Chapter 9

Distance between multinomial
and multivariate normal models

<1>

SECTION 1 introduces Andrew Carter’s recursive procedure for bounding the Le Cam
distance between a multinomial model and its approximating multivariate normal
model.

SECTION 2 develops notation to describe the recursive construction of randomizations
via conditioning arguments, then proves a simple Lemma that serves to combine the
conditional bounds into a single recursive inequality.

SECTION 3 applies the results from Section 2 to establish the bound involving randomization
of the multinomial distribution in Carter’s inequality.

SECTION 4 sketches the argument for the bound involving randomization of the multivariate
normal in Carter’s inequality.

SECTION 5 outlines the calculation for bounding the Hellinger distance between a smoothed
Binomial and its approximating normal distribution.

Introduction

The multinomial distributiorM(n, 6), wheref := (64, ..., 6m), is the probability
measure orZ defined by the joint distribution of the vector of countsrin
cells obtained by distributing balls independently amongst the cells, with each
ball assigned to a cell chosen from the distributtanThe variance matrix\j
corresponding tév((n, #) has(i, j)th elemening;{i = j} — n6;6;.

The central limit theorem ensures tHet(n, ) is close to theN(nd, nV;),
in the sense of weak convergence, for fixedwhenn is large. In his doctoral
dissertation, Andrew Carter (2080considered the deeper problem of bounding
the Le Cam distance\ (M, N) between model$vl = {M(n,H) : 6 € ®} and
N :={N(n8, nVp) : 6 € ®}, under mild regularity assumptions @ For example,
he proved that

mlogm . max o;
rovided sup—— <C ;
Jn P omin g — 0%
for a constantC, that depends only o€e. From this inequality he was able
to recover most of a result due to Nussbaum (1996), establishing an asymptotic

AM,N) <Cy
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2 Chapter 9:  Distance between multinomial and multivariate normal models

equivalence (in Le Cam’s sense) between a density estimation model and a white
noise model. By means of an extension (Carter & Pollard 2000) of Tusnady’s
lemma, Carter was also able to sharpen his bound under further “smoothness
assumptions” or®, and thereby deduce the Nussbaum equivalence under the same
conditions as Nussbaum (Carter 2001).

| feel that Carter’'s methods are a significant contribution to the study of the Le Cam
distance. The following discussion is based on the December 2000 version |of the
Carter (2000) preprint, but with many notational changes. For a more detailed

account, the reader should consult Carter’'s preprints and dissertation.

The proof for<1> uses only the following basic results.

Facts

[1] Let & denote the Uniform distribution o6-1/2,1/2). Then

H? (Bin(n, p) * 4, N(np, n N
(Binen. p PP = (g
whereC is a universal constant.

[2] If X has a Birin, p) distribution then(1 4+ n)P (1 + X)™* < p~ L.

[3] For all 62 > 0,

(11— n2)?  4of — off?

2022 O’;

H2 (N(p1, 09), N(uz, 03)) <

[4] For all probability measureg&y;} and{g;},
| @i @i — @ifill” < 4H? (®ici, ®ifi) <4)_ HA(wi, Bi).

An outline of the proof for [1] appears in Section 5. See Problem [2] for [2], and
Problem [1] for [3]. SeeUGMTP 8§3.3 & Problem 4.18or [4].

For simplicity of exposition, | will assume the number of cells to be a power
of 2, that is,m = 2V for some positive integel. Write the multinomial counts as
S1M, ---,Smm, and regard them as the coordinate map<Zgin equipped with the
probability measuré, := M(n, ).

The main innovation in Carter's method is a recursive argument based on
a decomposition of the multinomial into a collection of (conditional) Binomials.
Inequality <1> will be derived by reducing the problem for a multinomial on
cells to an analogous problem for/2 cells, therm/4 cells, and so on. Eventually
we reach the trivial case with one cell, where the multinomial and multivariate
normal models coincide. The argument is easiest to describe with the help of the
following picture (form = 2M = 8), whose bottom row contains the multinomial
counts{s; v : 1 < j < 2M} for all m cells.
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9.1 Introduction 3

S0=N

S11 S$1

S12 $2 S32 S22

Si3| | S23| | S33| | a3 | Ss3| | Se3| | Sr3| | Ss3

The counts{sjy-1:1< ] < 2M-1} in the m/2 boxes of the next row are obtained

by adding together pairs of counts from the bottom r@w—1 := Sj—1.m + Sj M-

And so on, until alln observations are collected in the single box in the top row.
The picture could also be drawn as a binary tree, with the count at each parent node
equal to the sum of the counts at the two children.

The simplicity of the method is largely due to the recursive structure. It
replaces calculations involving the awkward dependences of the multinomial by
simpler calculations based on conditional independence: given the counts in the
(M — 1)st row, the counts in the even-numbered boxes of i row are
independent Binomials.

REMARK. Even though the picture seems to suggest some linear ordering of the
cells of the multinomial, there is no such assumption behind-. The pairings
could be made in an arbitrary fashion. There is no implied neighborhood structure
on the cells. However, for the more precise results of Carter (2001), an ordering
is needed to make sense of the idea of smoothness—similarity of probabilities
for neighboring cells.

There is a corresponding recursive decomposition of the multivariate normal
into a collection of normals, with the even-numbered variables in each row being
conditionally independent given the values in the previous row.

The randomization to make the bottom row of the multinomial picture close,
in a total variation sense, to the bottom row of the multivariate normal picture uses
convolution smoothing, which is easiest to explain by means of a collection of
independent observatiorg; } drawn froml.

The smoothing works downwards from the top of the picture. We first define
t21 := S.1+ Uz and thert; ; ;== n—t,; in order that the counts still sum to For
the next row we deﬁnd}z]‘,z =j2+ U2j2 andtzj_l,g = tj,l — t2j,2, for j =12
That is, we directly smooth the counts in the even-numbered boxes, then adjust the
counts in the odd-numbered boxes to ensure that the variable in each box is still
equal to the sum of the variables in the two boxes beneath it. And so on.
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4 Chapter 9:  Distance between multinomial and multivariate normal models

tio=n

=Ny, 1= Sty

to=taoo | |t2= Spotlon| [ta2=toatan | [ta2= SyotUs2

t1,3 t2,3 t3,3 t4,3 t5,3 t6,3 t7,3 t8,3

These operations serve to define a Markov kefiel= {Ks : s € Z7} for
which the joint distribution of the variables in thdth row equaldkP,. The kernel
corresponds to a convolutiot),y = sjm + Wj m, where eachW, ,, is a sum of at
mostM of the independent; ; variables. In consequence,

K (tm—Sm)°<M/12  forallj.

REMARK. Note thatt; is not normally distributed undeM. We should be
careful when referring to the random variablgsto specify the underlying
probability measure.

The smoothing and the conditional independence will allow us to invoke
Fact [1] repeatedly to bound the total variation distance between the conditional
distribution of the smoothed multinomials and the conditional distributions for the
normals. We then need to piece together the resulting bounds, using the method
presented in the next Section.

Conditioning

Write r for m/2. To simplify notation, omit both the subscript indicating the choice
of 6 and the subscript indicating the row number, writig= (s, S, ..., ) for
the counts in th& M — 1)st row, and

y(S9X) = (S_I._X].!Xls"-vsj _inxjv-"ss‘ _XI"XI')
for the counts in theMth row. Under theM model, the distribution fors is
w = M(n, ), wherey; 1= 6zj_1 + 6 for j = 1,2,...,r. Think of u as a
probability measure o8 := Z! . The conditional distribution for théth row,
givens, is clearly determined by the conditional distribution>of= (xy, ..., X)
givens,

Ps = ®|_;Bin(s, pj)  wherep;j =6 /v;.

The family P := {Ps : s € 8} is a Markov kernel from§ to X := Z!,. The joint
distribution fors andx is the probability measure .= u ® P, defined formally by

PS*f (s, X) 1= u>PLf (s, %) for f € MT(8 x X).

The joint distribution,P, for all the counts in theMth row is the image oP under
the (one-to-one) linear map.
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9.2 Conditioning 5

There is a similar decomposition for the normal model. Uridethe (M — 1)st
row t := (tg, ..., t) has distributionr := N(ny,, nV,), a probability measure
on J :=R". The conditional distribution for th@&1th row,

V(t,y) = (tl_ylayly'-'atj _Yj,Yj,---,tr _yrayr),

givent is determined by the conditional distribution vf= (y1, ..., y) givent,

Qt := ®;_y N pj, NV p; ) whereq; :==1— p;.
Notice that thejth factor in the product that defin€®; has a slightly different form
from N(s; pj, Sipjq;), the natural normal approximation for theh factor in the
product that define®s. (Of course the conditional variance for the normal model
could not be a multiple of;, because there is a nonzero probability thak O
underN.) The difference will cause only minor problems becagse: t; ~ ny;
underP.

The family Q := {Q : t € T} is a Markov kernel fronTl to Y := R". The
joint distribution fort andy is the probability measur® = A ® Q. The joint
distribution, Q, for all the variables in théMith row is the image of) under the
(one-to-one) linear map.

Section 1 defined a randomizatidd for which we hope|KP — Q|| is small.
Because the map is one-to-one, it makes no difference whether we work With
andQ, rather than witi? and @, when we calculate total variation distances. More
precisely, o _

IKP— Q| = [KP—Qll  whereK = y~*Ky.

The construction from Section 1 can also be interpreted recursively. If we stop
at the(M — 1)st row, we have a randomizatidd for which we hope|[Ku — A| is
small. The full randomizatiofK is then obtained by further convolution smoothing
to generate théMth row of smoothed multinomials. In effect, we buikl from K
and a new randomization, which we can interpret as an attempt to match the
conditional distributionPs with the conditional distributiorQ;.

This interpretation fits with a general method for building randomizations a
layer at a time. The following Lemma is written using notation borrowed from the
preceding paragraphs, but it applies beyond the multinomial/multivariate normal
problem. For the special case at hand, the randomizationthe Lemma consists
of independent convolution smoothing of tRedistributions. In generall. could
also be allowed to depend anandt.

Lemma. Let u be a probability measure a8y and® = {P, : t € T} be a
probability kernel fromT to X; and leti be a probability measure dn, and
Q= {Q: : t € T} be a probability kernel from¥ toJ. DefineP := p ® P and
Q = A ® Q. Suppose there exist Markov kern&s from § to T, and,Ls, from X
toY for each(s, t), such that

() IKp—2all <e

(i) ILstPs— Qtll < p(s,t) for allse § andt € 7.
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6 Chapter 9:  Distance between multinomial and multivariate normal models

Let K be the Markov kernel, fror8 x X to T x Y, defined by
KLY f(ty) = KLY f(ty)  forall f e M*(T x Y).

Then L
IKP — Q| <€+ (r®K)* p(s,1).

Ps Qt

s | K
Proof. Remember that (i) and (ii) mean that
SURn <1 [L°Keh(t) — Ath(t)] <€
SURg <1 IPSLLix0(y) — QYg(Y)l < p(s,t)  forall s, t.

For each functionf on T x Y with |f| < 1, defineh(t) := Q{ f(t,y) and
a:(y) := f(t,y). Note thatlh| <1 and|g| < 1 for everyt. Thus

PSRt y) — QY F L y)l
= [PPIKLL x F (1, y) — ®KEh() + pPKeh(t) — 2'QY f (¢, y)
< 1K PXLL 1«0 (Y) — Q{ G ()] + [1°Kgh() — Ath())
< 1¥Klp(s,t) +e.
Take a supremum ovefr, with | f| < 1, to complete the proof.

—>
Q

REMARK. Notice that the bound involves an integral with respecut® K,

a distribution onS x T. For the setting described in Sectianthis probability
measure give$ has a multinomial distribution angl a “smoothed multinomial”
distribution. That is, it refers to the joint distribution between the variables
corresponding to théM — 1)st rows of the two pictures in that Section. As such,

it combines the recursive effects of the smoothings that define the randomizations
between all of the preceding rows.

From multinomial to multivariate normal

For the purposes of describing a recursive bound, add a subscript to the models,
writing My for the multinomial with 2 cells andNy for the corresponding
multivariate normal model. That iSy{yy is the multinomial model withm :=

2M cells in the Mth row, subject to the constraint mas/ min; 6 < Ce. The
requirement ; 6; = 1 gives

1 < C@

<6

for all i.
Com —

3
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9.3 From multinomial to multivariate normal 7

The operation that combines counts from pairs of cells creates a new multinomial
model My _1 with 2M~1 cells and cell probabilities); 1= 62j_1 + 62; for j =
1,2,...,2M-1 Notice that maxy; < 2max 6;, and miny; > 2min 6;, from
which it follows that

<6> max v/ min; ¢; < Ce.

That is, all that changes in going from ti&th to the(M — 1)st model is a halving
of the number of cells. Similar considerations give a bound for the conditional
probabilitiesp; := 04 /i,
1 Co .
<=p < for all j.
1+C®—p‘—1+c@ J
Lemma<5> gives a bound for the Le Cam distan€ély, Ny ) if we add
back thef subscripts. The in the Lemma corresponds 8dMy_1, Ny_1). The
function p(s, t) bounds the distance between products of smoothed multinomials
and products of normals. By means of the Facts from Section 1 we can find a
simple expression fop (s, t)%:

<7>

| @7 (Bincs;. p) *4l) — ®TVIN( pj. Ny pgp) 12
< 2| Y2 (Bin(s, py) * 1) — ®VZN(s pj. 5 Py 12

m/2

+21 2 N(s by s Py — ®EN( by, My piap) |2
m/2 .
<8) . H?(Bin(s. p) » &L N(spj. 5Py )
/2
+ 82;“:1 H? (N(sp;. 5 ;0. N(G . Ny pia)) by Fact [4]
<8y "™ C (SP—tP)? | 4SPG —nYipG”
T It 1+ s)pg 2ny; pj Ny p; 0)?
The last inequality comes from Facts [1] and [3].
Use <7> to tidy up the constants, suggesting the choice
1 (5 —t)? (5 —nyj)?
s, t)2:=C .m/2< + I+ =),
P D 2ialirs t T ()2
where C’ is a constant depending only db and Cg. Under the distribution
I' := n® K, the random variablg has a Birin, ;) distribution and, by the analog

of <2> for the (M — D)st row, I'(s; — t,-)2 < (M —1)/2. Invoking Fact [2] and the
boundy;; > 2/(mCq) we then get

m 1 M-1 iA—-9;
(To(s, ) < Tp(s, % :=C'> " <<1+ mp gy nw,(awwn)

<C"(m/2) (1/n+ Mm/n+m/n).

Substitution into the result from Lemmas> then leaves us with a recursive
inequality,
SMm, Nm) < 8Mm-1, Nm-1) + C"my/M/n,

with C” yet another constant depending only @g.
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A similar relationship holds between each pair of successive rows, with the
same constants in each case because the cell probabilities always satisfy the analog
of <6>. Substituting repeatedly, noting th&Vlp, No) = 0 because both models
are degenerate, we then get

M , logm
SOV, Nu) = 5o, No) +C" Y\ 24V/k/n < com, [ 22T,

From multivariate normal to multinomial (sketch)

The argument for approximating the multinomial by a randomization of the
multivariate normal is very similar to the argument used in Section 3. We start
from the decompositionfsjx : 1 < j < 2% k = 0,..., M} corresponding to the
multivariate normal under the mod®&l. Instead of smoothing, we discretize by
means of the function.] that rounds a real number to its nearest integer. That is,
for each row we define eadb; « := [S; k], then adjust the adjacest;_1k to keep
the sumty; _1 x + toj x equal tot; . For the last row we havg v = s;m + Vj,m With
eachV; v a sum of at mosM terms of the form+ (s,-,k — [s,-,k]). The summands
definingV; v are dependent. Carter used the conservative bound

ltim —siml =M for all j,

which led to a factor of logn in <1>, rather than the factoflogm)/?

by the calculations in Section 3.

suggested

REMARK. | cannot imagine that there is enough dependence between the
fractional parts of thes;, to make val(\/j,M) grow significantly faster thaM.
However, it does not seem worthwhile devoting great effort to improve thenlog
to a (logm)¥/2, when it is not clear whether tha/,/n might not be improved by
a more subtle randomization.

The argument via Lemma5> proceeds much as before, except that now we
need to bound the distance between the Binomial and the rounded normal. Actually,
the bounds developed in Section 3 still apply, because the rounding operation can
only decrease Hellinger distances.

Hellinger bound for smoothed Binomial

Fact [1] gives a bound for the Hellinger distance between a smooth Binomial and
its approximating normal,

H2 (Bin(n, p) x &, N(np, npg)) < ————,
( p p. Npg)) Arpg

whereC is a universal constant.
By choosingC large enough, we ensure that the asserted inequality is trivially

true whennpq is smaller than any fixedZ. Thus we need only consider the
case wherer? := npq > oZ. Write by for P{Bin(n, p) = k}, andg(x) for the

Pollard@Paris2001 1 May 2001



9.5 Hellinger bound for smoothed Binomial 9

correspondingN (np, npg) density. Using elementary Calculus and the Stirling
formula, Prohorov (1961) proved that

bk~ @=p 3 14 x* ~ k—np
ogW = 6o x*=x)+0 = wherex = st
Actually, for our purposes it would suffice to have
<9> Iog% = R(X) with |R(X)| < w for |x| < 4/3logo,

for some polynomialz (-).
For each functionf on the real line, writef for the associated step function,
foo =), k=3 <x<k+ 3}k
The left-hand side oks> is bounded above by
2 o0
<10> ZZ (bi/2 - g(k)l/z) + 2[ (g(x)¥? — @“(x)l/z)zdx.
keZ —o0

For the first term in<10>, split the sum according to whethliis in the range
A:= [k : |k —np| < 30./Iogo} or not. The contribution fronk ¢ A is less than
ZK¢A (bx + g(k)), which is easily bounded by a multiple 6f? using standard tail
bounds for the Binomial and normal. The contribution frne A equals

1/2

2
b
ZkeA 9(k) (Q(;I:)l/z - 1) = ZkeAg(kﬂeR(x)/z ~1? Dby <9>

<Coo 2, 9km(x)?,

for a universal constar@,. The sum is bounded by a multiple Bfr(|Z|)?, with Z
distributedN (0, 1).
The second term ir:10> is disposed of by the following elementary calculation.

<11> Lemma. Let f be theN(u, o?) density. Then
172 £run1/2\2 f'(1)? 2
(feoY? — f0Y%) dx < M dt = 1/(40%).

Proof. Write h for f%2. Note thath'(t) = f'(t)/2h(t). Fork < x < k+ 1/2 we
have

X k+1/2
Ih(x) —h(k)| = I/k h'(t) dt| < /k Ih'(t)| dt.
There is a similar bound whelk> x > k — 1/2. Thus

/ o) —heo?dx < Zkez/{k— 2 < x =k+3Hheo — h(ko|*dx

2
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6. Problems

[1] Hellinger distance between normals.
(i) Show that

HZ (N(11,0%), N(11, 0%) = 2 = 2€xp(— (1 — 12)°/807).

(i) Show that
20‘10’2
H2 (N1, 02), N(u, 02)) =2 -2 | S 2.
(N(1, 07), N1, 03)) o2 + 02
(iif) Deduce that

H? (N(u1. 09). N(u2, 0%))

2010
2(2 — 2exp(— (i1 — 1ur)2/802)) 4 2 [ 2 — 2 | <0102
<2( exp(— (1 — 12)*/803)) + ( o2+ o2

| 2

(- p2)?  Aof—of
= 2 2
203 lop

[2] SupposeX has a Birn, p) distribution. Show that

1
P(1+ X 15/ Ps*ds< ——.
( ) 0 (n+1p
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