[8indep]

7.

9.6 Problems 11

Independent normals

Inequality <1> bounds the distance between the multinomial and multivariate
normal modelsM and N, whereN = {Qy : 6 € O} with Qy := N(nd, n\p).

Under Qy, the coordinates are dependent variables, whereas the increments of
Nussbaum’s white noise model are independent, with variances that do not depend
ono.

Carter completed his rederivation of Nussbaum'’s result by a sequence of steps
leading fromXN to the white noise model. (He also presented analogous arguments
for randomizing the white noise model to approximafewhich | will not discuss.

The ideas are almost the same for both directions.) He compéneidh the white
noise via two intermediate models:

(I) Nindep = {N@ 10 e @}, WherENg = ®i§mN(n9i , o).

(i) Natani := {Np : 0 € ©}, whereN; = ® <N (/N 1/4).
Finally, he used the random vectors with distributidsnto obtain (by interpolation)
processes with continuous paths, which are close to the white noise processes.

I will discuss the interpolation in Section 9, the comparisoMN@fiep and Ntapi
in Section 8, and the comparison NfandNingep In the current Section.

Think of eachQy as a probability measure dki := R™ and eachN, as
a probability measure of§ := R™. UnderQy, the sums := >, _ X has a
distribution i that is degenerate at. Under Ny, the sumt = Z<m yi has
distribution » := N(n, n). Moreover, undelNy, the conditional distribution of/
givent is Qg := N(t6,nVy). Note thatQy, = Q. The modelsNiygep from N
have the same form of conditional distribution given the totals; they differ only in
the distributions of the sums.

We are again in the situation covered by Lemra>, with Ps := Qy s and
Qt = Qpt. Underp, only the values = n is relevant, but under we need to
consider all values of.

Ps Q
Lst

X Y
k| 8 KT T A

We can takeK, as theN(n, n) distribution for allx. (Of course, only the value
X = n is really needed.) We must choose the randomizatignto control

ILneN(O, nVy) — N(t0, nVy) .

REMARK. It might seem that we could take,; as the identity map, since the
should be close ta with high probability unden.. However, closeness of means
would not suffice, becaus¥, is singular: ift # n then |Qg: — Qunll = 2. We
need to match the means.
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ChooseL,,; as the map that corresponds to multiplication of a random vector by
the constant/n. That is, takeLx as the point mass ak/n. Then take
p(n,t) == N6, (t?/n)Vy) — N(t8, nVp) |l = [IN(O, (t/n)*nVy) — N(O, n\j)].

In general, for anyn x m covariance matrixV and any constard, both theN (0, W)

and theN(0, c?W) are image measures of products of independent normals under
the linear mapVY/2. Total variation distance can only be decreased by such a map.
Thus

IN(O, ©2nVy) — N(O, nVy) |12 < [IN(O, T2l — N(O, Im)[>  wheref :=t/n
<4mH? (N0, 1), N(0, %)
<8m(f2—1)°> by Problem [1]
Under K,,, the random variablé has aN (1, 1/n) distribution. Thus
(1 ® Kp(s, 1))2 < 8mP ((1+ N(0, 1/m)? — 1)* < Cry/n,

for some constant.

It follows that § (N, Ningep) is bounded by a constant multiple gfm/n, which
is smaller than the bound ir1>. A similar argument gives a similar bound
for § Ningep N). When combined with<1>, these bounds give, for some new
constantC,

mlogm

. max 0,
provided suped % < Cy < oo.

carter2 <12> A(M, Nindep) < C
9o MIN; 6;

&g 8. Variance stabilizing transformations

EachNjy is a product measure®; N (né;, nd,), but the variances still depend &n
To remove this dependence, Carter (following the lead of Nussbaum) applied the
classical method for variance stabilization.

SupposeX has aN(u, n) distribution for a large positive.. Let g be a
smooth, increasing function. Then the random variable g(X) is approximated
by g(u) + g’ (uw)(X — w), which has a normal distribution with meay{u) and
varianceng’ (n)?. If we chooseg so thatg' (i) is proportional to 1./, then the
variance of the approximation will not depend an

Clearly we should choosg so thatg(x) = /X, at least for large positive.
For example, we could defing(x) = /X{x > 1} + h(x){x < 1}, for an arbitrary
smoothh that makesg behave smoothly axt = 1. Of course, the behavior for
small x should be irrelevant—because the important contributions come from a
region neau—nbut it is inconvenient to have to worry about the possibility of taking
the square root of a negative value ¥r

If we apply the transformatiog to each coordinate, we should obtain a new
distribution close (undely) to Ny := ®; N(+/n6;, 1/4). More formally, we have a
mapG : R™ — R™ for which we hope| GNy — Ny || is small for all§ in ©.
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9.8 Variance stabilizing transformations 13

Using Taylor expansions, after separating out contributions from the lower tails,
Carter was able to derive a bound m(g(N(u, ) IN /e, 1/4)). This bound
gives the desired control over total variation distance between the product measures.
And so on. In short, Carter showed th&tNindep, Nstani) iS also small enough to
be absorbed into the bound froru2>, leading to

mlogm max 6,
J provided SUp_d L < Cq < oo,

A, Nstapi) < C
(M stale = gee MIN; 6;

for some new constar@.

Carter's method is satisfactory, but | feel it would be more elegant if we could
appeal to some general result about variance stabilization rather than having to
derive a special case. | outline below what | would like to include in the final
version of these Paris notes. | invite elegant solutions from the audience before the
end of May.

The general problem

Let X be a random variable whose distributithhas densityf with respect to
Lebesgue measure dh. Let g be a smooth, increasing function & Suppose

f concentrates most of its mass near a valueThe classical delta-method then
asserts that the distribution @f(X) should be close to the distributio® of

Z =g + g W)X — w), which has density

1 z—g(n)
f £ 9
g0 (“ W )

with respect to Lebesgue measure.
For our purposes we need the distributions close in the total variation sense.
More precisely, it will be useful to have a good bound for

H?(g(P). Q) = H*(P, g~ *(Q)).
The measurg1(Q), which is the distribution ofy~1(Z), has a density

g’/((l)z Fe())  wherex(x) == p + %

Notice thatk is an increasing function for which(x) = x + o(|x — u«|) nearu.

Write £(x) for /T (x) andy (x) for \/g'(X)/g’(i). Then
H2(P,g™(Q) = / (EX) — y (0% ((x)))? dx

a@ =

fo(X) :=q(g(x) g'(x) =

REMARK. | have the feeling that there should be a neat general bound for the
right-hand side of14>, perhaps something involvingé (x)2dx. One should be
able to bound crudely the contributions from outside some neighborbloofl .

For the delta-method to work, the derivatiggx) must stay close tg'(i) on the
neighborhood. Perhaps a tractable expression involging 1)g”(x) could be
found. That suggests we could hope for a final bound involving something like
sup.y 19" (X)| andf(x—p,)zf(x) dx. | would start by splitting<14> into a sum

of two terms, obtained by adding and subtracti(g)y (x) inside the square.
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Intepolation of increments

The problem solved by Nussbaum (1996) involves the asymptotic equivalence
between{P{ : f € F} and the the modeW, = {W,¢ : f € F}, whereF

is a family of smooth density functions on,[0]. That is, the first experiment
corresponds to samples of simefrom the distributionP; with density f with
respect to Lebesgue measuteon [0, 1], andW, ¢ denotes the probability measure
on CJ0, 1] defined by the white noise procesg/2F; (t) + W, for 0 <t < 1, where
the drift function is defined as

t
Ff(t)=/\/f(X)dX O<t<l
0

The procesgW; : 0 <t < 1} is a Brownian motion with continuous sample paths.
started fromW, = O.

With Carter's approach, we discretize the observations fRynby grouping
them intom disjoint cells, intervals of length /In, thereby defining a vector of
counts with a multinomial distributiody{(n, 8), where the vectof := (04, ..., m)
actually depend on the underlying density. That is,

6; :=/{eri}f(x)dx fori=1,....m where J; ;= (%Iﬁ]

REMARK. Perhaps | should writé; to indicate the dependence dnwhen
discussing the application of Carter’'s general inequatity> to the Nussbaum
problem.

From <16> we have
ng;, ~ (n/m) f{i/m) fori=1,...,m.

The measure, corresponds to independent observatidhe/ng;, 1/4). To
simplify the notation, | will multiply the observations by 2, makiiyg correspond
to independent random variablés ~ N (2,/n6;, 1).
We need a randomization (not depending fgnthat will build a process with a
distribution close toW, ¢, starting from{X; :i = 1,..., m}. The obvious method
is to interpolate between the partial sums of #es, to build a piecewise linear
continuous function with valuéX; + ...+ Xy)//mati/m, fori =0,1,..., m.
On each linear segment we then add the independent, rescaled Brownian bridges.

X1+ ... +X)Nm >

0 i/m 1

+

m independent rescaled
Brownian bridges

In fact, this procedure gives us a white noise with drift. To understand why,
it helps to write X; = 2/n6; + &, whereé&, ..., &, are independeni (0, 1)
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9.9 Intepolation of increments 15

variables, and express the Brownian bridges as Gaussian process whose covariances
are determined by the measures

nui <18> v; = uniform distribution onJ;, fori =1,..., m.

Notice thatm = Zism vi/m. Take B; as the centered Gaussian process with
continuous paths and covariances

BB.cov <19> cov(Bi(s), Bi(t)) = 1[0, s At] — ][O0, s]y [0, t] for0<st<1.

The interpolated process is that) := > _, Xivi[0, t]/+/m and the randomization
is given by the Gaussian process _, Bi(t)//m. That is, we hope to approximate
Wh,t by the distribution of the process

Zo() =m 2y ((2\/n7i n si) 1i[0,] + B (t)) .

The gaussian proce$ (t) + & v [0, t] has covariance; [0, s A t]. The standardized
sum of such processes has covariance

mflzkmvi[O,S/\t] =m[0,SAt] =SAL.

That is, the standardized sum is a Brownian motion. The proZgdsas the same
distribution as

W, + m~Y/2 Zi<m2 nov[0,t] for0O<t<1

The slope of the drift is a step function, taking values

mY22,/ngm~ 2,/nf(i/m)  for x € J

The approximation comes from17>.

Thus we are left with the task of bounding the total variation distance between
W, #andWh ¢, where f is a step function that approximatds In fact, it is not
hard to find an explicit expression fan"f"—Wn’f | involving the £2(m) distance

between the square roots éfand f. By such means, we could calculate a bound
on 8 Nstanis Wn). However, there is a problem.

The method outlined in the preceding Sections is intended to reproduce
Nussbaum’s result only for the case whdréhas a bounded derivative that satisfies
a Lipschitz condition of ordest — 1, for some 1< o < 2. (See the next Chapter for
refinements to cover/2 < a < 1.) For suchf, the step function approximation is
too crude to establish the desired bound §Nsapi, Wh). IQstead, we must use an
interpolation that corresponds to a smoother approximating

As Carter showed, such an improvement is easily achieved. He replaced
the uniform distributions by a family of probability distributions with continuous
densities with respect te, for which it is still true thatm = ", __ vi/m. The
new interpolating functions;[0, t] lead a better approximation fof, by taking
advantage of its assumed smoothness. Very elegant.

REMARK. Undoubtedly the improved method corresponds to some simple
wavelet fact. | would be pleased to have the connection explained to me.
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