
Chapter 9

Distance between multinomial
and multivariate normal models

SECTION 1 introduces Andrew Carter’s recursive procedure for bounding the Le Cam
distance between a multinomial model and its approximating multivariate normal
model.

SECTION 2 develops notation to describe the recursive construction of randomizations
via conditioning arguments, then proves a simple Lemma that serves to combine the
conditional bounds into a single recursive inequality.

SECTION 3 applies the results from Section 2 to establish the bound involving randomization
of the multinomial distribution in Carter’s inequality.

SECTION 4 sketches the argument for the bound involving randomization of the multivariate
normal in Carter’s inequality.

SECTION 5 outlines the calculation for bounding the Hellinger distance between a smoothed
Binomial and its approximating normal distribution.

1. Introduction

The multinomial distributionM(n, θ), whereθ := (θ1, . . . , θm), is the probability
measure onZm

+ defined by the joint distribution of the vector of counts inm
cells obtained by distributingn balls independently amongst the cells, with each
ball assigned to a cell chosen from the distributionθ . The variance matrixnVθ

corresponding toM(n, θ) has(i, j )th elementnθi {i = j } − nθi θj .
The central limit theorem ensures thatM(n, θ) is close to theN(nθ, nVθ ),

in the sense of weak convergence, for fixedm when n is large. In his doctoral
dissertation, Andrew Carter (2000a) considered the deeper problem of bounding
the Le Cam distance�(M, N) between modelsM := {M(n, θ) : θ ∈ �} and
N := {N(nθ, nVθ ) : θ ∈ �}, under mild regularity assumptions on�. For example,
he proved that

<1> �(M, N) ≤ C′
�

m logm√
n

provided sup
θ∈�

maxi θi

mini θi
≤ C� < ∞,

for a constantC′
� that depends only onC�. From this inequality he was able

to recover most of a result due to Nussbaum (1996), establishing an asymptotic
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2 Chapter 9: Distance between multinomial and multivariate normal models

equivalence (in Le Cam’s sense) between a density estimation model and a white
noise model. By means of an extension (Carter & Pollard 2000) of Tusnady’s
lemma, Carter was also able to sharpen his bound under further “smoothness
assumptions” on�, and thereby deduce the Nussbaum equivalence under the same
conditions as Nussbaum (Carter 2001).

I feel that Carter’s methods are a significant contribution to the study of the Le Cam
distance. The following discussion is based on the December 2000 version of the
Carter (2000b) preprint, but with many notational changes. For a more detailed
account, the reader should consult Carter’s preprints and dissertation.

The proof for<1> uses only the following basic results.

Facts

[1] Let U denote the Uniform distribution on(−1/2, 1/2). Then

H2
(
Bin(n, p) � U, N(np, npq)

) ≤ C

(1 + n)pq
,

whereC is a universal constant.
[2] If X has a Bin(n, p) distribution then(1 + n)P (1 + X)−1 ≤ p−1.
[3] For all σ 2

2 > 0,

H2
(
N(µ1, σ

2
1 ), N(µ2, σ

2
2 )

) ≤ (µ1 − µ2)
2

2σ 2
2

+ 4|σ 2
1 − σ 2

2 |2
σ 4

2

.

[4] For all probability measures{αi } and{βi },
‖ ⊗i αi − ⊗i βi ‖2 ≤ 4H2 (⊗i αi , ⊗i βi ) ≤ 4

∑
i
H2(αi , βi ).

An outline of the proof for [1] appears in Section 5. See Problem [2] for [2], and
Problem [1] for [3]. SeeUGMTP §3.3 & Problem 4.18for [4].

For simplicity of exposition, I will assume the number of cells to be a power
of 2, that is,m = 2M for some positive integerM . Write the multinomial counts as
s1,M , . . . , sm,M , and regard them as the coordinate maps onZm

+, equipped with the
probability measurePθ := M(n, θ).

The main innovation in Carter’s method is a recursive argument based on
a decomposition of the multinomial into a collection of (conditional) Binomials.
Inequality<1> will be derived by reducing the problem for a multinomial onm
cells to an analogous problem form/2 cells, thenm/4 cells, and so on. Eventually
we reach the trivial case with one cell, where the multinomial and multivariate
normal models coincide. The argument is easiest to describe with the help of the
following picture (form = 2M = 8), whose bottom row contains the multinomial
counts{sj,M : 1 ≤ j ≤ 2M} for all m cells.
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9.1 Introduction 3

s1,3 s2,3 s3,3 s5,3s4,3 s6,3 s7,3 s8,3

s1,0 = n

s1,1 s2,1

s1,2 s2,2 s3,2 s4,2

The counts{sj,M−1 : 1 ≤ j ≤ 2M−1} in the m/2 boxes of the next row are obtained
by adding together pairs of counts from the bottom row:sj,M−1 := s2 j −1,M + s2 j,M .
And so on, until alln observations are collected in the single box in the top row.
The picture could also be drawn as a binary tree, with the count at each parent node
equal to the sum of the counts at the two children.

The simplicity of the method is largely due to the recursive structure. It
replaces calculations involving the awkward dependences of the multinomial by
simpler calculations based on conditional independence: given the counts in the
(M − 1)st row, the counts in the even-numbered boxes of theM th row are
independent Binomials.

Remark. Even though the picture seems to suggest some linear ordering of the
cells of the multinomial, there is no such assumption behind<1>. The pairings
could be made in an arbitrary fashion. There is no implied neighborhood structure
on the cells. However, for the more precise results of Carter (2001), an ordering
is needed to make sense of the idea of smoothness—similarity of probabilities
for neighboring cells.

There is a corresponding recursive decomposition of the multivariate normal
into a collection of normals, with the even-numbered variables in each row being
conditionally independent given the values in the previous row.

The randomization to make the bottom row of the multinomial picture close,
in a total variation sense, to the bottom row of the multivariate normal picture uses
convolution smoothing, which is easiest to explain by means of a collection of
independent observations{uj,k} drawn fromU.

The smoothing works downwards from the top of the picture. We first define
t2,1 := s2,1 + u2,1 and thent1,1 := n− t2,1 in order that the counts still sum ton. For
the next row we definet2 j,2 := s2 j,2 + u2 j,2 and t2 j −1,2 := tj,1 − t2 j,2, for j = 1, 2.
That is, we directly smooth the counts in the even-numbered boxes, then adjust the
counts in the odd-numbered boxes to ensure that the variable in each box is still
equal to the sum of the variables in the two boxes beneath it. And so on.
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4 Chapter 9: Distance between multinomial and multivariate normal models

t1,3 t2,3 t3,3 t5,3t4,3 t6,3 t7,3 t8,3

t1,0 = n

t1,1 = n–t2,1 t2,1 = s2,1+u2,1 

t1,2 = t1,1–t2,2 t2,2 = s2,2+u2,2 t3,2 = t2,1–t4,2 t4,2 = s4,2+u4,2

These operations serve to define a Markov kernelK := {Ks : s ∈ Zm
+} for

which the joint distribution of the variables in theM th row equalsKPθ . The kernel
corresponds to a convolution,tj,M = sj,M + Wj,M , where eachWj,m is a sum of at
most M of the independentui, j variables. In consequence,

<2> Kt
s

(
tj,M − sj,M

)2 ≤ M/12 for all j .

Remark. Note that tj is not normally distributed underM. We should be
careful when referring to the random variablestj to specify the underlying
probability measure.

The smoothing and the conditional independence will allow us to invoke
Fact [1] repeatedly to bound the total variation distance between the conditional
distribution of the smoothed multinomials and the conditional distributions for the
normals. We then need to piece together the resulting bounds, using the method
presented in the next Section.

2. Conditioning

Write r for m/2. To simplify notation, omit both the subscript indicating the choice
of θ and the subscript indicating the row number, writings := (s1, s2, . . . , sr ) for
the counts in the(M − 1)st row, and

γ (s, x) := (s1 − x1, x1, . . . , sj − xj , xj , . . . , sr − xr , xr )

for the counts in theM th row. Under theM model, the distribution fors is
µ := M(n, ψ), whereψj := θ2 j −1 + θ2 j for j = 1, 2, . . . , r . Think of µ as a
probability measure onS := Zr

+. The conditional distribution for theM th row,
given s, is clearly determined by the conditional distribution ofx := (x1, . . . , xr )

given s,

<3> Ps := ⊗r
j =1Bin(sj , pj ) where pj := θ2 j /ψj .

The family P := {Ps : s ∈ S} is a Markov kernel fromS to X := Zr
+. The joint

distribution fors andx is the probability measurẽP := µ ⊗ P, defined formally by

P̃s,x f (s, x) := µsPx
s f (s, x) for f ∈ M+(S × X).

The joint distribution,P, for all the counts in theM th row is the image of̃P under
the (one-to-one) linear mapγ .
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9.2 Conditioning 5

There is a similar decomposition for the normal model. UnderN, the(M −1)st
row t := (t1, . . . , tr ) has distributionλ := N(nψ, nVψ), a probability measure
on T := Rr . The conditional distribution for theM th row,

γ (t, y) := (t1 − y1, y1, . . . , tj − yj , yj , . . . , tr − yr , yr ),

given t is determined by the conditional distribution ofy := (y1, . . . , yr ) given t ,

<4> Qt := ⊗r
j =1N(tj pj , nψj pj qj ) whereqj := 1 − pj .

Notice that thej th factor in the product that definesQt has a slightly different form
from N(sj pj , sj pj qj ), the natural normal approximation for thej th factor in the
product that definesPs. (Of course the conditional variance for the normal model
could not be a multiple oftj , because there is a nonzero probability thattj < 0
underN.) The difference will cause only minor problems becausesj ≈ tj ≈ nψj

underP.
The family Q := {Qt : t ∈ T} is a Markov kernel fromT to Y := Rr . The

joint distribution for t and y is the probability measurẽQ := λ ⊗ Q. The joint
distribution,Q, for all the variables in theM th row is the image of̃Q under the
(one-to-one) linear mapγ .

Section 1 defined a randomizationK for which we hope‖KP − Q‖ is small.
Because the mapγ is one-to-one, it makes no difference whether we work withP̃

andQ̃, rather than withP andQ, when we calculate total variation distances. More
precisely,

‖KP − Q‖ = ‖K̃P̃ − Q̃‖ whereK̃ = γ −1Kγ .

The construction from Section 1 can also be interpreted recursively. If we stop
at the(M − 1)st row, we have a randomizationK for which we hope‖Kµ − λ‖ is
small. The full randomizationK is then obtained by further convolution smoothing
to generate theM th row of smoothed multinomials. In effect, we buildK from K
and a new randomization, which we can interpret as an attempt to match the
conditional distributionPs with the conditional distributionQt .

This interpretation fits with a general method for building randomizations a
layer at a time. The following Lemma is written using notation borrowed from the
preceding paragraphs, but it applies beyond the multinomial/multivariate normal
problem. For the special case at hand, the randomizationL in the Lemma consists
of independent convolution smoothing of thexj distributions. In general,L could
also be allowed to depend ons and t .

<5> Lemma. Let µ be a probability measure onS, and P := {Pt : t ∈ T} be a
probability kernel fromT to X; and letλ be a probability measure onT, and
Q := {Qt : t ∈ T} be a probability kernel fromT to Y. Define P̃ := µ ⊗ P and
Q̃ = λ ⊗ Q. Suppose there exist Markov kernelsK , from S to T, and,Ls,t , from X

to Y for each(s, t), such that

(i) ‖Kµ − λ‖ ≤ ε

(ii) ‖Ls,t Ps − Qt‖ ≤ ρ(s, t) for all s ∈ S and t ∈ T.
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6 Chapter 9: Distance between multinomial and multivariate normal models

Let K̃ be the Markov kernel, fromS × X to T × Y, defined by

K̃t,y
s,x f (t, y) := K t

sL y
s,t,x f (t, y) for all f ∈ M+(T × Y).

Then
‖K̃P̃ − Q̃‖ ≤ ε + (µ ⊗ K )s,t ρ(s, t).

Ps Qt

S T

µ λ
Ls,t

K

X Y

Proof. Remember that (i) and (ii) mean that

sup|h|≤1 |µsK t
sh(t) − λt h(t)| ≤ ε

sup|g|≤1 |Px
s L y

s,t,xg(y) − Qy
t g(y)| ≤ ρ(s, t) for all s, t .

For each functionf on T × Y with | f | ≤ 1, defineh(t) := Qy
t f (t, y) and

gt (y) := f (t, y). Note that|h| ≤ 1 and|gt | ≤ 1 for everyt . Thus

|̃Px,sK̃t,y
x,s f (t, y) − Q̃t,y f (t, y)|

= |µsPx
s K t

sL y
s,t,x f (t, y) − µsK t

sh(t) + µsK t
sh(t) − λt Qy

t f (t, y)|
≤ µsK t

s|Px
s L y

s,t,xgt (y) − Qy
t gt (y)| + |µsK t

sh(t) − λt h(t)|
≤ µsK t

sρ(s, t) + ε.

Take a supremum overf , with | f | ≤ 1, to complete the proof.�
Remark. Notice that the bound involves an integral with respect toµ ⊗ K ,
a distribution onS × T. For the setting described in Section1, this probability
measure givest has a multinomial distribution ands a “smoothed multinomial”
distribution. That is, it refers to the joint distribution between the variables
corresponding to the(M − 1)st rows of the two pictures in that Section. As such,
it combines the recursive effects of the smoothings that define the randomizations
between all of the preceding rows.

3. From multinomial to multivariate normal

For the purposes of describing a recursive bound, add a subscript to the models,
writing Mk for the multinomial with 2k cells andNk for the corresponding
multivariate normal model. That is,MM is the multinomial model withm :=
2M cells in the M th row, subject to the constraint maxi θi / mini θi ≤ C�. The
requirement

∑
i θi = 1 gives

1

C�m
≤ θi ≤ C�

m
for all i .
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9.3 From multinomial to multivariate normal 7

The operation that combines counts from pairs of cells creates a new multinomial
model MM−1 with 2M−1 cells and cell probabilitiesψj := θ2 j −1 + θ2 j for j =
1, 2, . . . , 2M−1. Notice that maxi ψi ≤ 2 maxi θi , and mini ψi ≥ 2 mini θi , from
which it follows that

<6> maxj ψj / minj ψj ≤ C�.

That is, all that changes in going from theM th to the(M − 1)st model is a halving
of the number of cells. Similar considerations give a bound for the conditional
probabilitiespi := θ2i /ψi ,

<7>
1

1 + C�

≤ pj ≤ C�

1 + C�

for all j .

Lemma<5> gives a bound for the Le Cam distanceδ(MM , NM) if we add
back theθ subscripts. Theε in the Lemma corresponds toδ(MM−1, NM−1). The
function ρ(s, t) bounds the distance between products of smoothed multinomials
and products of normals. By means of the Facts from Section 1 we can find a
simple expression forρ(s, t)2:

‖ ⊗m/2
j =1

(
Bin(sj , pj ) � U

) − ⊗m/2
j =1N(tj pj , nψj pj qj )‖2

≤ 2‖ ⊗m/2
j =1

(
Bin(sj , pj ) � U

) − ⊗m/2
j =1N(sj pj , sj pj qj )‖2

+ 2‖ ⊗m/2
j =1 N(sj pj , sj pj qj ) − ⊗m/2

j =1N(tj pj , nψj pj qj )‖2

≤ 8
∑m/2

j =1
H2

(
Bin(sj , pj ) � U, N(sj pj , sj pj qj )

)
+ 8

∑m/2

j =1
H2

(
N(sj pj , sj pj qj ), N(tj pj , nψj pj qj )

)
by Fact [4]

≤ 8
∑m/2

j =1

C

(1 + sj )pj qj
+ (sj pj − tj pj )

2

2nψj pj qj
+ 4|sj pj qj − nψj pj qj |2

(nψj pj qj )2
.

The last inequality comes from Facts [1] and [3].
Use<7> to tidy up the constants, suggesting the choice

ρ(s, t)2 := C′ ∑m/2

j =1

(
1

1 + sj
+ (sj − tj )

2

nψj
+ (sj − nψj )

2

(nψj )2

)
,

where C′ is a constant depending only onC and C�. Under the distribution
� := µ⊗ K , the random variablesj has a Bin(n, ψj ) distribution and, by the analog
of <2> for the (M − 1)st row,�(sj − tj )

2 ≤ (M − 1)/2. Invoking Fact [2] and the
boundψj ≥ 2/(mC�) we then get

(�ρ(s, t))2 ≤ �ρ(s, t)2 := C′ ∑m/2

j =1

(
1

(1 + n)pj
+ M − 1

2nψj
+ nψj (1 − ψj )

(nψj )2

)
≤ C′′(m/2) (1/n + Mm/n + m/n) .

Substitution into the result from Lemma<5> then leaves us with a recursive
inequality,

δ(MM , NM) ≤ δ(MM−1, NM−1) + C′′′m
√

M/n,

with C′′′ yet another constant depending only onC�.
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8 Chapter 9: Distance between multinomial and multivariate normal models

A similar relationship holds between each pair of successive rows, with the
same constants in each case because the cell probabilities always satisfy the analog
of <6>. Substituting repeatedly, noting thatδ(M0, N0) = 0 because both models
are degenerate, we then get

δ(MM , NM) ≤ δ(M0, N0) + C′′′ ∑M

k=1
2k

√
k/n ≤ C′

�m

√
logm

n
.

4. From multivariate normal to multinomial (sketch)

The argument for approximating the multinomial by a randomization of the
multivariate normal is very similar to the argument used in Section 3. We start
from the decomposition{sj,k : 1 ≤ j ≤ 2k; k = 0, . . . , M} corresponding to the
multivariate normal under the modelN. Instead of smoothing, we discretize by
means of the function [·] that rounds a real number to its nearest integer. That is,
for each row we define eacht2 j,k := [s2 j,k], then adjust the adjacents2 j −1,k to keep
the sumt2 j −1,k + t2 j .k equal totj,k. For the last row we havetj,M = sj,M + Vj,M with
eachVj,M a sum of at mostM terms of the form± (

sj,k − [sj,k]
)
. The summands

definingVj,M are dependent. Carter used the conservative bound

|tj,M − sj,M | ≤ M for all j ,

which led to a factor of logm in <1>, rather than the factor(logm)1/2 suggested
by the calculations in Section 3.

Remark. I cannot imagine that there is enough dependence between the
fractional parts of thesj,k to make var

(
Vj,M

)
grow significantly faster thanM .

However, it does not seem worthwhile devoting great effort to improve the logm
to a (logm)1/2, when it is not clear whether them/

√
n might not be improved by

a more subtle randomization.

The argument via Lemma<5> proceeds much as before, except that now we
need to bound the distance between the Binomial and the rounded normal. Actually,
the bounds developed in Section 3 still apply, because the rounding operation can
only decrease Hellinger distances.

5. Hellinger bound for smoothed Binomial

Fact [1] gives a bound for the Hellinger distance between a smooth Binomial and
its approximating normal,

<8> H2
(
Bin(n, p) � U, N(np, npq)

) ≤ C

(1 + n)pq
,

whereC is a universal constant.
By choosingC large enough, we ensure that the asserted inequality is trivially

true whennpq is smaller than any fixedσ 2
0 . Thus we need only consider the

case whereσ 2 := npq ≥ σ 2
0 . Write bk for P{Bin(n, p) = k}, and g(x) for the
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9.5 Hellinger bound for smoothed Binomial 9

correspondingN(np, npq) density. Using elementary Calculus and the Stirling
formula, Prohorov (1961) proved that

log
bk

g(k)
= (q − p)

6σ
(x3 − x) + O

(
1 + x4

σ 2

)
wherex := k − np

σ
.

Actually, for our purposes it would suffice to have

<9> log
bk

g(k)
= R(x) with |R(x)| ≤ π(|x|)

σ for |x| ≤ √
3 logσ ,

for some polynomialπ(·).
For each functionf on the real line, writef̃ for the associated step function,

f̃ (x) :=
∑

k∈Z
{k − 1

2 < x ≤ k + 1
2} f (k).

The left-hand side of<8> is bounded above by

<10> 2
∑
k∈Z

(
b1/2

k − g(k)1/2
)2

+ 2
∫ ∞

−∞

(
g(x)1/2 − g̃(x)1/2

)2
dx.

For the first term in<10>, split the sum according to whetherk is in the range
A := {k : |k − np| ≤ 3σ

√
logσ } or not. The contribution fromk /∈ A is less than∑

k/∈A (bk + g(k)), which is easily bounded by a multiple ofσ−2 using standard tail
bounds for the Binomial and normal. The contribution fromk ∈ A equals∑

k∈A
g(k)

(
b1/2

k

g(k)1/2
− 1

)2

=
∑

k∈A
g(k)|eR(x)/2 − 1|2 by <9>

≤ C0σ
−2

∑
k∈A

g(k)π(x)2,

for a universal constantC0. The sum is bounded by a multiple ofPπ(|Z|)2, with Z
distributedN(0, 1).

The second term in<10> is disposed of by the following elementary calculation.

<11> Lemma. Let f be theN(µ, σ 2) density. Then∫ (
f (x)1/2 − f̃ (x)1/2

)2
dx ≤

∫
f ′(t)2

f (t)
dt = 1/(4σ 2).

Proof. Write h for f 1/2. Note thath′(t) = f ′(t)/2h(t). For k ≤ x ≤ k + 1/2 we
have

|h(x) − h(k)| = |
∫ x

k
h′(t) dt| ≤

∫ k+1/2

k
|h′(t)| dt.

There is a similar bound whenk ≥ x ≥ k − 1/2. Thus∫
|h(x) − h̄(x)|2 dx ≤

∑
k∈Z

∫
{k − 1

2 < x ≤ k + 1
2}|h(x) − h(k)|2 dx

≤
∑

k∈Z

(∫
{|t − k| ≤ 1

2}|h′(t)| dt

)2

≤
∫

h′(t)2 dt.

�
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10 Chapter 9: Distance between multinomial and multivariate normal models

6. Problems

[1] Hellinger distance between normals.

(i) Show that

H2
(
N(µ1, σ

2), N(µ1, σ
2)

) = 2 − 2 exp
(−(µ1 − µ2)

2/8σ 2
)
.

(ii) Show that

H2
(
N(µ, σ 2

1 ), N(µ, σ 2
2 )

) = 2 − 2

√
2σ1σ2

σ 2
1 + σ 2

2

.

(iii) Deduce that

H2
(
N(µ1, σ

2
1 ), N(µ2, σ

2
2 )

)
≤ 2

(
2 − 2 exp

(−(µ1 − µ2)
2/8σ 2

2

)) + 2

(
2 − 2

√
2σ1σ2

σ 2
1 + σ 2

2

)

≤ (µ1 − µ2)
2

2σ 2
2

+ 4|σ 2
1 − σ 2

2 |2
σ 4

2

[2] SupposeX has a Bin(n, p) distribution. Show that

P(1 + X)−1 ≤
∫ 1

0
PsX ds ≤ 1

(n + 1)p
.
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