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MINIMAX THEOREM

Sources. Kneser? Sion? See Millar (1983, page 92). Possibly also some
handwritten notes from other lectures by Millar.

Theorem. Let K be a compact convex subset of a Hausdorff topological vector
space X, and C be a convex subset of a vector spacey. Let f be a real-valued
function defined on K x C such that

(i) x+— f(x,y) is convex and lower-semicontinuous for each y,
(i) y— f(x,y) is concave for each x.

Then
infxek SUPyec f (X, y) = SUpyc infyek f(X,Y).

Proof. Note that assumption (i) means precisely that Ky; :={x € K : f(x,y) <t}
is compact and convex, for each fixedt e R and y € C.

Clearly the left-hand side of the asserted equality is > the right-hand side. It
therefore suffices to prove that if M is areal number for which M > right-hand side
then, for each ¢ > 0, the left-hand side is < M + €. The assumption on M means
that infyex f(X,y) <M , and hence Ky v # ¥, for every y. If we can prove that
Nyey Ky, m4e # ¥ then there will exist an x, for which f (X, y) < M + ¢ for every vy,
implying that sup, f (X, y) <M +e.

Replacing f by f — (M + ¢), we reduce to the case where M + ¢ = 0 and
infxek f(X,y) < —e and Ky # @, for each y. We need to show that NyeyKy o # 9.
Compactness of each Ky, simplifies the task to showing that Nyey,Ky o # @ for
each finite subset Y, of Y. An inductive argument will then reduce even further to
the case where Yo := {y1, Yo}, a two-point set, which is the case that | consider first.

Abbreviate Ky, o to K, and f(x, yi) to fi(x). Thus K; = {x: fi(x) < 0}. For
the purposes of obtaining a contradiction, suppose K; N Ky = @. The contradiction
will appear if we find a number « in [0, 1] for which

1I—-a)fi(X) +afy(x) >0 for all x in K,
for then the concavity of f(x,-) would give the lower bound infycx f(X,y,) > 0O,
where y, = (1 —a)y; +ays.
Inequality <2> istrivia if x ¢ K; UKy, for then both f;(x) > 0 and fy(x) > 0.
For it to hold at each x in K; we would need
- f1(x1)
“= x?ejlgl fa(x1) — f1(x1)
Notice that the supremum on the right-hand side is > 0. For inequality <2> to hold
at each x in Ky we would need
n f1(X2) .
x2eKz f1(Xg) — fa(Xo)
Notice that the infimum on the right-hand side is < 1. There exists an « satisfying
both constraints <3> and <4> if and only if
—f1(x1) - f1(X2)
fa(x1) — fi(x1) = fi(x2) — fa(X2)

o=

for all X1 € Ky and X9 € Kog.
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That is, o exists if and only if
<5> (= F1(x0) (= f2(x2)) < f1(x2) fa(Xy) for al x; € Ky and x; € Ks.

This inequality involves the values of the convex functions only along the line
joining x; and xz; it is essentially a one-dimensional resullt.

N A

The inequality <5> is trivial when either f;(x;) = 0 or fy(x2) = 0. We need
only consider a pair with f;(x;) < 0 and fa(x2) < 0. Define 0 in (0, 1) as the value
for which (1—-0) f1(x1)+6f1(x2) = 0, then define xy := (1-0)x; +0%2. By convexity,
f1(x9) < 0, implying that x, € K; and (1 — 0) fa(x1) + 0fa(x2) > fa(Xe) > 0. Thus

—f1(X1): 0 - f2(x1)
f1(X2) 1-0  —falx)’

which gives <5>.

Existence of an « satisfying constraints <3> and <4> now follows, which, via
the contradiction, lets us conclude that K; N Ky #£ @.

To extend the conclusion to an intersection of finitely many sets Ky, o, for
i=212..., m, first invoke the result for pairs to see that K/ := Ky, ¢ N Ky, o # @ for
i=2,..., m, then repeat the pairwise argument with f restricted to Ky, o x C. And

O soon. After m— 1 repetitions we reach the desired conclusion, that N -mKy, o # 9.
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