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[§indep] 7. Independent normals

Inequality <1> bounds the distance between the multinomial and multivariate
normal modelsM and N, whereN := {Qθ : θ ∈ �} with Qθ := N(nθ, nVθ ).
Under Qθ , the coordinates are dependent variables, whereas the increments of
Nussbaum’s white noise model are independent, with variances that do not depend
on θ .

Carter completed his rederivation of Nussbaum’s result by a sequence of steps
leading fromN to the white noise model. (He also presented analogous arguments
for randomizing the white noise model to approximateN, which I will not discuss.
The ideas are almost the same for both directions.) He comparedN with the white
noise via two intermediate models:

(i) Nindep := {Nθ : θ ∈ �}, whereNθ = ⊗i ≤mN(nθi , nθi ).

(ii) Nstabil := {Ñθ : θ ∈ �}, whereÑθ = ⊗i ≤mN(
√

nθi , 1/4).
Finally, he used the random vectors with distributionÑθ to obtain (by interpolation)
processes with continuous paths, which are close to the white noise processes.

I will discuss the interpolation in Section 9, the comparison ofNindep andNstabil

in Section 8, and the comparison ofN andNindep in the current Section.
Think of eachQθ as a probability measure onX := Rm and eachNθ as

a probability measure onY := Rm. Under Qθ , the sums := ∑
i ≤m xi has a

distribution µ that is degenerate atn. Under Nθ , the sumt := ∑
i ≤m yi has

distribution λ := N(n, n). Moreover, underNθ , the conditional distribution ofy
given t is Qθ,t := N(tθ, nVθ ). Note thatQθ,n = Qθ . The modelsNindep from N

have the same form of conditional distribution given the totals; they differ only in
the distributions of the sums.

We are again in the situation covered by Lemma<5>, with Ps := Qθ,s and
Qt := Qθ,t . Underµ, only the values = n is relevant, but underλ we need to
consider all values oft .

Ps Qt

S Tµ λ

Ls,t

K

X Y

We can takeKx as theN(n, n) distribution for allx. (Of course, only the value
x = n is really needed.) We must choose the randomizationLs,t to control

‖Ln,t N(nθ, nVθ ) − N(tθ, nVθ )‖.
Remark. It might seem that we could takeLn,t as the identity map, since thet
should be close ton with high probability underλ. However, closeness of means
would not suffice, becauseVθ is singular: if t �= n then ‖Qθ,t − Qθ,n‖ = 2. We
need to match the means.
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12 Chapter 9: Distance between multinomial and multivariate normal models

ChooseLn,t as the map that corresponds to multiplication of a random vector by
the constantt/n. That is, takeLn,t,x as the point mass att x/n. Then take

ρ(n, t) := ‖N(tθ, (t2/n)Vθ ) − N(tθ, nVθ )‖ = ‖N(0, (t/n)2nVθ ) − N(0, nVθ )‖.
In general, for anym×m covariance matrixW and any constantc, both theN(0, W)

and theN(0, c2W) are image measures of products of independent normals under
the linear mapW1/2. Total variation distance can only be decreased by such a map.
Thus

‖N(0, t̄2nVθ ) − N(0, nVθ )‖2 ≤ ‖N(0, t̄2Im − N(0, Im)‖2 where t̄ := t/n

≤ 4mH2
(
N(0, 1), N(0, t̄2)

)
≤ 8m

(
t̄2 − 1

)2
by Problem [1].

Under Kn, the random variablēt has aN(1, 1/n) distribution. Thus

(µ ⊗ Kρ(s, t))2 ≤ 8mP
(
(1 + N(0, 1/n))2 − 1

)2 ≤ Cm/n,

for some constantC.
It follows that δ(N, Nindep) is bounded by a constant multiple of

√
m/n, which

is smaller than the bound in<1>. A similar argument gives a similar bound
for δ(Nindep, N). When combined with<1>, these bounds give, for some new
constantC,

carter2 <12> �(M, Nindep) ≤ C
m logm√

n
provided sup

θ∈�

maxi θi

mini θi
≤ C� < ∞.

[§sqrt] 8. Variance stabilizing transformations

EachNθ is a product measure,⊗i N(nθi , nθi ), but the variances still depend onθ .
To remove this dependence, Carter (following the lead of Nussbaum) applied the
classical method for variance stabilization.

SupposeX has aN(µ, µ) distribution for a large positiveµ. Let g be a
smooth, increasing function. Then the random variableY = g(X) is approximated
by g(µ) + g′(µ)(X − µ), which has a normal distribution with meang(µ) and
varianceµg′(µ)2. If we chooseg so thatg′(µ) is proportional to 1/

√
µ, then the

variance of the approximation will not depend onµ.
Clearly we should chooseg so thatg(x) = √

x, at least for large positivex.
For example, we could defineg(x) = √

x{x ≥ 1} + h(x){x < 1}, for an arbitrary
smoothh that makesg behave smoothly atx = 1. Of course, the behavior for
small x should be irrelevant—because the important contributions come from a
region nearµ—but it is inconvenient to have to worry about the possibility of taking
the square root of a negative value forX.

If we apply the transformationg to each coordinate, we should obtain a new
distribution close (underNθ ) to Ñθ := ⊗i N(

√
nθi , 1/4). More formally, we have a

mapG : Rm → Rm for which we hope‖GNθ − Ñθ‖ is small for allθ in �.
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9.8 Variance stabilizing transformations 13

Using Taylor expansions, after separating out contributions from the lower tails,
Carter was able to derive a bound onD

(
g(N(µ, µ))‖N(

√
µ, 1/4)

)
. This bound

gives the desired control over total variation distance between the product measures.
And so on. In short, Carter showed that�(Nindep, Nstabil) is also small enough to
be absorbed into the bound from<12>, leading to

carter3 <13> �(M, Nstabil) ≤ C
m logm√

n
provided sup

θ∈�

maxi θi

mini θi
≤ C� < ∞.

for some new constantC.
Carter’s method is satisfactory, but I feel it would be more elegant if we could

appeal to some general result about variance stabilization rather than having to
derive a special case. I outline below what I would like to include in the final
version of these Paris notes. I invite elegant solutions from the audience before the
end of May.

The general problem

Let X be a random variable whose distributionP has densityf with respect to
Lebesgue measure onR. Let g be a smooth, increasing function onR. Suppose
f concentrates most of its mass near a valueµ. The classical delta-method then
asserts that the distribution ofg(X) should be close to the distributionQ of
Z := g(µ) + g′(µ)(X − µ), which has density

q(z) = 1

g′(µ)
f

(
µ + z − g(µ)

g′(µ)

)
with respect to Lebesgue measure.

For our purposes we need the distributions close in the total variation sense.
More precisely, it will be useful to have a good bound for

H2(g(P), Q) = H2(P, g−1(Q)).

The measureg−1(Q), which is the distribution ofg−1(Z), has a density

f0(x) := q (g(x)) g′(x) = g′(x)

g′(µ)
f (κ(x)) whereκ(x) := µ + g(x) − g(µ)

g′(µ)
.

Notice thatκ is an increasing function for whichκ(x) = x + o(|x − µ|) nearµ.
Write ξ(x) for

√
f (x) andγ (x) for

√
g′(x)/g′(µ). Then

hell.delta <14> H2(P, g−1(Q)) =
∫

(ξ(x) − γ (x)ξ (κ(x)))2 dx

Remark. I have the feeling that there should be a neat general bound for the
right-hand side of<14>, perhaps something involving

∫
ξ̇ (x)2 dx. One should be

able to bound crudely the contributions from outside some neighborhoodU of µ.
For the delta-method to work, the derivativeg′(x) must stay close tog′(µ) on the
neighborhood. Perhaps a tractable expression involving(x − µ)g′′(x) could be
found. That suggests we could hope for a final bound involving something like
supx∈U |g′′(x)| and

∫
(x −µ)2 f (x) dx. I would start by splitting<14> into a sum

of two terms, obtained by adding and subtractingξ(x)γ (x) inside the square.
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14 Chapter 9: Distance between multinomial and multivariate normal models

[§interpolate] 9. Intepolation of increments

The problem solved by Nussbaum (1996) involves the asymptotic equivalence
between{Pn

f : f ∈ F} and the the modelWn := {Wn, f : f ∈ F}, whereF

is a family of smooth density functions on [0, 1]. That is, the first experiment
corresponds to samples of sizen from the distributionPf with density f with
respect to Lebesgue measurem on [0, 1], andWn, f denotes the probability measure
on C[0, 1] defined by the white noise process 2

√
nFf (t) + Wt for 0 ≤ t ≤ 1, where

the drift function is defined as

drift.f <15> Ff (t) =
∫ t

0

√
f (x) dx 0 ≤ t ≤ 1.

The process{Wt : 0 ≤ t ≤ 1} is a Brownian motion with continuous sample paths.
started fromW0 ≡ 0.

With Carter’s approach, we discretize the observations fromPf by grouping
them intom disjoint cells, intervals of length 1/m, thereby defining a vector of
counts with a multinomial distribution,M(n, θ), where the vectorθ := (θ1, . . . , θm)

actually depend on the underlying density. That is,

theta.f <16> θi :=
∫

{x ∈ Ji } f (x) dx for i = 1, . . . , m where Ji :=
(

i − 1

n
,

i

n

]
.

Remark. Perhaps I should writeθ f to indicate the dependence onf when
discussing the application of Carter’s general inequality<1> to the Nussbaum
problem.

From <16> we have

theta.approx <17> nθi ≈ (n/m) f (i /m) for i = 1, . . . , m.

The measurẽNθ corresponds to independent observationsN(
√

nθi , 1/4). To
simplify the notation, I will multiply the observations by 2, makingNθ correspond
to independent random variablesXi ∼ N

(
2
√

nθi , 1
)
.

We need a randomization (not depending onf ) that will build a process with a
distribution close toWn, f , starting from{Xi : i = 1, . . . , m}. The obvious method
is to interpolate between the partial sums of theXi ’s, to build a piecewise linear
continuous function with value(X1 + . . . + Xm)/

√
m at i /m, for i = 0, 1, . . . , m.

On each linear segment we then add the independent, rescaled Brownian bridges.

0 i/m 1

(X1+ … +Xi)/√m

m independent rescaled
Brownian bridges

+

In fact, this procedure gives us a white noise with drift. To understand why,
it helps to write Xi = 2

√
nθi + ξi , whereξ1, . . . , ξm are independentN(0, 1)
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9.9 Intepolation of increments 15

variables, and express the Brownian bridges as Gaussian process whose covariances
are determined by the measures

nui <18> νi = uniform distribution onJi , for i = 1, . . . , m.

Notice thatm = ∑
i ≤m νi /m. Take Bi as the centered Gaussian process with

continuous paths and covariances

BB.cov <19> cov(Bi (s), Bi (t)) = νi [0, s ∧ t ] − νi [0, s]νi [0, t ] for 0 ≤ s, t ≤ 1.

The interpolated process is thenX(t) := ∑
i ≤m Xi νi [0, t ]/

√
m and the randomization

is given by the Gaussian process
∑

i ≤n Bi (t)/
√

m. That is, we hope to approximate
Wn, f by the distribution of the process

Zn(t) := m−1/2
∑

i ≤m

((
2
√

nθi + ξi

)
νi [0, t ] + Bi (t)

)
.

The gaussian processBi (t) + ξi νi [0, t ] has covarianceνi [0, s∧ t ]. The standardized
sum of such processes has covariance

m−1
∑

i ≤m
νi [0, s ∧ t ] = m[0, s ∧ t ] = s ∧ t.

That is, the standardized sum is a Brownian motion. The processZn has the same
distribution as

Wt + m−1/2
∑

i ≤m
2
√

nθi νi [0, t ] for 0 ≤ t ≤ 1.

The slope of the drift is a step function, taking values

m−1/22
√

nθi m ≈ 2
√

n f (i /m) for x ∈ Ji

The approximation comes from<17>.
Thus we are left with the task of bounding the total variation distance between

Wn, f̃ andWn, f , where f̃ is a step function that approximatesf . In fact, it is not

hard to find an explicit expression for‖Wn, f̃ − Wn, f ‖ involving theL2(m) distance

between the square roots off and f̃ . By such means, we could calculate a bound
on δ(Nstabil, Wn). However, there is a problem.

The method outlined in the preceding Sections is intended to reproduce
Nussbaum’s result only for the case wheref has a bounded derivative that satisfies
a Lipschitz condition of orderα − 1, for some 1< α ≤ 2. (See the next Chapter for
refinements to cover 1/2 < α ≤ 1.) For such f , the step function approximation is
too crude to establish the desired bound forδ(Nstabil, Wn). Instead, we must use an
interpolation that corresponds to a smoother approximatingf̃ .

As Carter showed, such an improvement is easily achieved. He replaced
the uniform distributions by a family of probability distributions with continuous
densities with respect tom, for which it is still true thatm = ∑

i ≤m νi /m. The
new interpolating functionsνi [0, t ] lead a better approximation forf , by taking
advantage of its assumed smoothness. Very elegant.

Remark. Undoubtedly the improved method corresponds to some simple
wavelet fact. I would be pleased to have the connection explained to me.
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