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Chapter 0

Notation and Preview

WebYale = http://www.stat.yale.edu/˜pollard
WebParis = http://www.ihp.jussieu.fr/˜pollard
UGMTP = User’s Guide to Measure-Theoretic Probability

Let X be a set equipped with a sigma-field A, and Y be a set equipped with
a sigma-field B. Write M+(X, A) for the set of all A-measurable functions on X

taking values in [0, ∞], and L+(X, A) for the set of all nonnegative, finite measures
on A.

For a measure µ on A and a measurable function f (from M+(X, A), or
µ-integrable) write µ f or µx f (x) for

∫
f (x) µ(dx). Identify sets with their indicator

functions [UGMTP §1.4]. Identify integrals with increasing “linear functionals” on
M+(X, A) with the Monotone Convergence property [UGMTP §2.3].

If T is an A\B-measurable map from X to Y, and µ is a measure on A, the
image measure T µ is defined on B by (T µ)(B) := µ{x : T (x) ∈ B} for each B ∈ B.
Equivalently,

(T µ)y g(y) := µx g(T (x)) for g ∈ M+(Y, B).

The L1 distance between two finite measures, µ and ν, on A is defined as

‖µ − ν‖1 := sup| f |≤1 |µ f − ν f |,
the supremum running over all measurable functions f that are bounded in absolute
value by 1. If both µ and ν are probability measures, then

1
2‖µ − ν‖1 = supA∈A |µA − ν A| = sup0≤ f ≤1 |µ f − ν f |,

a quantity that is often called the total variation distance between the measures
[UGMTP §3.3].

Markov kernels

A Markov kernel, or randomization, from (X, A) to (Y, B) is a family of probability
measures K := {Kx : x ∈ X} such that x → Kx B is A-measurable, for each B ∈ B.
For each f in M+(X × Y, A ⊗ B), the function x → K y

x f (x, y) := ∫
f (x, y) Kx (dy)

is A-measurable. If µ is a measure on A then a measure µ ⊗ K can be defined
on A ⊗ B by

(µ ⊗ K ) f := µx
(
K y

x f (x, y)
)
.
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It has marginals µ and λ, with λ the measure on B defined by

λy g(y) := µx
(
K y

x g(y)
)

for g ∈ M+(Y, B).

I will also write Kµ or µx Kx for λ. The map µ → Kµ from L+(X, A) to L+(Y, B)

is “linear”, and it takes probability measures to probability measures.
If µ is a probability measure, the pair (x, y) generated by

x ∼ µ and y|x ∼ Kx

has joint distribution µ ⊗ K . The y has marginal distribution µx Kx .

Decision theory

Call a family of probability measures P := {Pθ : θ ∈ 
}, all defined on the same
sigma-field A on a sample space X, a statistical model (or statistical experiment).
Let T be some set, equipped at least with a sigma-field C. A decision procedure is
a measurable map T from X to T. (If T = 
, then T is usually called an estimator
for the parameter θ .) A randomized procedure is defined as a Markov kernel τ

from (X, A) to (T, C).
A map � from T × 
 into [−∞, ∞] is called a loss function. Typically I will

assume � is either nonnegative or bounded, so that there are no problems with the
next definition. The risk function for a procedure T is defined as

R(T, θ) := Px
θ � (T (x), θ) = (T Pθ )

t�(t, θ) for θ ∈ 
.

The risk function for a randomized procedure τ is defined as

R(τ, θ) := Px
θ τ

t
x� (t, θ) = (τPθ )

t�(t, θ) for θ ∈ 
.

1. Preview of Le Cam distance

Let P := {Pθ : θ ∈ 
} and Q := {Qθ : θ ∈ 
} be two statistical models, indexed
by the same parameter set 
. Suppose each Pθ is defined on (X, A), and each Qθ

is defined on (Y, B). Le Cam defined the quantity δ(P, Q) to be the smallest ε for
which there is a randomization K (which must not depend on θ) from (X, A) to
(Y, B) for which

1
2 supθ ‖Qθ − KPθ‖1 ≤ ε

Remark. The factor of 1/2 makes the definition fit well with other plausible
ways to define δ, in a sense that I will explain later. Actually Le Cam did not
restrict his randomizations to be Markov kernels, but allowed what I will be calling
generalized randomizations, that is, linear maps from L+(X,A) to L+(Y,B) that
take probability measures onto probability measures.

If ε := δ(P, Q) is small, then we can almost reproduce the Q model from the P

model by randomization:

if x ∼ Pθ and y|x ∼ Kx
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then the distribution of y is close to Qθ (in the L1, or total variation, sense). For
measurable functions g on Y with 0 ≤ g ≤ 1, we have

|Qy
θ g(y) − Px

θ K y
x g(y)| ≤ ε for every θ .

Now suppose τ is a randomized procedure defined for the Q model. Then we
can define a randomized procedure ρ for P by a two-step construction:

for x ∼ Pθ , generate y|x ∼ Kx , then generate t ∼ τy .

That is, ρx is the probability measure τ Kx on C:

ρ t
x h(t) = K y

x τ t
yh(t) for h ∈ M+(T, C).

and
Px

θ ρ
t
x h(t) = Px

θ K y
x τ t

yh(t) for every θ .

If 0 ≤ h ≤ 1 then the function g(y) := τ t
yh(t) also takes values in [0, 1], and so

the right-hand side lies within ε of Q
y
θ g(y) = Q

y
θ τ

t
yh(t). In particular, if � is a loss

function taking values in the range [0, 1], then

|Px
θ ρ

t
x�(t, θ) − Q

y
θ τ

t
y�(t, θ)| ≤ ε for every θ .

That is, |R(ρ, θ) − R(τ, θ)| ≤ ε for every θ .
In effect, the randomization K has carried the problem of evaluating randomized

procedures for Q back to an analogous problem for P, with less than an ε of error
if the loss function takes values in [0, 1].

If we also had δ(Q, P) small, then there would be a similar transfer of problems
for P back to problems for Q.

If the quantity �(P, Q) := max (δ(P, Q), δ(Q, P)) is close to zero, then there
is an approximate correspondence (via randomizations) between solutions to
decision theoretic problems for P and decision theoretic problems for Q. Such a
correspondence is very helpful if one of the experiments is much easier to work
with than the other.
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