MINIMAX THEOREM

Sources: *Kneser? Sion? See Millar (1983, page 92). Possibly also some handwritten notes from other lectures by Millar.*

<1> Theorem. Let K be a compact convex subset of a Hausdorff topological vector space \mathfrak{X} , and C be a convex subset of a vector space \mathfrak{Y} . Let f be a real-valued function defined on $K \times C$ such that

(i) $x \mapsto f(x, y)$ is convex and lower-semicontinuous for each y,

(ii) $y \mapsto f(x, y)$ is concave for each x.

Then

extend to

 $\mathbb{R} \cup \{\infty\}$ valued f?

$$\inf_{x \in K} \sup_{y \in C} f(x, y) = \sup_{y \in C} \inf_{x \in K} f(x, y).$$

Proof. Note that assumption (i) means precisely that $K_{y,t} := \{x \in K : f(x, y) \le t\}$ is compact and convex, for each fixed $t \in \mathbb{R}$ and $y \in C$.

Clearly the left-hand side of the asserted equality is \geq the right-hand side. It therefore suffices to prove that if *M* is a real number for which $M \geq$ right-hand side then, for each $\epsilon > 0$, the left-hand side is $\leq M + \epsilon$. The assumption on *M* means that $\inf_{x \in K} f(x, y) \leq M$, and hence $K_{y,M+\epsilon} \neq \emptyset$, for every *y*. If we can prove that $\bigcap_{y \in \mathcal{Y}} K_{y,M+\epsilon} \neq \emptyset$ then there will exist an x_0 for which $f(x_0, y) \leq M + \epsilon$ for every *y*, implying that $\sup_y f(x_0, y) \leq M + \epsilon$.

Replacing f by $f - (M + \epsilon)$, we reduce to the case where $M + \epsilon = 0$ and $\inf_{x \in K} f(x, y) \leq -\epsilon$ and $K_{y,0} \neq \emptyset$, for each y. We need to show that $\bigcap_{y \in \mathcal{Y}} K_{y,0} \neq \emptyset$. Compactness of each $K_{y,0}$ simplifies the task to showing that $\bigcap_{y \in \mathcal{Y}_0} K_{y,0} \neq \emptyset$ for each finite subset \mathcal{Y}_0 of \mathcal{Y} . An inductive argument will then reduce even further to the case where $\mathcal{Y}_0 := \{y_1, y_2\}$, a two-point set, which is the case that I consider first.

Abbreviate $K_{y_i,0}$ to K_i , and $f(x, y_i)$ to $f_i(x)$. Thus $K_i = \{x : f_i(x) \le 0\}$. For the purposes of obtaining a contradiction, suppose $K_1 \cap K_2 = \emptyset$. The contradiction will appear if we find a number α in [0, 1] for which

<2>

$$(1-\alpha)f_1(x) + \alpha f_2(x) \ge 0$$
 for all x in K.

for then the concavity of $f(x, \cdot)$ would give the lower bound $\inf_{x \in K} f(x, y_{\alpha}) \ge 0$, where $y_{\alpha} := (1 - \alpha)y_1 + \alpha y_2$.

Inequality <2> is trivial if $x \notin K_1 \cup K_2$, for then both $f_1(x) > 0$ and $f_2(x) > 0$. For it to hold at each x in K_1 we would need

<3>

$$\alpha \geq \sup_{x_1 \in K_1} \frac{-f_1(x_1)}{f_2(x_1) - f_1(x_1)}$$

Notice that the supremum on the right-hand side is ≥ 0 . For inequality $\langle 2 \rangle$ to hold at each *x* in K_2 we would need

<4>

$$\alpha \le \inf_{x_2 \in K_2} \frac{f_1(x_2)}{f_1(x_2) - f_2(x_2)}$$

Notice that the infimum on the right-hand side is ≤ 1 . There exists an α satisfying both constraints $\langle 3 \rangle$ and $\langle 4 \rangle$ if and only if

$$\frac{-f_1(x_1)}{f_2(x_1) - f_1(x_1)} \le \frac{f_1(x_2)}{f_1(x_2) - f_2(x_2)} \quad \text{for all } x_1 \in K_1 \text{ and } x_2 \in K_2.$$

1

That is, α exists if and only if

$$(-f_1(x_1))(-f_2(x_2)) \le f_1(x_2)f_2(x_1)$$
 for all $x_1 \in K_1$ and $x_2 \in K_2$

This inequality involves the values of the convex functions only along the line joining x_1 and x_2 ; it is essentially a one-dimensional result.

The inequality $\langle 5 \rangle$ is trivial when either $f_1(x_1) = 0$ or $f_2(x_2) = 0$. We need only consider a pair with $f_1(x_1) < 0$ and $f_2(x_2) < 0$. Define θ in (0, 1) as the value for which $(1-\theta)f_1(x_1)+\theta f_1(x_2) = 0$, then define $x_{\theta} := (1-\theta)x_1+\theta x_2$. By convexity, $f_1(x_{\theta}) \le 0$, implying that $x_{\theta} \in K_1$ and $(1-\theta)f_2(x_1)+\theta f_2(x_2) \ge f_2(x_{\theta}) > 0$. Thus

$$\frac{-f_1(x_1)}{f_1(x_2)} = \frac{\theta}{1-\theta} < \frac{f_2(x_1)}{-f_2(x_2)},$$

which gives <5>.

Existence of an α satisfying constraints <3> and <4> now follows, which, via the contradiction, lets us conclude that $K_1 \cap K_2 \neq \emptyset$.

To extend the conclusion to an intersection of finitely many sets $K_{y_i,0}$, for i = 1, 2, ..., m, first invoke the result for pairs to see that $K'_i := K_{y_1,0} \cap K_{y_i,0} \neq \emptyset$ for i = 2, ..., m, then repeat the pairwise argument with f restricted to $K_{y_1,0} \times C$. And \Box so on. After m - 1 repetitions we reach the desired conclusion, that $\bigcap_{i \le m} K_{y_i,0} \neq \emptyset$.

References

Millar, P. W. (1983), 'The minimax principle in asymptotic statistical theory', *Springer Lecture Notes in Mathematics* **976**, 75–265.

<5>

2