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Minimax theorem

Sources: Kneser? Sion? See Millar (1983, page 92). Possibly also some
handwritten notes from other lectures by Millar.

<1> Theorem. Let K be a compact convex subset of a Hausdorff topological vector
space X, and C be a convex subset of a vector space Y. Let f be a real-valuedextend to

R ∪ {∞} valued f ? function defined on K × C such that

(i) x �→ f (x, y) is convex and lower-semicontinuous for each y,

(ii) y �→ f (x, y) is concave for each x.

Then
infx∈K supy∈C f (x, y) = supy∈C infx∈K f (x, y).

Proof. Note that assumption (i) means precisely that Ky,t := {x ∈ K : f (x, y) ≤ t}
is compact and convex, for each fixed t ∈ R and y ∈ C.

Clearly the left-hand side of the asserted equality is ≥ the right-hand side. It
therefore suffices to prove that if M is a real number for which M ≥ right-hand side
then, for each ε > 0, the left-hand side is ≤ M + ε. The assumption on M means
that infx∈K f (x, y) ≤ M , and hence Ky,M+ε �= ∅, for every y. If we can prove that
∩y∈YKy,M+ε �= ∅ then there will exist an x0 for which f (x0, y) ≤ M + ε for every y,
implying that supy f (x0, y) ≤ M + ε.

Replacing f by f − (M + ε), we reduce to the case where M + ε = 0 and
infx∈K f (x, y) ≤ −ε and Ky,0 �= ∅, for each y. We need to show that ∩y∈YKy,0 �= ∅.
Compactness of each Ky,0 simplifies the task to showing that ∩y∈Y0 Ky,0 �= ∅ for
each finite subset Y0 of Y. An inductive argument will then reduce even further to
the case where Y0 := {y1, y2}, a two-point set, which is the case that I consider first.

Abbreviate Kyi ,0 to Ki , and f (x, yi ) to fi (x). Thus Ki = {x : fi (x) ≤ 0}. For
the purposes of obtaining a contradiction, suppose K1 ∩ K2 = ∅. The contradiction
will appear if we find a number α in [0, 1] for which

<2> (1 − α) f1(x) + α f2(x) ≥ 0 for all x in K ,

for then the concavity of f (x, ·) would give the lower bound infx∈K f (x, yα) ≥ 0,
where yα := (1 − α)y1 + αy2.

Inequality <2> is trivial if x /∈ K1 ∪ K2, for then both f1(x) > 0 and f2(x) > 0.
For it to hold at each x in K1 we would need

<3> α ≥ sup
x1∈K1

− f1(x1)

f2(x1) − f1(x1)
.

Notice that the supremum on the right-hand side is ≥ 0. For inequality <2> to hold
at each x in K2 we would need

<4> α ≤ inf
x2∈K2

f1(x2)

f1(x2) − f2(x2)
.

Notice that the infimum on the right-hand side is ≤ 1. There exists an α satisfying
both constraints <3> and <4> if and only if

− f1(x1)

f2(x1) − f1(x1)
≤ f1(x2)

f1(x2) − f2(x2)
for all x1 ∈ K1 and x2 ∈ K2.
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That is, α exists if and only if

<5> (− f1(x1)) (− f2(x2)) ≤ f1(x2) f2(x1) for all x1 ∈ K1 and x2 ∈ K2.

This inequality involves the values of the convex functions only along the line
joining x1 and x2; it is essentially a one-dimensional result.
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The inequality <5> is trivial when either f1(x1) = 0 or f2(x2) = 0. We need
only consider a pair with f1(x1) < 0 and f2(x2) < 0. Define θ in (0, 1) as the value
for which (1−θ) f1(x1)+θ f1(x2) = 0, then define xθ := (1−θ)x1+θx2. By convexity,
f1(xθ ) ≤ 0, implying that xθ ∈ K1 and (1 − θ) f2(x1) + θ f2(x2) ≥ f2(xθ ) > 0. Thus

− f1(x1)

f1(x2)
= θ

1 − θ
<

f2(x1)

− f2(x2)
,

which gives <5>.
Existence of an α satisfying constraints <3> and <4> now follows, which, via

the contradiction, lets us conclude that K1 ∩ K2 �= ∅.
To extend the conclusion to an intersection of finitely many sets Kyi ,0, for

i = 1, 2, . . . , m, first invoke the result for pairs to see that K ′
i := Ky1,0 ∩ Kyi ,0 �= ∅ for

i = 2, . . . , m, then repeat the pairwise argument with f restricted to Ky1,0 × C. And
so on. After m− 1 repetitions we reach the desired conclusion, that ∩i ≤mKyi ,0 �= ∅.�
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