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Chapter 0
Notation and Preview

WebYale = http://www.stat.yale.edu/~pollard
WebParis = http://www.ihp.jussieu.fr/"pollard
UGMTP = User's Guide to Measure-Theoretic Probability

Let X be a set equipped with a sigma-field A, and Y be a set equipped with
a sigmafield B. Write M*(X, A) for the set of all .A-measurable functions on X
taking values in [0, oo], and L™ (X, A) for the set of al nonnegative, finite measures
on A.

For a measure .« on A and a measurable function f (from M™* (X, .A), or
u-integrable) write uf or u* f (x) for [ f(x) u(dx). ldentify setswith their indicator
functions [UGMTP 81.4]. Identify integrals with increasing “linear functionals’ on
M*(X, A) with the Monotone Convergence property [UGMTP 8§2.3].

If T isan A\B-measurable map from X to Y, and n is a measure on A, the
image measure T is defined on B by (Tu)(B) := u{x : T(x) € B} for each B € B.
Equivaently,

(Tw?g(y) == p*g(T(x)) for g e M*(Y, B).

The £ distance between two finite measures, . and v, on A is defined as

e —vil1 = supf<q [ —vf,

the supremum running over all measurable functions f that are bounded in absolute
value by 1. If both . and v are probability measures, then

3l = vlla = SUpacy InA — VA = supy_ g [uf —vf],

a quantity that is often called the total variation distance between the measures
[UGMTP 83.3].

Markov kernels

A Markov kernel, or randomization, from (X, A) to (Y, B) is afamily of probability
measures K := {K, : x € X} such that x — KB is .A-measurable, for each B € B.
For each f in M*(X x Y, A ® B), the function x = Ky f(x,y) := [ f(x,y) Kx(dy)
is A-measurable. If 1 is a measure on A then a measure u ® K can be defined
on A® B by

(@ K) f = (K{f(x,y).
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It has marginals u and A, with A the measure on B defined by
Ag(y) = p* (Kygy))  for ge M*(Y,B).
I will also write Kp or u*Ky for ». The map u — Ku from L (X, A) to LT (Y, B)

is “linear”, and it takes probability measures to probability measures.
If u is aprobability measure, the pair (x, y) generated by

X~ i and yIx ~ Ky
has joint distribution © ® K. The y has marginal distribution ©*Kj.

Decision theory

Call a family of probability measures P := {P, : 6 € ©}, dl defined on the same
sigmafield A on a sample space X, a statistical model (or statistical experiment).
Let T be some set, equipped at least with a sigma-field €. A decision procedure is
ameasurable map T from X to 7. (If 7= ©, then T is usualy called an estimator
for the parameter 0.) A randomized procedure is defined as a Markov kernel
from (X, .A) to (T, @).

A map ¢ from T x © into [—oo, 0] is called a loss function. Typically | will
assume ¢ is either nonnegative or bounded, so that there are no problems with the
next definition. The risk function for a procedure T is defined as

R(T,6) ;=P (T(x),0) = (TP e(t, 0) for 6 € G.
The risk function for a randomized procedure 7 is defined as
R(t, 0) 1= PXtil (1, 0) = (zPy)"L(t, 0) for 6 € ©.

Preview of Le Cam distance

Let P :={P :0 € O} and Q := {Qy : 6 € ®} be two statistical models, indexed
by the same parameter set ®. Suppose each P, is defined on (X, A), and each Qg
is defined on (Y, B). Le Cam defined the quantity §(P, Q) to be the smallest ¢ for
which there is a randomization K (which must not depend on 0) from (X, .A) to
(Y, B) for which

3 SUp, |Qs — KPgllz < €

REMARK. The factor of 1/2 makes the definition fit well with other plausible
ways to define §, in a sense that | will explain later. Actually Le Cam did not
restrict his randomizations to be Markov kernels, but allowed what | will be calling
generalized randomizations, that is, linear maps from L+ (X, .A) to L.*(Y, B) that
take probability measures onto probability measures.

If € :=8(P, Q) is smal, then we can ailmost reproduce the 9 model from the P
model by randomization:

if x ~Py and yIx ~ Ky
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then the distribution of y is close to @, (in the £, or total variation, sense). For
measurable functions g on Y with 0 < g < 1, we have

1Q)a(y) —PsKYg(y)l <e  for every 6.

Now suppose 7 is a randomized procedure defined for the Q model. Then we
can define a randomized procedure p for P by a two-step construction:

for x ~ Py, generate y|x ~ Ky, then generatet ~ .
That is, px is the probability measure tKy on C:
pxh(t) = K)ziht)  for h e M™(T, €).

and
Pypch(t) = PiKYz,ht)  for every 6.

If 0 < h < 1 then the function g(y) := zyh(t) aso takes values in [0, 1], and so
the right-hand side lies within e of Q)g(y) = Q)zjh(t). In particular, if ¢ is a loss
function taking values in the range [0, 1], then

IP5 oy L(t, 6) — Qiryb(t,0)] <€ for every 6.

That is, |R(p, 0) — R(z, 0)| < ¢ for every 0.

In effect, the randomization K has carried the problem of evaluating randomized
procedures for Q back to an analogous problem for P, with less than an ¢ of error
if the loss function takes values in [0, 1].

If we aso had §(Q, P) small, then there would be a similar transfer of problems
for P back to problems for Q.

If the quantity A(P, Q) := max (§(P, Q), §(Q, P)) is close to zero, then there
is an approximate correspondence (via randomizations) between solutions to
decision theoretic problems for P and decision theoretic problems for Q. Such a
correspondence is very helpful if one of the experiments is much easier to work
with than the other.
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