
Chapter 9

Distance between multinomial
and multivariate normal models

SECTION 1 introduces Andrew Carter’s recursive procedure for bounding the Le Cam
distance between a multinomial model and its approximating multivariate normal
model.

SECTION 2 develops notation to describe the recursive construction of randomizations
via conditioning arguments, then proves a simple Lemma that serves to combine the
conditional bounds into a single recursive inequality.

SECTION 3 applies the results from Section 2 to establish the bound involving randomization
of the multinomial distribution in Carter’s inequality.

SECTION 4 sketches the argument for the bound involving randomization of the multivariate
normal in Carter’s inequality.

SECTION 5 outlines the calculation for bounding the Hellinger distance between a smoothed
Binomial and its approximating normal distribution.

[§intro] 1. Introduction

The multinomial distributionM(n, θ), whereθ := (θ1, . . . , θm), is the probability
measure onZm

+ defined by the joint distribution of the vector of counts inm
cells obtained by distributingn balls independently amongst the cells, with each
ball assigned to a cell chosen from the distributionθ . The variance matrixnVθ

corresponding toM(n, θ) has(i, j )th elementnθi {i = j } − nθi θj .
The central limit theorem ensures thatM(n, θ) is close to theN(nθ, nVθ ),

in the sense of weak convergence, for fixedm when n is large. In his doctoral
dissertation, Andrew Carter (2000a) considered the deeper problem of bounding
the Le Cam distance�(M, N) between modelsM := {M(n, θ) : θ ∈ �} and
N := {N(nθ, nVθ ) : θ ∈ �}, under mild regularity assumptions on�. For example,
he proved that

carter1 <1> �(M, N) ≤ C′
�

m logm√
n

provided sup
θ∈�

maxi θi

mini θi
≤ C� < ∞,

for a constantC′
� that depends only onC�. From this inequality he was able

to recover most of a result due to Nussbaum (1996), establishing an asymptotic
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2 Chapter 9: Distance between multinomial and multivariate normal models

equivalence (in Le Cam’s sense) between a density estimation model and a white
noise model. By means of an extension (Carter & Pollard 2000) of Tusnady’s
lemma, Carter was also able to sharpen his bound under further “smoothness
assumptions” on�, and thereby deduce the Nussbaum equivalence under the same
conditions as Nussbaum (Carter 2001).

I feel that Carter’s methods are a significant contribution to the study of the Le Cam
distance. The following discussion is based on the December 2000 version of the
Carter (2000b) preprint, but with many notational changes. For a more detailed
account, the reader should consult Carter’s preprints and dissertation.

The proof for<1> uses only the following basic results.

Facts

[1] Let U denote the Uniform distribution on(−1/2, 1/2). Then

H2
(
Bin(n, p) � U, N(np, npq)

) ≤ C

(1 + n)pq
,

whereC is a universal constant.
[2] If X has a Bin(n, p) distribution then(1 + n)P (1 + X)−1 ≤ p−1.
[3] For all σ 2

2 > 0,

H2
(
N(µ1, σ

2
1 ), N(µ2, σ

2
2 )

) ≤ (µ1 − µ2)
2

2σ 2
2

+ 4|σ 2
1 − σ 2

2 |2
σ 4

2

.

[4] For all probability measures{αi } and{βi },
‖ ⊗i αi − ⊗i βi ‖2 ≤ 4H2 (⊗i αi , ⊗i βi ) ≤ 4

∑
i
H2(αi , βi ).

An outline of the proof for [1] appears in Section 5. See Problem [2] for [2], and
Problem [1] for [3]. SeeUGMTP §3.3 & Problem 4.18for [4].

For simplicity of exposition, I will assume the number of cells to be a power
of 2, that is,m = 2M for some positive integerM . Write the multinomial counts as
s1,M , . . . , sm,M , and regard them as the coordinate maps onZm

+, equipped with the
probability measurePθ := M(n, θ).

The main innovation in Carter’s method is a recursive argument based on
a decomposition of the multinomial into a collection of (conditional) Binomials.
Inequality<1> will be derived by reducing the problem for a multinomial onm
cells to an analogous problem form/2 cells, thenm/4 cells, and so on. Eventually
we reach the trivial case with one cell, where the multinomial and multivariate
normal models coincide. The argument is easiest to describe with the help of the
following picture (form = 2M = 8), whose bottom row contains the multinomial
counts{sj,M : 1 ≤ j ≤ 2M} for all m cells.
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9.1 Introduction 3

s1,3 s2,3 s3,3 s5,3s4,3 s6,3 s7,3 s8,3

s1,0 = n

s1,1 s2,1

s1,2 s2,2 s3,2 s4,2

The counts{sj,M−1 : 1 ≤ j ≤ 2M−1} in the m/2 boxes of the next row are obtained
by adding together pairs of counts from the bottom row:sj,M−1 := s2 j −1,M + s2 j,M .
And so on, until alln observations are collected in the single box in the top row.
The picture could also be drawn as a binary tree, with the count at each parent node
equal to the sum of the counts at the two children.

The simplicity of the method is largely due to the recursive structure. It
replaces calculations involving the awkward dependences of the multinomial by
simpler calculations based on conditional independence: given the counts in the
(M − 1)st row, the counts in the even-numbered boxes of theM th row are
independent Binomials.

Remark. Even though the picture seems to suggest some linear ordering of the
cells of the multinomial, there is no such assumption behind<1>. The pairings
could be made in an arbitrary fashion. There is no implied neighborhood structure
on the cells. However, for the more precise results of Carter (2001), an ordering
is needed to make sense of the idea of smoothness—similarity of probabilities
for neighboring cells.

There is a corresponding recursive decomposition of the multivariate normal
into a collection of normals, with the even-numbered variables in each row being
conditionally independent given the values in the previous row.

The randomization to make the bottom row of the multinomial picture close,
in a total variation sense, to the bottom row of the multivariate normal picture uses
convolution smoothing, which is easiest to explain by means of a collection of
independent observations{uj,k} drawn fromU.

The smoothing works downwards from the top of the picture. We first define
t2,1 := s2,1 + u2,1 and thent1,1 := n− t2,1 in order that the counts still sum ton. For
the next row we definet2 j,2 := s2 j,2 + u2 j,2 and t2 j −1,2 := tj,1 − t2 j,2, for j = 1, 2.
That is, we directly smooth the counts in the even-numbered boxes, then adjust the
counts in the odd-numbered boxes to ensure that the variable in each box is still
equal to the sum of the variables in the two boxes beneath it. And so on.
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4 Chapter 9: Distance between multinomial and multivariate normal models

t1,3 t2,3 t3,3 t5,3t4,3 t6,3 t7,3 t8,3

t1,0 = n

t1,1 = n–t2,1 t2,1 = s2,1+u2,1 

t1,2 = t1,1–t2,2 t2,2 = s2,2+u2,2 t3,2 = t2,1–t4,2 t4,2 = s4,2+u4,2

These operations serve to define a Markov kernelK := {Ks : s ∈ Zm
+} for

which the joint distribution of the variables in theM th row equalsKPθ . The kernel
corresponds to a convolution,tj,M = sj,M + Wj,M , where eachWj,m is a sum of at
most M of the independentui, j variables. In consequence,

t-s <2> Kt
s

(
tj,M − sj,M

)2 ≤ M/12 for all j .

Remark. Note that tj is not normally distributed underM. We should be
careful when referring to the random variablestj to specify the underlying
probability measure.

The smoothing and the conditional independence will allow us to invoke
Fact [1] repeatedly to bound the total variation distance between the conditional
distribution of the smoothed multinomials and the conditional distributions for the
normals. We then need to piece together the resulting bounds, using the method
presented in the next Section.

[§product] 2. Conditioning

Write r for m/2. To simplify notation, omit both the subscript indicating the choice
of θ and the subscript indicating the row number, writings := (s1, s2, . . . , sr ) for
the counts in the(M − 1)st row, and

γ (s, x) := (s1 − x1, x1, . . . , sj − xj , xj , . . . , sr − xr , xr )

for the counts in theM th row. Under theM model, the distribution fors is
µ := M(n, ψ), whereψj := θ2 j −1 + θ2 j for j = 1, 2, . . . , r . Think of µ as a
probability measure onS := Zr

+. The conditional distribution for theM th row,
given s, is clearly determined by the conditional distribution ofx := (x1, . . . , xr )

given s,

Ps <3> Ps := ⊗r
j =1Bin(sj , pj ) where pj := θ2 j /ψj .

The family P := {Ps : s ∈ S} is a Markov kernel fromS to X := Zr
+. The joint

distribution fors andx is the probability measurẽP := µ ⊗ P, defined formally by

P̃s,x f (s, x) := µsPx
s f (s, x) for f ∈ M+(S × X).

The joint distribution,P, for all the counts in theM th row is the image of̃P under
the (one-to-one) linear mapγ .
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9.2 Conditioning 5

There is a similar decomposition for the normal model. UnderN, the(M −1)st
row t := (t1, . . . , tr ) has distributionλ := N(nψ, nVψ), a probability measure
on T := Rr . The conditional distribution for theM th row,

γ (t, y) := (t1 − y1, y1, . . . , tj − yj , yj , . . . , tr − yr , yr ),

given t is determined by the conditional distribution ofy := (y1, . . . , yr ) given t ,

Qt <4> Qt := ⊗r
j =1N(tj pj , nψj pj qj ) whereqj := 1 − pj .

Notice that thej th factor in the product that definesQt has a slightly different form
from N(sj pj , sj pj qj ), the natural normal approximation for thej th factor in the
product that definesPs. (Of course the conditional variance for the normal model
could not be a multiple oftj , because there is a nonzero probability thattj < 0
underN.) The difference will cause only minor problems becausesj ≈ tj ≈ nψj

underP.
The family Q := {Qt : t ∈ T} is a Markov kernel fromT to Y := Rr . The

joint distribution for t and y is the probability measurẽQ := λ ⊗ Q. The joint
distribution,Q, for all the variables in theM th row is the image of̃Q under the
(one-to-one) linear mapγ .

Section 1 defined a randomizationK for which we hope‖KP − Q‖ is small.
Because the mapγ is one-to-one, it makes no difference whether we work withP̃

andQ̃, rather than withP andQ, when we calculate total variation distances. More
precisely,

‖KP − Q‖ = ‖K̃P̃ − Q̃‖ whereK̃ = γ −1Kγ .

The construction from Section 1 can also be interpreted recursively. If we stop
at the(M − 1)st row, we have a randomizationK for which we hope‖Kµ − λ‖ is
small. The full randomizationK is then obtained by further convolution smoothing
to generate theM th row of smoothed multinomials. In effect, we buildK from K
and a new randomization, which we can interpret as an attempt to match the
conditional distributionPs with the conditional distributionQt .

This interpretation fits with a general method for building randomizations a
layer at a time. The following Lemma is written using notation borrowed from the
preceding paragraphs, but it applies beyond the multinomial/multivariate normal
problem. For the special case at hand, the randomizationL in the Lemma consists
of independent convolution smoothing of thexj distributions. In general,L could
also be allowed to depend ons and t .

product <5> Lemma. Let µ be a probability measure onS, and P := {Pt : t ∈ T} be a
probability kernel fromT to X; and letλ be a probability measure onT, and
Q := {Qt : t ∈ T} be a probability kernel fromT to Y. Define P̃ := µ ⊗ P and
Q̃ = λ ⊗ Q. Suppose there exist Markov kernelsK , from S to T, and,Ls,t , from X

to Y for each(s, t), such that

(i) ‖Kµ − λ‖ ≤ ε

(ii) ‖Ls,t Ps − Qt‖ ≤ ρ(s, t) for all s ∈ S and t ∈ T.
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6 Chapter 9: Distance between multinomial and multivariate normal models

Let K̃ be the Markov kernel, fromS × X to T × Y, defined by

K̃t,y
s,x f (t, y) := K t

sL y
s,t,x f (t, y) for all f ∈ M+(T × Y).

Then
‖K̃P̃ − Q̃‖ ≤ ε + (µ ⊗ K )s,t ρ(s, t).

Ps Qt

S Tµ λ

Ls,t

K

X Y

Proof. Remember that (i) and (ii) mean that

sup|h|≤1 |µsK t
sh(t) − λt h(t)| ≤ ε

sup|g|≤1 |Px
s L y

s,t,xg(y) − Qy
t g(y)| ≤ ρ(s, t) for all s, t .

For each functionf on T × Y with | f | ≤ 1, defineh(t) := Qy
t f (t, y) and

gt (y) := f (t, y). Note that|h| ≤ 1 and|gt | ≤ 1 for everyt . Thus

|̃Px,sK̃t,y
x,s f (t, y) − Q̃t,y f (t, y)|

= |µsPx
s K t

sL y
s,t,x f (t, y) − µsK t

sh(t) + µsK t
sh(t) − λt Qy

t f (t, y)|
≤ µsK t

s|Px
s L y

s,t,xgt (y) − Qy
t gt (y)| + |µsK t

sh(t) − λt h(t)|
≤ µsK t

sρ(s, t) + ε.

Take a supremum overf , with | f | ≤ 1, to complete the proof.�
Remark. Notice that the bound involves an integral with respect toµ ⊗ K ,
a distribution onS × T. For the setting described in Section1, this probability
measure givest has a multinomial distribution ands a “smoothed multinomial”
distribution. That is, it refers to the joint distribution between the variables
corresponding to the(M − 1)st rows of the two pictures in that Section. As such,
it combines the recursive effects of the smoothings that define the randomizations
between all of the preceding rows.

[§mn.to.normal] 3. From multinomial to multivariate normal

For the purposes of describing a recursive bound, add a subscript to the models,
writing Mk for the multinomial with 2k cells andNk for the corresponding
multivariate normal model. That is,MM is the multinomial model withm :=
2M cells in the M th row, subject to the constraint maxi θi / mini θi ≤ C�. The
requirement

∑
i θi = 1 gives

1

C�m
≤ θi ≤ C�

m
for all i .
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9.3 From multinomial to multivariate normal 7

The operation that combines counts from pairs of cells creates a new multinomial
model MM−1 with 2M−1 cells and cell probabilitiesψj := θ2 j −1 + θ2 j for j =
1, 2, . . . , 2M−1. Notice that maxi ψi ≤ 2 maxi θi , and mini ψi ≥ 2 mini θi , from
which it follows that

psi.ratio <6> maxj ψj / minj ψj ≤ C�.

That is, all that changes in going from theM th to the(M − 1)st model is a halving
of the number of cells. Similar considerations give a bound for the conditional
probabilitiespi := θ2i /ψi ,

p.bounds <7>
1

1 + C�

≤ pj ≤ C�

1 + C�

for all j .

Lemma<5> gives a bound for the Le Cam distanceδ(MM , NM) if we add
back theθ subscripts. Theε in the Lemma corresponds toδ(MM−1, NM−1). The
function ρ(s, t) bounds the distance between products of smoothed multinomials
and products of normals. By means of the Facts from Section 1 we can find a
simple expression forρ(s, t)2:

‖ ⊗m/2
j =1

(
Bin(sj , pj ) � U

) − ⊗m/2
j =1N(tj pj , nψj pj qj )‖2

≤ 2‖ ⊗m/2
j =1

(
Bin(sj , pj ) � U

) − ⊗m/2
j =1N(sj pj , sj pj qj )‖2

+ 2‖ ⊗m/2
j =1 N(sj pj , sj pj qj ) − ⊗m/2

j =1N(tj pj , nψj pj qj )‖2

≤ 8
∑m/2

j =1
H2

(
Bin(sj , pj ) � U, N(sj pj , sj pj qj )

)
+ 8

∑m/2

j =1
H2

(
N(sj pj , sj pj qj ), N(tj pj , nψj pj qj )

)
by Fact [4]

≤ 8
∑m/2

j =1

C

(1 + sj )pj qj
+ (sj pj − tj pj )

2

2nψj pj qj
+ 4|sj pj qj − nψj pj qj |2

(nψj pj qj )2
.

The last inequality comes from Facts [1] and [3].
Use<7> to tidy up the constants, suggesting the choice

ρ(s, t)2 := C′ ∑m/2

j =1

(
1

1 + sj
+ (sj − tj )

2

nψj
+ (sj − nψj )

2

(nψj )2

)
,

where C′ is a constant depending only onC and C�. Under the distribution
� := µ⊗ K , the random variablesj has a Bin(n, ψj ) distribution and, by the analog
of <2> for the (M − 1)st row,�(sj − tj )

2 ≤ (M − 1)/2. Invoking Fact [2] and the
boundψj ≥ 2/(mC�) we then get

(�ρ(s, t))2 ≤ �ρ(s, t)2 := C′ ∑m/2

j =1

(
1

(1 + n)pj
+ M − 1

2nψj
+ nψj (1 − ψj )

(nψj )2

)
≤ C′′(m/2) (1/n + Mm/n + m/n) .

Substitution into the result from Lemma<5> then leaves us with a recursive
inequality,

δ(MM , NM) ≤ δ(MM−1, NM−1) + C′′′m
√

M/n,

with C′′′ yet another constant depending only onC�.
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8 Chapter 9: Distance between multinomial and multivariate normal models

A similar relationship holds between each pair of successive rows, with the
same constants in each case because the cell probabilities always satisfy the analog
of <6>. Substituting repeatedly, noting thatδ(M0, N0) = 0 because both models
are degenerate, we then get

δ(MM , NM) ≤ δ(M0, N0) + C′′′ ∑M

k=1
2k

√
k/n ≤ C′

�m

√
logm

n
.

[§normal.to.mn] 4. From multivariate normal to multinomial (sketch)

The argument for approximating the multinomial by a randomization of the
multivariate normal is very similar to the argument used in Section 3. We start
from the decomposition{sj,k : 1 ≤ j ≤ 2k; k = 0, . . . , M} corresponding to the
multivariate normal under the modelN. Instead of smoothing, we discretize by
means of the function [·] that rounds a real number to its nearest integer. That is,
for each row we define eacht2 j,k := [s2 j,k], then adjust the adjacents2 j −1,k to keep
the sumt2 j −1,k + t2 j .k equal totj,k. For the last row we havetj,M = sj,M + Vj,M with
eachVj,M a sum of at mostM terms of the form± (

sj,k − [sj,k]
)
. The summands

definingVj,M are dependent. Carter used the conservative bound

|tj,M − sj,M | ≤ M for all j ,

which led to a factor of logm in <1>, rather than the factor(logm)1/2 suggested
by the calculations in Section 3.

Remark. I cannot imagine that there is enough dependence between the
fractional parts of thesj,k to make var

(
Vj,M

)
grow significantly faster thanM .

However, it does not seem worthwhile devoting great effort to improve the logm
to a (logm)1/2, when it is not clear whether them/

√
n might not be improved by

a more subtle randomization.

The argument via Lemma<5> proceeds much as before, except that now we
need to bound the distance between the Binomial and the rounded normal. Actually,
the bounds developed in Section 3 still apply, because the rounding operation can
only decrease Hellinger distances.

[§hellinger] 5. Hellinger bound for smoothed Binomial

Fact [1] gives a bound for the Hellinger distance between a smooth Binomial and
its approximating normal,

Hellinger.smoothed <8> H2
(
Bin(n, p) � U, N(np, npq)

) ≤ C

(1 + n)pq
,

whereC is a universal constant.
By choosingC large enough, we ensure that the asserted inequality is trivially

true whennpq is smaller than any fixedσ 2
0 . Thus we need only consider the

case whereσ 2 := npq ≥ σ 2
0 . Write bk for P{Bin(n, p) = k}, and g(x) for the
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9.5 Hellinger bound for smoothed Binomial 9

correspondingN(np, npq) density. Using elementary Calculus and the Stirling
formula, Prohorov (1961) proved that

log
bk

g(k)
= (q − p)

6σ
(x3 − x) + O

(
1 + x4

σ 2

)
wherex := k − np

σ
.

Actually, for our purposes it would suffice to have

weak.prohorov <9> log
bk

g(k)
= R(x) with |R(x)| ≤ π(|x|)

σ for |x| ≤ √
3 logσ ,

for some polynomialπ(·).
For each functionf on the real line, writef̃ for the associated step function,

f̃ (x) :=
∑

k∈Z
{k − 1

2 < x ≤ k + 1
2} f (k).

The left-hand side of<8> is bounded above by

sum.int <10> 2
∑
k∈Z

(
b1/2

k − g(k)1/2
)2

+ 2
∫ ∞

−∞

(
g(x)1/2 − g̃(x)1/2

)2
dx.

For the first term in<10>, split the sum according to whetherk is in the range
A := {k : |k − np| ≤ 3σ

√
logσ } or not. The contribution fromk /∈ A is less than∑

k/∈A (bk + g(k)), which is easily bounded by a multiple ofσ−2 using standard tail
bounds for the Binomial and normal. The contribution fromk ∈ A equals∑

k∈A
g(k)

(
b1/2

k

g(k)1/2
− 1

)2

=
∑

k∈A
g(k)|eR(x)/2 − 1|2 by <9>

≤ C0σ
−2

∑
k∈A

g(k)π(x)2,

for a universal constantC0. The sum is bounded by a multiple ofPπ(|Z|)2, with Z
distributedN(0, 1).

The second term in<10> is disposed of by the following elementary calculation.

step.approx <11> Lemma. Let f be theN(µ, σ 2) density. Then∫ (
f (x)1/2 − f̃ (x)1/2

)2
dx ≤

∫
f ′(t)2

f (t)
dt = 1/(4σ 2).

Proof. Write h for f 1/2. Note thath′(t) = f ′(t)/2h(t). For k ≤ x ≤ k + 1/2 we
have

|h(x) − h(k)| = |
∫ x

k
h′(t) dt| ≤

∫ k+1/2

k
|h′(t)| dt.

There is a similar bound whenk ≥ x ≥ k − 1/2. Thus∫
|h(x) − h̄(x)|2 dx ≤

∑
k∈Z

∫
{k − 1

2 < x ≤ k + 1
2}|h(x) − h(k)|2 dx

≤
∑

k∈Z

(∫
{|t − k| ≤ 1

2}|h′(t)| dt

)2

≤
∫

h′(t)2 dt.

�
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10 Chapter 9: Distance between multinomial and multivariate normal models

[§problems.multinomial] 6. Problems

hell.normal [1] Hellinger distance between normals.

(i) Show that

H2
(
N(µ1, σ

2), N(µ1, σ
2)

) = 2 − 2 exp
(−(µ1 − µ2)

2/8σ 2
)
.

(ii) Show that

H2
(
N(µ, σ 2

1 ), N(µ, σ 2
2 )

) = 2 − 2

√
2σ1σ2

σ 2
1 + σ 2

2

.

(iii) Deduce that

H2
(
N(µ1, σ

2
1 ), N(µ2, σ

2
2 )

)
≤ 2

(
2 − 2 exp

(−(µ1 − µ2)
2/8σ 2

2

)) + 2

(
2 − 2

√
2σ1σ2

σ 2
1 + σ 2

2

)

≤ (µ1 − µ2)
2

2σ 2
2

+ 4|σ 2
1 − σ 2

2 |2
σ 4

2

binom [2] SupposeX has a Bin(n, p) distribution. Show that

P(1 + X)−1 ≤
∫ 1

0
PsX ds ≤ 1

(n + 1)p
.

prohorov [3] Give argument to derive<9> via Stirling.
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9.6 Problems 11

[§indep] 7. Independent normals

Inequality <1> bounds the distance between the multinomial and multivariate
normal modelsM and N, whereN := {Qθ : θ ∈ �} with Qθ := N(nθ, nVθ ).
Under Qθ , the coordinates are dependent variables, whereas the increments of
Nussbaum’s white noise model are independent, with variances that do not depend
on θ .

Carter completed his rederivation of Nussbaum’s result by a sequence of steps
leading fromN to the white noise model. (He also presented analogous arguments
for randomizing the white noise model to approximateN, which I will not discuss.
The ideas are almost the same for both directions.) He comparedN with the white
noise via two intermediate models:

(i) Nindep := {Nθ : θ ∈ �}, whereNθ = ⊗i ≤mN(nθi , nθi ).

(ii) Nstabil := {Ñθ : θ ∈ �}, whereÑθ = ⊗i ≤mN(
√

nθi , 1/4).
Finally, he used the random vectors with distributionÑθ to obtain (by interpolation)
processes with continuous paths, which are close to the white noise processes.

I will discuss the interpolation in Section 9, the comparison ofNindep andNstabil

in Section 8, and the comparison ofN andNindep in the current Section.
Think of eachQθ as a probability measure onX := Rm and eachNθ as

a probability measure onY := Rm. Under Qθ , the sums := ∑
i ≤m xi has a

distribution µ that is degenerate atn. Under Nθ , the sumt := ∑
i ≤m yi has

distribution λ := N(n, n). Moreover, underNθ , the conditional distribution ofy
given t is Qθ,t := N(tθ, nVθ ). Note thatQθ,n = Qθ . The modelsNindep from N

have the same form of conditional distribution given the totals; they differ only in
the distributions of the sums.

We are again in the situation covered by Lemma<5>, with Ps := Qθ,s and
Qt := Qθ,t . Underµ, only the values = n is relevant, but underλ we need to
consider all values oft .

Ps Qt

S Tµ λ

Ls,t

K

X Y

We can takeKx as theN(n, n) distribution for allx. (Of course, only the value
x = n is really needed.) We must choose the randomizationLs,t to control

‖Ln,t N(nθ, nVθ ) − N(tθ, nVθ )‖.
Remark. It might seem that we could takeLn,t as the identity map, since thet
should be close ton with high probability underλ. However, closeness of means
would not suffice, becauseVθ is singular: if t �= n then ‖Qθ,t − Qθ,n‖ = 2. We
need to match the means.

Pollard@Paris2001 9 May 2001



12 Chapter 9: Distance between multinomial and multivariate normal models

ChooseLn,t as the map that corresponds to multiplication of a random vector by
the constantt/n. That is, takeLn,t,x as the point mass att x/n. Then take

ρ(n, t) := ‖N(tθ, (t2/n)Vθ ) − N(tθ, nVθ )‖ = ‖N(0, (t/n)2nVθ ) − N(0, nVθ )‖.
In general, for anym×m covariance matrixW and any constantc, both theN(0, W)

and theN(0, c2W) are image measures of products of independent normals under
the linear mapW1/2. Total variation distance can only be decreased by such a map.
Thus

‖N(0, t̄2nVθ ) − N(0, nVθ )‖2 ≤ ‖N(0, t̄2Im − N(0, Im)‖2 where t̄ := t/n

≤ 4mH2
(
N(0, 1), N(0, t̄2)

)
≤ 8m

(
t̄2 − 1

)2
by Problem [1].

Under Kn, the random variablēt has aN(1, 1/n) distribution. Thus

(µ ⊗ Kρ(s, t))2 ≤ 8mP
(
(1 + N(0, 1/n))2 − 1

)2 ≤ Cm/n,

for some constantC.
It follows that δ(N, Nindep) is bounded by a constant multiple of

√
m/n, which

is smaller than the bound in<1>. A similar argument gives a similar bound
for δ(Nindep, N). When combined with<1>, these bounds give, for some new
constantC,

carter2 <12> �(M, Nindep) ≤ C
m logm√

n
provided sup

θ∈�

maxi θi

mini θi
≤ C� < ∞.

[§sqrt] 8. Variance stabilizing transformations

EachNθ is a product measure,⊗i N(nθi , nθi ), but the variances still depend onθ .
To remove this dependence, Carter (following the lead of Nussbaum) applied the
classical method for variance stabilization.

SupposeX has aN(µ, µ) distribution for a large positiveµ. Let g be a
smooth, increasing function. Then the random variableY = g(X) is approximated
by g(µ) + g′(µ)(X − µ), which has a normal distribution with meang(µ) and
varianceµg′(µ)2. If we chooseg so thatg′(µ) is proportional to 1/

√
µ, then the

variance of the approximation will not depend onµ.
Clearly we should chooseg so thatg(x) = √

x, at least for large positivex.
For example, we could defineg(x) = √

x{x ≥ 1} + h(x){x < 1}, for an arbitrary
smoothh that makesg behave smoothly atx = 1. Of course, the behavior for
small x should be irrelevant—because the important contributions come from a
region nearµ—but it is inconvenient to have to worry about the possibility of taking
the square root of a negative value forX.

If we apply the transformationg to each coordinate, we should obtain a new
distribution close (underNθ ) to Ñθ := ⊗i N(

√
nθi , 1/4). More formally, we have a

mapG : Rm → Rm for which we hope‖GNθ − Ñθ‖ is small for allθ in �.
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9.8 Variance stabilizing transformations 13

Using Taylor expansions, after separating out contributions from the lower tails,
Carter was able to derive a bound onD

(
g(N(µ, µ))‖N(

√
µ, 1/4)

)
. This bound

gives the desired control over total variation distance between the product measures.
And so on. In short, Carter showed that�(Nindep, Nstabil) is also small enough to
be absorbed into the bound from<12>, leading to

carter3 <13> �(M, Nstabil) ≤ C
m logm√

n
provided sup

θ∈�

maxi θi

mini θi
≤ C� < ∞.

for some new constantC.
Carter’s method is satisfactory, but I feel it would be more elegant if we could

appeal to some general result about variance stabilization rather than having to
derive a special case. I outline below what I would like to include in the final
version of these Paris notes. I invite elegant solutions from the audience before the
end of May.

The general problem

Let X be a random variable whose distributionP has densityf with respect to
Lebesgue measure onR. Let g be a smooth, increasing function onR. Suppose
f concentrates most of its mass near a valueµ. The classical delta-method then
asserts that the distribution ofg(X) should be close to the distributionQ of
Z := g(µ) + g′(µ)(X − µ), which has density

q(z) = 1

g′(µ)
f

(
µ + z − g(µ)

g′(µ)

)
with respect to Lebesgue measure.

For our purposes we need the distributions close in the total variation sense.
More precisely, it will be useful to have a good bound for

H2(g(P), Q) = H2(P, g−1(Q)).

The measureg−1(Q), which is the distribution ofg−1(Z), has a density

f0(x) := q (g(x)) g′(x) = g′(x)

g′(µ)
f (κ(x)) whereκ(x) := µ + g(x) − g(µ)

g′(µ)
.

Notice thatκ is an increasing function for whichκ(x) = x + o(|x − µ|) nearµ.
Write ξ(x) for

√
f (x) andγ (x) for

√
g′(x)/g′(µ). Then

hell.delta <14> H2(P, g−1(Q)) =
∫

(ξ(x) − γ (x)ξ (κ(x)))2 dx

Remark. I have the feeling that there should be a neat general bound for the
right-hand side of<14>, perhaps something involving

∫
ξ̇ (x)2 dx. One should be

able to bound crudely the contributions from outside some neighborhoodU of µ.
For the delta-method to work, the derivativeg′(x) must stay close tog′(µ) on the
neighborhood. Perhaps a tractable expression involving(x − µ)g′′(x) could be
found. That suggests we could hope for a final bound involving something like
supx∈U |g′′(x)| and

∫
(x −µ)2 f (x) dx. I would start by splitting<14> into a sum

of two terms, obtained by adding and subtractingξ(x)γ (x) inside the square.
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14 Chapter 9: Distance between multinomial and multivariate normal models

[§interpolate] 9. Intepolation of increments

The problem solved by Nussbaum (1996) involves the asymptotic equivalence
between{Pn

f : f ∈ F} and the the modelWn := {Wn, f : f ∈ F}, whereF

is a family of smooth density functions on [0, 1]. That is, the first experiment
corresponds to samples of sizen from the distributionPf with density f with
respect to Lebesgue measurem on [0, 1], andWn, f denotes the probability measure
on C[0, 1] defined by the white noise process 2

√
nFf (t) + Wt for 0 ≤ t ≤ 1, where

the drift function is defined as

drift.f <15> Ff (t) =
∫ t

0

√
f (x) dx 0 ≤ t ≤ 1.

The process{Wt : 0 ≤ t ≤ 1} is a Brownian motion with continuous sample paths.
started fromW0 ≡ 0.

With Carter’s approach, we discretize the observations fromPf by grouping
them intom disjoint cells, intervals of length 1/m, thereby defining a vector of
counts with a multinomial distribution,M(n, θ), where the vectorθ := (θ1, . . . , θm)

actually depend on the underlying density. That is,

theta.f <16> θi :=
∫

{x ∈ Ji } f (x) dx for i = 1, . . . , m where Ji :=
(

i − 1

n
,

i

n

]
.

Remark. Perhaps I should writeθ f to indicate the dependence onf when
discussing the application of Carter’s general inequality<1> to the Nussbaum
problem.

From <16> we have

theta.approx <17> nθi ≈ (n/m) f (i /m) for i = 1, . . . , m.

The measurẽNθ corresponds to independent observationsN(
√

nθi , 1/4). To
simplify the notation, I will multiply the observations by 2, makingNθ correspond
to independent random variablesXi ∼ N

(
2
√

nθi , 1
)
.

We need a randomization (not depending onf ) that will build a process with a
distribution close toWn, f , starting from{Xi : i = 1, . . . , m}. The obvious method
is to interpolate between the partial sums of theXi ’s, to build a piecewise linear
continuous function with value(X1 + . . . + Xm)/

√
m at i /m, for i = 0, 1, . . . , m.

On each linear segment we then add the independent, rescaled Brownian bridges.

0 i/m 1

(X1+ … +Xi)/√m

m independent rescaled
Brownian bridges

+

In fact, this procedure gives us a white noise with drift. To understand why,
it helps to write Xi = 2

√
nθi + ξi , whereξ1, . . . , ξm are independentN(0, 1)
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9.9 Intepolation of increments 15

variables, and express the Brownian bridges as Gaussian process whose covariances
are determined by the measures

nui <18> νi = uniform distribution onJi , for i = 1, . . . , m.

Notice thatm = ∑
i ≤m νi /m. Take Bi as the centered Gaussian process with

continuous paths and covariances

BB.cov <19> cov(Bi (s), Bi (t)) = νi [0, s ∧ t ] − νi [0, s]νi [0, t ] for 0 ≤ s, t ≤ 1.

The interpolated process is thenX(t) := ∑
i ≤m Xi νi [0, t ]/

√
m and the randomization

is given by the Gaussian process
∑

i ≤n Bi (t)/
√

m. That is, we hope to approximate
Wn, f by the distribution of the process

Zn(t) := m−1/2
∑

i ≤m

((
2
√

nθi + ξi

)
νi [0, t ] + Bi (t)

)
.

The gaussian processBi (t) + ξi νi [0, t ] has covarianceνi [0, s∧ t ]. The standardized
sum of such processes has covariance

m−1
∑

i ≤m
νi [0, s ∧ t ] = m[0, s ∧ t ] = s ∧ t.

That is, the standardized sum is a Brownian motion. The processZn has the same
distribution as

Wt + m−1/2
∑

i ≤m
2
√

nθi νi [0, t ] for 0 ≤ t ≤ 1.

The slope of the drift is a step function, taking values

m−1/22
√

nθi m ≈ 2
√

n f (i /m) for x ∈ Ji

The approximation comes from<17>.
Thus we are left with the task of bounding the total variation distance between

Wn, f̃ andWn, f , where f̃ is a step function that approximatesf . In fact, it is not

hard to find an explicit expression for‖Wn, f̃ − Wn, f ‖ involving theL2(m) distance

between the square roots off and f̃ . By such means, we could calculate a bound
on δ(Nstabil, Wn). However, there is a problem.

The method outlined in the preceding Sections is intended to reproduce
Nussbaum’s result only for the case wheref has a bounded derivative that satisfies
a Lipschitz condition of orderα − 1, for some 1< α ≤ 2. (See the next Chapter for
refinements to cover 1/2 < α ≤ 1.) For such f , the step function approximation is
too crude to establish the desired bound forδ(Nstabil, Wn). Instead, we must use an
interpolation that corresponds to a smoother approximatingf̃ .

As Carter showed, such an improvement is easily achieved. He replaced
the uniform distributions by a family of probability distributions with continuous
densities with respect tom, for which it is still true thatm = ∑

i ≤m νi /m. The
new interpolating functionsνi [0, t ] lead a better approximation forf , by taking
advantage of its assumed smoothness. Very elegant.

Remark. Undoubtedly the improved method corresponds to some simple
wavelet fact. I would be pleased to have the connection explained to me.
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