
DRAFT: 12 April 2001 David Pollard

Appendix G

Minimax theorem

[§general] 1. A general minimax theorem

mmax.thm <1> Theorem. Let K be a compact convex subset of a Hausdorff topological vector
space X, and C be a convex subset of a vector space Y. Let f be a real-valuedextend to

R ∪ {∞} valued f ? function defined on K × C such that

(i) x �→ f (x, y) is convex and lower-semicontinuous for each y,

(ii) y �→ f (x, y) is concave for each x.

Then
infx∈K supy∈C f (x, y) = supy∈C infx∈K f (x, y).

Proof. Note that assumption (i) means precisely that Ky,t := {x ∈ K : f (x, y) ≤ t}
is compact and convex, for each fixed t ∈ R and y ∈ C.

Clearly the left-hand side of the asserted equality is ≥ the right-hand side. It
therefore suffices to prove that if M is a real number for which M ≥ right-hand side
then, for each ε > 0, the left-hand side is ≤ M + ε. The assumption on M means
that infx∈K f (x, y) ≤ M , and hence Ky,M+ε �= ∅, for every y. If we can prove that
∩y∈YKy,M+ε �= ∅ then there will exist an x0 for which f (x0, y) ≤ M + ε for every y,
implying that supy f (x0, y) ≤ M + ε.

Replacing f by f − (M + ε), we reduce to the case where M + ε = 0 and
infx∈K f (x, y) ≤ −ε and Ky,0 �= ∅, for each y. We need to show that ∩y∈YKy,0 �= ∅.
Compactness of each Ky,0 simplifies the task to showing that ∩y∈Y0 Ky,0 �= ∅ for
each finite subset Y0 of Y. An inductive argument will then reduce even further to
the case where Y0 := {y1, y2}, a two-point set, which is the case that I consider first.

Abbreviate Kyi ,0 to Ki , and f (x, yi ) to fi (x). Thus Ki = {x : fi (x) ≤ 0}. For
the purposes of obtaining a contradiction, suppose K1 ∩ K2 = ∅. The contradiction
will appear if we find a number α in [0, 1] for which

alpha.def <2> (1 − α) f1(x) + α f2(x) ≥ 0 for all x in K ,

for then the concavity of f (x, ·) would give the lower bound infx∈K f (x, yα) ≥ 0,
where yα := (1 − α)y1 + αy2.
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Inequality <2> is trivial if x /∈ K1 ∪ K2, for then both f1(x) > 0 and f2(x) > 0.
For it to hold at each x in K1 we would need

lower.alpha <3> α ≥ sup
x1∈K1

− f1(x1)

f2(x1) − f1(x1)
.

Notice that the supremum on the right-hand side is ≥ 0. For inequality <2> to hold
at each x in K2 we would need

upper.alpha <4> α ≤ inf
x2∈K2

f1(x2)

f1(x2) − f2(x2)
.

Notice that the infimum on the right-hand side is ≤ 1. There exists an α satisfying
both constraints <3> and <4> if and only if

− f1(x1)

f2(x1) − f1(x1)
≤ f1(x2)

f1(x2) − f2(x2)
for all x1 ∈ K1 and x2 ∈ K2.

That is, α exists if and only if

f1f2 <5> (− f1(x1)) (− f2(x2)) ≤ f1(x2) f2(x1) for all x1 ∈ K1 and x2 ∈ K2.

This inequality involves the values of the convex functions only along the line
joining x1 and x2; it is essentially a one-dimensional result.
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The inequality <5> is trivial when either f1(x1) = 0 or f2(x2) = 0. We need
only consider a pair with f1(x1) < 0 and f2(x2) < 0. Define θ in (0, 1) as the value
for which (1−θ) f1(x1)+θ f1(x2) = 0, then define xθ := (1−θ)x1+θx2. By convexity,
f1(xθ ) ≤ 0, implying that xθ ∈ K1 and (1 − θ) f2(x1) + θ f2(x2) ≥ f2(xθ ) > 0. Thus

− f1(x1)

f1(x2)
= θ

1 − θ
<

f2(x1)

− f2(x2)
,

which gives <5>.
Existence of an α satisfying constraints <3> and <4> now follows, which, via

the contradiction, lets us conclude that K1 ∩ K2 �= ∅.
To extend the conclusion to an intersection of finitely many sets Kyi ,0, for

i = 1, 2, . . . , m, first invoke the result for pairs to see that K ′
i := Ky1,0 ∩ Kyi ,0 �= ∅ for

i = 2, . . . , m, then repeat the pairwise argument with f restricted to Ky1,0 × C. And
so on. After m− 1 repetitions we reach the desired conclusion, that ∩i ≤mKyi ,0 �= ∅.�

convex.hull <6> Example. Let P and Q be collections of probability measures on the same space
(X, A). Write co(P) and co(Q) for their convex hulls. That is, co(P) consists of
all finite linear combinations

∑
i αi Pi , with αi ≥ 0 and

∑
i αi = 1 and Pi ∈ P,

with a similar definition for co(Q). Write T for the collection of all tests, that is,
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functions ψ in M(X, A) for which 0 ≤ ψ ≤ 1. If ψ ∈ T, the function ψ̄ := 1 − ψ is
also a test.

If both P and Q are dominated by some sigma-finite measure λ, the Minimax
Theorem will show that

lecam.mmax <7> inf
ψ∈T

sup{Pψ + Qψ̄ : P ∈ P, Q ∈ Q} = sup{‖P̃ ∧ Q̃‖ : P̃ ∈ co(P), Q̃ ∈ co(Q)}.

Before proving the equality, first note that the left-hand side does not change if we
replace both P and Q by their convex hulls, because∑

i
αi Pi ψ +

∑
j
βj Qj ψ̄ =

∑
i, j

αi βj
(
Pi ψ + Qj ψ̄

)
.

Thus there is no loss of generality in assuming both P and Q are convex. The set C
of all signed measures of the form ν = P − Q, with P ∈ P and Q ∈ Q, is then
convex. Next note that ‖P̃ ∧ Q̃‖ = infψ∈T

(
Pψ + Qψ̄

)
. After subtraction of 1 from

both sides, the assertion <7> can be written as

infψ∈T supν∈C νψ = supν∈C infψ∈T νψ.

Notice that νψ is linear, separately, in both ν and ψ .
We can identify each ν with an element of L1(λ), the set of equivalence classes

of λ-integrable functions. Two tests that differ only on a λ-neglible set give the
same value to νψ , for every ν in C. Thus we can identify T with a closed subset
of the linear space L∞(λ) of λ-equivalence classes of bounded functions. Under the
weakest toplogy on L∞(λ) that makes f �→ λ( f g) continuous, for each g in L1(λ),
the set T is compact and convex, and the map ψ �→ νψ is continuous for each ν

cite Dunford & Schwartz (1958)?
in C.

Assertion <7> is a special case of the Minimax Theorem <1>.�

[§] 2. Notes

Sources: Kneser (1952)? Fan (1953)? Sion (1958)? See Millar (1983, page 92).
Possibly also some handwritten notes from other lectures by Millar.

Le Cam (1973) stated the result from Example <6> with a reference to
Kraft (1955) for the proof. Kraft attributed the result and the proof to Le Cam.
When the families are not dominated, the proof breaks down. Le Cam (1986,
page 476) stated generalized forms of the result, based on compactifications of
either T or C.
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