 and

—416,1°2 (U'Eo)” + 0(16n]?) = 81 (&0 (Fg, + 16nl(Un — U)'Ep))
= 8 (£ol'g,) + 816l (Un — W)'A (50&0) -

Because 0 is an interior point, for every unit vectothere are sequencés — 0

through ® for which u = 6,/16,]. Thusu’a (goéo) = 0 for every unit vectow,

implying that x (£&) = 0. The last displayed equation reduces the sequential
O analog of the asserted approximation.

REMARK. If 0 were not an interior point of the parameter space, there might
not be enough directions along whiché, — 0 through®, and it might not follow
that 1 (&) = 0. Roughly speaking, the set of such directions is callecctimingent

of ® at 6p. If the contingent is ‘rich enough’, we do not need to assume that 0
is an interior point. See Le Cam & Yang (1988, Section 6.2) and Le Cam (1986,
page 575) for further details. See also the discussion in Sedtion
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3.3 Quadratic approximation for log likelihood ratios 5

3. Quadratic approximation for log likelihood ratios

Suppose observatiorig;} are drawn independently from the distributi®. Under
the classical regularity conditions, the log of the likelihood ratig]'/d P} =
[Ti-n fo(xi)/fo(x) has a local quadratic approximation ipIn neighborhoods of 0,
unaerP(;‘. (Remember that, in generalQ/dP denotes the density with respectito
of the part ofQ that is absolutely continuous with respectit9g For example, the
following result (for one dimension) was proved in Sectiba

<6> Theorem. LetP, := B} andQ, := P”n, for 6, = 8,/+/n with {8,} bounded.
Suppose the map— f, is twice differentiable in a neighborhoadl of 0 with:

() 6 — f4(x) is continuous ab;
(i) there exists a-integrable functio (x) with sup,., | fs(x)| < M(x) a.e. [Po];
(i) P (£,00/f0(0))° = PE(fo(x)/fo(x))” =: Ty < 0o asé — 0;
(iv) Py{fy =0} =0(8?) aso — 0.
ThenPylo(x) = 0= P, (f(x)/fo(x)) and, undefPy},
d@n
dpP,
whereZ, =Y _. £o(X)//N ~ N(0,Iy). Consequently(), <i P,.
The method of proof consisted of writing the likelihood ratio as

]‘[iin (1+en(X)) whereen(x) 1= { fo(x) > O}( fs,(X) — fo(X)) /fo(X),
then showing that, undef,,
(@) MaX<n len(xi)| = 0p(1),
(b) Zifn en(X) = 0nZn + Op(l)v
(©) Yinen(x)? = 8210 + 0p(1).
Result (a) plus the fact that;, _ en(Xi)? = Op(1) implied that

<7> [T, 2+ ent0) = 1+ 0,D) exp(D-,_ nx) — Sen(x)?).

from which the final assertion followed.

Le Cam (1970) established a similar quadratic approximation under an
assumption of Hellinger differentiability. The method of proof is very similar to
the method just outlined, but with a few very subtle differences. Remember that
ﬁo =4 (%’géé) andﬁg =4 (S()Eé{éfg > O})

<8> Theorem. SupposeP is Hellinger differentiable a®, with L2(1) derivativeg,.
LetP, := Py andQ, := PR}, with 6, := 8,//n for a bounded sequeng¢g,}. Then,
under{P,},

= (14 0p(D)) exp(8nZn — 2821)

i<n

dQn
dPn

= (L+ 0p(D) exp(3hZn — 1840 + Ty)an)

where . )
Z,:=2n"1? Zisn {Eo(xi) > O0}o(X) /&0 (X)) ~~ N(O, I).
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6 Chapter 3:  Hellinger differentiability

REMARK. It is traditional to absorb the 4 0,(1) factor for the likelihood ratio

into the exponent. One then has some awkwardness with the right-hand side of the
approximation at samples for which the left-hand side is zero. The awkwardness
occurs with positiveP, probability if Py { fy, = 0} > 0.

Proof. | will give the proof only for the one-dimensional case. The proof for the
multi-dimensional case is analogous.
Write z, for &, , andp, for ry , andL, for dQ,/dP,. By Hellinger differentia-

bility,
(X) = &) + N7 280 () + pn(x)  with 207 = 0(67).
Define
n - 8n
<9> Mn(X) = {&o(x) > 0}% = ﬁD(m + Ra(%),
where

D(X) 1= {£&(X) > 0} (X) /&0 (X) and Ra(X) := {£0(X) > O} pn(X)/E0(X).
The indicator functions have no effect within the ggt:= Ni<n{&0 (%) > 0}, which

?
has P,-probability one, but they will protect againsf@= 1 when converting
from Py- to A-integrals. On the sed, ,

Ve =TT w00 /E00 =TT _, (L+m00) .
For almost the same reason as in the proof of Theotem, we need to show that
(i) max <n [nn(X)| = 0p(D),
(i) Yicn (%) = 38020 — 38210 + 0p(D),
(i) Y ()% = 18205 + op(D).
The analog of<7>, with n, replacinge,, will then give

VB = (14 0pD) exp(Y,_ m00) = 3D mn00?).
from which the assertion of the Theorem follows by squaring both sides.

REMARK. Notice that (ii) differs significantly from its analog (b) for the proof
of Theorem<6>, through the addition of a constant term. However, the difference
is compensated by a halving of the corresponding constant in (iii), as compared
with (c). The differences occur because, on the{dgtx) > 0},

Tw(X)2 — &(X)?  1a(X) — £o(X) 2£0(X) + Tn(X) — £o(X)

n = = == 2 n n 2.
&0 £0(0 £0(0) 2000 09 + ()

Thus
Do et =23 " )+ Y () = 8nZn — 58710 + 315 + 0p(D).

As you will see in Sectiord, the conditions of Theorera6> actually implyﬁo = ﬁg,
a condition equivalent to the contiguity, <1 P,.

Assertions (i), (i), and (iii) will follow from <9>, via simple probability facts,
including: if Y1, Ys, ... are independent, identically distributed random variables
with P|Y;|" < oo for some constant > 1 then max., |Yi| = 0,(n'/"). (The proof
appeared as a Problem to Chapter 2.)
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3.3 Quadratic approximation for log likelihood ratios 7

First note that

25000 o 0}) = (80f0) =0 by Corollary<s>.
&o(X)

o )
PoD(x)* = 4 (EO(X)2§2E§;2 {&0(x) > 0}) = (E&0 00 > 0}) = 115,

8PyR(X) = 81 (£0(X)on(X)) = —821/n + o(1/n),
PoR(X)? < Apn(x)? = 0o(1/n).

PoD(X) =4 (Eo(X)

From the expressions involving we get
Zn=2) ,_ D)/~ N, 51,
YL DO = AT+ 0p(1),
max|D(x)| = 0p(n'/?).

From the expressiong involving, we get

Bo ()., Ral)) = —8210 + o),

var (3", Ra()) = D7 PaRa(x)? = O,
which together imply that

Y0 RO) = —38300 + 0p(D),

(MaXn [RaODI)* = D7, Ra)? = 0p(D).
Assertions (i), (i), and (iii) now follow easily.

For (i):
[D(x)]
maXx<n [Mn(Xi)| < |8l maX<n \/ﬁ + MaX<n [Ra(Xi)| = Op(l)-
For (ii):
N1 D(xi) N1 1427
2 n06) = 380D =2+ D RalX) = 360Zn — §87Th + 0p(D).
For (iii):

(S mo0?)” = (35, 225 |2 (o) =

implying that

2 2 D (%) 1 ¢2%0
Zisn M (X)" = d, Zisn n + 0p(D) = 78515 + 0p(D).

The asserted quadratic approximation follows.

Contiguity

Consider once more the product measutgs= Py andQ, := P;, as defined in
Theorem<s>, under the assumption of Hellinger differentiability cat= 0. For
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8 Chapter 3:  Hellinger differentiability

contiguity we needPL = 1 for every limit in distribution of a subsequence of
L, := dQ,/dP,. Along a further subsequendég — § € R¥, so we must havé of
the form

exp(a’Z ~ 1y (ﬁo + f[g) 5) with Z distributedN (0, T3).
This random variable has expected value equal to 1 if and only if
8T8 = 18/ (To + 1) 8,
which rearranges to the condition
2 ((6'60)*(60 =0)) =0
or, equivalently(§'éy){&, = 0} = 0 a.e. .

We also have a necessary condition for contiguity, from Se@i@nnamely,
nk,{fo = 0} = o(1/n). With Hellinger differentiability, we have another way to
express this condition. I, := 8,//n theng, (x) = n~Y/28,£,(x) + ry, (X) when
£(x) =0, so that

NP, {fo = 0} = n (€3 {50 = 0}) = 8,2 (5080 {50 = O}) 8n + (D).

If 5, — &, the necessary condition for contiguity becom&g{s, = 0} = 0 a.e. |].
Putting the two arguments together we get a neater form of Theei®m

<10> Corollary. If P is Hellinger differentiable ab, and if6, = §,//n, with {85}
bounded, therp; < Py if and only ifnPRy {fo = 0} — 0. In that case,
dPD/d P = (1+ 0p(L; Py) exp(a;zn - ga’nﬁoan) .
Hellinger differentiability alone does not imply contiguity, as shown by a
simple counterexample.
<11> Example. Define? :={P, : 0 < 6 < 1} via the densities
fo(x) = &00% =1 -6 Q- IxDT+6% L —|x-2)"

with respect to Lebesgue measuren [-1, 3], The densitiesy and f; have disjoint
support, and;, = (1—62)"? &, + 6&,. By direct calculation

2
A& 00 = 8000 — 081001 = (V1= 67 ~ 1) = 0(6*).

Thus P is Hellinger differentiable ab = 0 with £2(1) derivativeé, := /T, but
Py{fo = 0} = 62. The random variabl&, is equal to zero a.e.P], and I, =1,
O andl, = 0. What happens to the likelihhood ratio whee= §/./n?

You might suspect that the extreme behavior in the previous Example is caused
by the fact that the parameter value O lies on the bounda®.of hat suspicion
would be well founded. At interior points the nonnegativity of the density forces
the £L2(1) to behave well, leading to a sistuation where Corollang> applies.

<12> Corollary. Let P be Hellinger differentiable a0, with L?().) derivative,. If
0 € int(®), thenéy(&, = 0} = 0 a.e. |], which implies thatPy { f, = 0} = o(1/n) if
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Proof. Letu be a unit vector irR¥. Consider, := ayu, with «, decreasing to zero
so fast thaty_, [Irg, ll2/an < oo, Which impliesry, (x)/an — 0 a.e. k]. We can then
draw the pointwise conclusiomé (x){&,(x) = 0} > 0 a.e. }] from the inequality

0 < oy, &, 0 {E0(X) = 0} = UE(X){£0(X) = O} + g, (X) /arp a.e. pJ.
The conclusion holds for every unit vector. The assertion of the Corollary follows.

Information inequality

The information inequality for the modél := {P, : & € ®} bounds the variance of
an estimatofT (x) from below by an expression involving the expected value of the
statistic and the Fisher information: under suitable regularity conditions,

var(T) > 1, v, wherey, := P T(x).

The classical proof of the inequality imposes assumptions that derivatives can
be passed inside integral signs, typically justified by more primitive assumptions
involving pointwise differentiability of densities and domination assumptions about
their derivatives.

By contrast, the proof of the information inequality based on an assumption of
Hellinger differentiability replaces the classical requirements by simple properties of
L£2%(») norms and inner products. The gain in elegance and economy of assumptions
illustrates the typical benefits of working with Hellinger differentiability. The main
technical ideas are captured by the following Lemma. Once again, with no loss of
generality | consider only behavior at= 0.

REMARK. The measure?;, might itself be a product measure, representing the
joint distribution of a sample of independent observations from some distribution
As shown by Problenfd], Hellinger differentiability ofé — ue até = 0 would then
imply Hellinger differentiability ofé — P, at® = 0. We could substitute an explicit
product measure foP, in the next Lemma, but there would be no advantage to
doing so.

Lemma. SupposeP is Hellinger differentiable ab with L2(.) derivativeé,.
Supposesup,., PsT(X)? < oo, for some neighborhood of 0. Then the expected
value,y, := PXT(x), has derivativey, = 21(&0&,T) atO.

REMARK. Notice thatP, T is well defined throughout), because of the bound
on the second moment. AIS(OL|§0§'OT|)2 < (r&2T?) (Méof?) < oo.

Proof. Write C? for sup,.y Py T(x)?, so that|&T|. < C for eaché in U. For
simplicity, | consider only the one-dimensional case. The proofRfodiffers only
notationally.
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The proof is easy iff is bounded by a finite constakht.

1Yo — vo — 200(E0é0T)|
= A (& — &7 — 2050) T|
<14> =A |9255 + 1)+ 201 + Zgéore| [T
< K21l + Klrg 3
+ 2K (I&ll2 lIrallz + 16111€o 12 lIrel2) by Cauchy-Schwarz
= 0(|0]).

Notice thatK need not be fixed for the last conclusion. It would suffice if we
had|T| < Ky = 0(1/]6]), which suggests a truncation argument to handle the case of
unboundedr. Let K, increase tao asé — 0, in such a way thap|Ks — 0. The
contributions to the remainder from{|T| < K,} are of ordero(|¢|). To complete
the proof we have only to show that

<15> MES — EDTHTI > Ko} — 204 (505 THT| > Ko}) = o(16)).

On the left-hand side, the coefficient of h the second term is bounded in absolute
value by
MEET{IT] > Ko}l < 11E{ITI > Kg}l2 & T ll2 < o(DC,

the o(1) term on the right-hand side coming via Dominated Convergence and the
r-integrability of £2. For the first term on the left-hand side efis>, factorize
£2 — &2 as(& +1g) (& + &) then expand, to get
IME = ENTHTI > Kol
< MOEAIT] > Ko} + 1ol 1€T + T
< (161 15{ITI > Ko}z + lIrall2) (15 T ll2 + 10T ll2)

the last bound following from several applications of the Cauchy-Schwarz inequality.
Both terms in the leading factor are of ord®{0|); both terms in the other factor
are bounded by.. The contribution to the remainder is of ord®id|), as required

O for differentiability.

Remember from Sectioh that 41(5'05’(’)) corresponds to the Fisher information
matrix I,.

<16> Corollary. In addition to the conditions of the Lemma, suppésés nonsingular.
ThenvargoT > ]}()Halj}().

Proof. The special case whefle= 1 givesi (&) = 0 (or use Lemmac4>). Let
« be a fixed vector iRk, From Lemma<13> deduce that

@70)? = 4 ( (/&) (T — y0)60)”
< 4o’ Mok h (E3(T —y)®) by Cauchy-Schwarz
= o/'ToaPgy (T — 0)°
O Choosex ;= ﬁglyo to complete the proof.

Variations on the information inequality lead to other useful lower bounds for
variances and mean squared errors of statistics.
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3.5 Information inequality 11

<17> Example. Van Trees inequality—needs to be reworked.

The information inequality for the one-parameter family takes an elegant form,

1
Yq0)Py (T 02> ——
m’q(0)Py (T(X) —0)” = I, + mq@)1©)
wherely = 4un? = ug?/q denotes the information function for the shift family, and
I(9) = AA2 denotes the information function for tliemodel.
The inequality is known as thean Trees inequality It has many statistical
O applications. See Gill & Levit (1995) for details.

6. A sufficient condition for Hellinger differentiability

How does Hellinger differentiability relate to the classical assumption of pointwise
differentiability?

Consider the case wher@ is one-dimensional, witl# as an interior point.
SupposeP is hellinger differentiable at 0, witli?(1) derivativeé,. That is,

£9(X) = E0(X) + 05 () +19(x) Wit [Irgll2 = o(|6)).

If a sequencéd,} tends to zero fast enough, th&n, |Irg, ll2/16a] < oo, from which it
follows that|rg, ()| = 0(|6y]) a.e. j]. Unfortunately the aberrant negligible setof
might depend onr6,}, so we cannot immediately invoke the usual subsequencing
argument to deduce that,(x)| = o(|9]) a.e. p]. That is, it does not follow
immediately thab — &,(x) is differentiable a® = 0 for A-almost allx. However,

if by some means we can show that the pointwise derivatj¢e) does exist then
we must have (x) = &,(x) a.e. .

For example, i — fy(x) has derivativef;(x) até = 0, and if fy(x) > 0, then
260 (x) = f{(X)/&(X). At pointsx where fy(x) = 0, both derivatives|(x) andg/(x),
if they exist, must be zero, for otherwidg(x) or & (x) would be strictly negative
for some smalb, either positive or negative. Thus, if the pointwise derivatives
exists then% fi00{&(x) > 0}/&0(x) is, up to ar-equivalence, the only candidate for
a Hellinger derivative af = 0.

Now consider the situation where we have pointwise differentiability, and
we wish to deduce Hellinger differentiability. What more is nheeded? The answer
requires careful attention to the problem of when functions of a real variable can be
recovered as integrals of their derivatives.

<18> Definition. A real valued functiorH defined on an intervdla, b] of the real
line is said to beabsolutely continuousf to eache > 0 there exists & > 0 such
that)"; |H(bi) — H(&)| < € for all finite collections of nonoverlapping subintervals
[ai,bi] of [a, b] for which) (b — &) < §.
Absolute continuity of a function defined on the whole real line is taken to
mean absolute continuity on each finite subinterval.

The following connection between absolute continuity and integration of
derivatives is one of the most celebrated results of classical analysisTP 83.4).

Pollard@Paris2001 20 March 2001



12 Chapter 3:  Hellinger differentiability

<19> Theorem. A real valued functiorH defined on an intervdla, b] is absolutely
continuous if and only if the following three conditions hold.

(i) The derivativeH'(t) exists at Lebesgue almost all points[afb].
(i) The derivativeH' is Lebesgue integrable
(iii) H(t) — H(@) = [. H'(s)ds for eacht in [a, b]

Put another way, a functioH is absolutely continuous on an interval p] if
and only if there exists an integrable functibrfor which

t
<20> H(t) =f h(s)ds for all t in [a, b]
a

The functionH must then have derivativh(t) at almost allt. As a systematic
convention we could takk equal to the measurable function
Hi(t) = { H’(t) at pointst where the derivative exists,
1o elsewhere.
I will refer to H as thedensity Of course it is actually immaterial how is defined
on the Lebesgue negligible set of points at which the derivative does not exist, but
the convention helps to avoid ambiguity.

Now consider anonnegativefunction H that is differentiable at a poirtt If
H(t) > 0 then the chain rule of elementary calculus implies that the functigh 2
is also differentiable at, with derivative H’(t)//H (t). At points whereH (t) = 0,
the question of differentiability becomes more delicate, because theymap/y is
not differentiable at the origin. Iif is an internal point of the interval and(t) =0
then we must havel’(t) = 0. ThusH(y) = o(Jy—t|) neart. If v/H had a derivative
att then/H(y) = o(|ly —t|) neart, and henceH (y) = o(|]y —t|?). Clearly we need
to take some care with the question of differentiability at points wherequals
zero.

Even more delicate is the fact that absolute continuity of a nonnegative
function H need not imply absolute continuity of the functigfH, without further
assumptions—even ifl is everywhere differentiable (Problefy).

<21> Lemma. Suppose a nonnegative functiéh is absolutely continuous on an
interval [a, b], with densityH. Let At) := LH®{H®) > O/JVH®. If
f;’ |A(t)|dx < co then/H is absolutely continuous, with density, that is,

t
vH®) —vH(@ = / A(s)ds for all t in [a, b]

Proof. Fix ann > 0. The functionH, := n + H is bounded away from zero,
and hence,/H, has derivativeH, = H'/(2\/H + 1) at each point where the
derivative H' exists. Moreover, absolute continuity f, follows directly from the
Definition <18>, because

lv/H,(b) = /H, @) =

[H, (i) — Hy (&) - [H(b) — H@)|
VH,®) + /H, @) ~ 2\
for each interval §, bj]. From Theorem<z19>, for eacht in [a, b],
t&ds
a 2JH(S) +1

VHO +n—VH@ +1n=
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3.6 A sufficient condition for Hellinger differentiability 13

As n decreases to zero, the left-hand side convergeg'hiat) — «/H(a). The
integrand on the right-hand side convergesii®) at points whereH (s) > 0. For
almost alls in {H = 0} the derivativeH’(s) exists and equals zero; the integrand
converges to @& A(s) at those points. By Dominated Convergence, the right-hand
side converges tg; A(s)ds.

The integral representation for the square root of an absolutely continuous
function is often the key to proofs of Hellinger differentiability.

Theorem. Suppose® = {P,(x) : |0| < &} for somes > 0, with eachP, dominated
by a sigma-finite measure Suppose also that

(i) there exist densities such that, 0) — fy(x) is product measurable;
(ii) for ) almost a;llx, the functiord — f4(x) is absolutely continuous dr-8, §],
with density fy(x);
(i) for » almost allx, the functiond — f,(x) is differentiable at = 0;
(iv) for eachd the functionAg(x) := %f'e ) {fy(x) > 0}//T,(X) belongs tal?(})
andrAZ — AA2 ast — 0.

Then® has Hellinger derivative\q(x) ato = 0.

REMARK. Assumption (iii) might appear redundant, because (ii) implies
differentiability of 6 — f,(x) at Lebesgue almost all, for A-almost allx. A
mathematical optimist (or Bayesian) might be prepared to gamble that 0 does
not belong to the bad negligible set; a mathematical pessimist might prefer
Assumption (ii).
Proof. As before writegy (x) for /fs(X), and define,(x) := & (X) —&y(X) —0 Ay(X).
We need to prove thatr? = o(|6|?) as® — O.
For simplicity of notation, consider only positive The arguments for
negativey are analogous. Writex for Lebesgue measure or{, 3]
With no loss of generality (or by a suitable decreasé)iwe may assume that
LAZ is bounded, so that, by Tonellbo > mSA*Ag(X)? = A*mSAs(x)?, implying
mSAs(X)? < oo a.e. j]. From Lemma<21> it then follows that

B 0
£ 00 — () _ }/ As(x)ds  a.e. p].

0 0 Jo
By Jensen’s inequality for the uniform distribution on §Q, and (iv),
J— 2 0
A M < %/ AAs(x)?ds— AA2  asé — 0.
0

Define nonnegative, measurable functions

U0 (X) = 21&(X) — Eo(X)|? /02 + 2A0(X)? — [re(X)/6]° .

By (iii), ry(x)/6 — 0 at almost allx where&,(x) > 0, and hencey (x) — 4Ay(X)?;
and Ag(x) = 0 whengy(x) = 0. Thus liminfgy(x) > 4A,(x)? a.e. p]. By Fatou's
Lemma (applied along subsequences), followed by an appeatas,

ArAG < liminf agy < 417 — lim supi. Iry (x)/01°

That is, Ar7 = 0(6?), as required for Hellinger differentiability.
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14 Chapter 3:  Hellinger differentiability

Example. Let f be a probability density with respect to Lebesgue measure
on the real line. Supposé is absolutely continuous, with densitly for which
I:=x({f >0 f'2/f) < oo. Define P, to have densityf,(x) := f(x — ) with
respect tor, for eachd in R. The conditions of Theorena22> are satisfied, with
LA2 = 1. The family {P, : 6 € R} is Hellinger differentiable a# = 0. In fact, the
same argument works at evetythe family is everywhere Hellinger differentiable.

An intrinsic characterization of Hellinger differentiability

For the definition of Hellinger differentiability, the choice of dominating measure
for the family of probability measure8 = {P, : 8 € ®} is somewhat arbitrary. In
fact, there is really no need for a single dominatigorovided we guard against
contributions fromP;-, the part of P, that is singular with respect t8,. As you
saw in Sectiord, the assumptiorP;*X = o(]¢|?) is needed to ensure contiguity.
We lose little by building the assumption into the definition. Following Le Cam &
Yang (2000, Section 7.2), | will call the slightly stronger propettiferentiability
in quadratic mean (DQM) to stress that the definition requires a little more than
Hellinger differentiability.

The definition makes no assumption that the family of probability measures
P = {P, : 6 € ©} is dominated. Instead it is expressed directly in terms of the
Lebesgue decomposition & with respect toP,,, for a fixedd, in ©. As before, |
will assumed, = 0 to simplify notation. Remember th& = P, + P;-, where the
absolutely continuous paR, has a densityp, with respect toP, and the singular
part P;- concentrates on &-negligible setN,,

Pyg = P (900 pa () {x € NG}) + P (900 {x € No}) ,
at least for nonnegative measurable functignan X.
Definition. Say that? is differentiability in quadratic mean (DQM) &t if
(i) Pi-(X) =o0(6|?) as|d| — O,
(i) there is a vector\ of k functions fromL?(P,) for which
VP = 14+ 30°AX) +19(x)  with Py (r2) = 0(|6]?) near 0

REMARK. Some authors (for example, Bickel et al. 1993, page 457) use the term
DQM as a synonym for differentiability in.? norm. The factor of 12 simplifies
some calculations, by making the vectarcorrespond to thecore functionat 0.

When? is dominated by a sigma-finite measure, the definition agrees with the
definition of Hellinger differentiability under the assumption (i), which is needed
for contiguity of product measures.

Theorem. Suppose? is dominated by a sigma-finite measurewith correspond-
ing densitiesfy(x).
(i) SupposeP,{f, = 0} = o(|0|?) and, for some vectay of functions inL2(1),

Vi) =/ fo+06(x) + Ry(x)  wherex (R2) = o(|6|?) with 6 = 0.
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3.7 An intrinsic characterization of Hellinger differentiability 15

Then? satisfies the DQM condition &, with A = 2{f, > 0}¢//T, and
ro == {fo > O}Ry//To.

(i) If P satisfies the DQM condition & then it is also Hellinger differentiable
at0, with L2(1) derivativeé := LA /T,

Proof. For the Lebesgue decomposition we can take= {f, > 0} f,/f, and
Ny = {fo = 0} Thus PGLDC = )Lfg{fo = 0}
If P is Hellinger differentiability, as in (i), the

Po |v/Ps —1— 30'A[° = af ‘{fo > 0}/ fg/fo — 1 — 30'E(fo > 0}/\/70’2
=X <{ fo > 0} \\/f_O— Vo —6é 2) = o(l6]%).
Conversely, ifP satisfies DQM then
VB = VT -0 =it =0y (VT - 0)’
+ o> 0} |V Tops = v/To - é@/A/To\Q

=0(01%) + Py |[/Ps — 1 - 16'A]* = 0(61?).

REMARK.  The proof of the previous Theorem is almost trivial, once one
realizes that contributions frorhf, = 0} need separate consideration. Bathand &
vanish on that set. For the definition of Hellinger differentiability it is not, a priori,
necessary that{f, = 0} = 0. Indeed, it is contributions from that term that can
upset contiguity. Some authodefineHellinger differentiability atdé = 0 to mean

My o= fo— 20'Afol2 =065 with PoJAJ2 < o,

thereby forcing thel?(1) derivative to vanish orifo = 0}. In effect, such a definition
makes contiguity for the product measures a requirement of differentiability in the
L2()) sense.

The definition of DQM has some advantages over the definition of Hellinger
differentiability, even beyond the elimination of the dominating meagurgor 0
near zero,p, ~ 1, a simplification that has subtle consequences, as illustrated by
the next Theorem.

The result concerns preservation of the DQM property under measurable maps.
Specifically, if T is a measurable map fro, A) to (Y, B)) then eachP, induces
an image measur®, := T(Py) on B, defined byQyg := P)g(T x) for eachg in
M*(Y, B). For eachh in M* (X, A) we can also define a measusgon B by

vh(9) := P (h(x)g(T x)) for eachg in M* (Y, B).

The measurey, is absolutely continuous with respect @, because ifQq,g = 0,
foragin M* (Y, B), theng(Tx) = 0 a.e. P]. | will denote the densitydv,/d Qq by
mi(h). That is,

<27>  PY(h(0g(Tx) = Q) (g(t)mi(h)) for eachg e M+ (Y, B), andh € M* (X, A).

In fact, my(h) is the Kolmogorov conditional expectation, usually denoted by
Po(h | T =1). (Compare withuGMTP 85.6.)
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16 Chapter 3:  Hellinger differentiability

As a particular case, the image meastiié,) is absolutely continuous with
respect toQg, with densityPy(py | T =1t) = m¢(py). Under DQM,

1/2
Vi (pe) = (m (1+30'A +r0)2) =A+omA+.. ) =1+ l0mAa+...

If all the omitted terms can be ignored, in &3(Q,) sense, thedTP, : 6 € O}
would be Hellinger differentiable at 0, with?(Qy)-derivative r;(A). The image
of the singular partsT (P;*), has total mas®(9|?), which does not disturb the
approximation.

Theorem. SupposeP = {P, : 6 € ®} is DQM at0 with score functionA.
SupposeT is a measurable map froi, A) into (Y, B). Then{TPR, : 0 € ®} is
DOM at 0, with score functiorPy(A | T =1t).

Proof. To simplify notation, | will assume® is one-dimensional. No extra
conceptual difficulties arise in higher dimensions.
DefineQ, := TR, and Q, := TP,. Write & for /py, So that

E9(X) = 14 30A(X) + rg(X) with Por? = 0(8?).
Use a bar to denote “averaging” with respectrto
Ap(t) :=m(A),  Fo) i=m(re), &) i=m&) =14 30A1) + ().
Define conditional variances similarly,

M) i=m (8 —5), IO =m(A-A), @ i=m @y —F)>.
Notice that )
Quoy < Qo (m&) = Pogy = PX < 1,
and
QoJ < Qo (1 A?) = PyA® < oo,
and

Que; < Qo (mry) = Pory = 0(6?).
The density ofQ, with respect toQ, equals
ny () = m (&) = m(& — &)’ + &
Thusy(t) := ne(t) — &(t) is nonnegative, an¢g, + 89)2 =n? =02+ &2, implying
2E)8y + 02 = 0f = 1 (36(A — A) + (rg — F))” < 2623(1) + 22 (t).

REMARK. The cancellation of the leading constants whgnis subtracted
from & seems to be vital to the proof. For general Hellinger differentiability, the
cancellation does not occur.

DQM for the Q, measures mear®, (1, — 1 — %9&)2 = 0(6?). The difference
ne —1— 30A equalsss +fy. Thef, is easily handled:

Qofy = Qo (mire)? < Qomiry = Pory = 0(6?).
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3.7 An intrinsic characterization of Hellinger differentiability 17

For 8, we need to argue from:29>, using the fact that, should be close to 1.
More precisely, letM, be a positive constant (depending @nfor which My — oo
and 2> |6|My — 0 as® — 0. Then the set

Toi={t:J) <My, [AM®)| <My, [l <3 el =1},
has Qo measure tending to 1, and @,
Eg(t) = 1— ZI0AM)| — IFa(t)] > 3.

Splitting the integrand according to whetheris in T’y or not, and reducing the
left-hand side of<29> to 25,8, > 8, in the first case and? in the second, we have

Qod? = Qo (262300 +262(1)* {t € T}) + Qo (36231 + 23Dt € TE))

< 2(16°My)” + 162Qu (JM{I (1) > M) + 6Que?
= 0(6?).

Dominated Convergence takes care of the middle term.

The part ofQy that is absolutely continuous with respectQg might be slightly
larger thanQ,, because the image measur®;,- might also make a contribution.
That is, the density for the Lebesgue decompositio@gfvith respect toQ, might
actually equah? + s, wheres; > 0 andQoss < (TR (Y) = PH(X) = 0(6?).

The contribution froms, gets absorbed into the remainder term, and adds further
0(8?) terms to the bounds in the previous paragraph. The modification has an
asymptotically negligible effect on the argument. The family; : 6 € ®} inherits

O DQM from the family{Qy : 6 € ©}.

8. Problems

Problems not yet checked.

[1] (Construction of an absolutely continuous density whose square root is not absolutely
continuous.) For > 3 define

~ ilogiy? # = iogiy®
Define B =23 ;_; pj. Define functions
Hi) =ai (1|t — B —il/B)" and  H(® =(l/\t)++ZHi(t)-

i>3

(&4
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(3]

(4]

(5]

18 Chapter 3:  Hellinger differentiability

(i) Show thatB; decreases likglogi)=*.
(if) Use the fact thaf) ", i < oo to prove thatH is absolutely continuous.
(iii) Show thata;/B; — 0, then deduce thai has derivative 1 at 0.
(iv) Show that
o — fi

H(Bi-1—-8)—-+vH(B-1)= ,
VHG =) = VHB) = Tra——s  JAE
which decreases like/1, then deduce that

k+m

> WH®B 1 - ) — VH(B )
i=k

can be made arbitrarily large while keepiﬁd‘j,f‘ |6i| arbitrarily small. Deduce
thatv/H is not absolutely continuous.

(v) Show, by an appropriate “rounding off of the corners” at each point where
has different left and right derivatives followed by some smooth truncation and
rescaling, that there exists an absolutely continuous, everywhere differentiable
probability density functionf for which /T is not absolutely continuous.

Let fo(x) = Yoexp(—|x —4|), for & € R (the double-exponential location family of
densities with respect to Lebesgue measure).

(i) Show that| /fo(x) fors(x) dx = (14 §/2) exp(—3/2).
(i) Deduce that the density, is Hellinger differentiable at every.
(iii) Show thatd — fy(x) is not differentiable, for each fixed, ato = x.

(iv) Prove Hellinger differentiability by a direct Dominated Convergence argument,
without the explicit calculation from (i).

(v) Prove Hellinger differentiability by an appeal to Examptes>, without the
explicit calculation from (i).

SupposeF = {f, : 6 € ©} is a familiy of densities indexed by a subset
of R. Suppose 0 is an interior point ¢ and thatF is Hellinger differentiable
ato = 0, with derivativeA. Show thatA(x) = 0 almost everywhere offy = 0}.
Hint: Approach 0O from each direction iR. Deduce that botf®,A{f, = 0} and
PyA2{ f, = 0} equal zero.

SupposeF = {fi(x) : t € T} is a family of probability densities with respect to

a measure,, § = {gs(x) : s € S} is a family of probability densities with respect

to a measurew. Suppose’ is Hellinger differentiable at = 0 and§ is Hellinger
differentiable ats = 0. Show that the family of densitigds(x)g(y) : (s,1) € S® T}

with respect tor ® u is Hellinger differentiable ats,t) = (0, 0). Hint: Use
Cauchy-Schwarz to bound contributions from most of the cross-product terms in the

expansion of,/f;(x)gs(y).

Supposed = {fy : € R} has Hellinger derivativex at 6,. Show thatF is also
differentiable inL! norm with derivativeA; = 2,/fg A, that is, show

Al fg — fgo — (6 — @0)/A1| = 0(|60 — b)) nearo,
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[6] If Fis L' differentiable andrf2/f, < oo is F also Hellinger differentiable?
[Expand.]

[7] LetPy be the probability measure defined by the densjty). A simple application
of the Cauchy-Schwarz inequality shows that

H [Py, Pgy)* = (6 — 60)'A (E()E(X)') (6 — 6p) + 0(10 — 6o/°).
Provided the matrix™ = A (A(X)A(x)) is nonsingular, it then follows that there
exist nonzero constants; andC, for which
Ci10 — 6ol = H(Po, Pgy) < C2l60 — o] nearoj.

If such a pair of inequalities holds, with fixed strictly positive consta@itsand C,,
throughout some subset ©f, then Hellinger distance plays the same role as ordinary
Euclidean distance on that set.

[8] SupposeF = {fy : 0 € ©} is a family of probability densities with respect to a
measure., with index set® a subset of the real line. As in Theorem2>, suppose

045
V00— Vi = [ awodt modpl, for |pl <8, a6 <b.
0

with sugAA2 = C < oo, where A —§,b+48] € ©. LetQ ={g, : =8 < a < §}
be a family of probability densities with respect to Lebesgue measwe [a, b],
each bounded by a fixed constaff and with Hellinger derivative) at « = 0.
Create a new familyp = {p, (X, 8) : max(|«|, |B]) < 8} of probability densities
Po.p(X, 8) = 0 (0) fotp(x) With respect tak ® u.

(i) Show that? is Hellinger differentiable atr = 0, 8 = 0 with derivative having
components) /Ty and./fyA,.
(i) Try to relax the assumptions oD.
[9] SupposeP = {P, : 0 € ®}, with 0 € ® C R¥, is a dominated family of probability

measures on a spacg having densitiesfy(x) with respect to a sigma-finite
measure.. DefinelUl as the set of unit vectors

U = {u : there exists a sequen¢®} in ® such tha®; /|6, — u asi — oo}

Write P, for the part of P, that is absolutely continuous with respectRe
and P = Py — P, for the part that is singular with respect Ry. Write f, for the
densitydP, /d P,.

The following are equivalent.

(i) For some vectog of functions inL2(1),
Vie=To+0&+r,  wherexr(r?) = o(l6]?) neard =0,
andu’é =0 a.e. p] on {f, = O}, for eachu in U.
(i) For some vectoA of functions inL2(Py),

Vo=V +20'a/fo+ R wherex (R?) = o(|6]?) neard =0,
and P;-X = o(|6?).
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20 Chapter 3:  Hellinger differentiability

(iii) For some vectorA of functions inL2(Py),
VP =1+20'A+7, where P, (72) = o(|¢|?) near6 = 0,
and P;“X = o(|6?).

Notes

Incomplete

| borrowed the exposition Sectiod from Pollard (1997). The essential
argument is fairly standard, but the interpretation of some of the details is novel.
Compare with the treatments of Le Cam (1970, and 1986 Section 17.3), lbragimov
& Has'minskii (1981, page 114), Millar (1983, page 105), Le Cam & Yang (1990,
page 101), or Strasser (1985, Chapter 12).

Hajek (1962) used Hellinger differentiability to establish limit behaviour of rank
tests for shift families of densities. Most of results in Sectiaare adapted from the
Appendix to Hijek (1972), which in turn drew on ajék & Sidak (1967, page 211)
and earlier work of Hjek. For a proof of the multivariate version of Theorerze>
see Bickel et al. (1993, page 13). A reader who is puzzled about all the fuss over
negligible sets, and behaviour at points where the densities vanish, might consult
Le Cam (1986, pages 585-590) for a deeper discussion of the subtleties.

The proof of the information inequality (Lemmazi3>) is adapted from
Ibragimov & Has'minskii (1981, Section 1.7), who apparently gave credit to Blyth
& Roberts (1972), but | could find no mention of Hellinger differentiability in that
paper.

Cite van der Vaart (1988, Appendix A3) and Bickel et al. (1993, page 461) for
Theorem<2s>. lbragimov & Has’minskii (1981, page 70) asserted that the result
follows by “direct calculations”. Indeed my proof uses the same truncation trick
as in the proof of Lemma<13>, which is based on the argument of Ibragimov
& Has’minskii (1981, page 65). Le Cam & Yang (1988, Section 7) deduced an
analogous result (preservation of DQM under restriction to sub-sigma-fields) by
an indirect argument using equivalence of DQM with the existence of a quadratic
approximation to likelihood ratios of product measures (an LAN condition).
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