Chapter 0 Notation and Preview

WebYale = http://www.stat.yale.edu/~pollard WebParis = http://www.ihp.jussieu.fr/~pollard UGMTP = User's Guide to Measure-Theoretic Probability

Let \mathfrak{X} be a set equipped with a sigma-field \mathcal{A} , and \mathcal{Y} be a set equipped with a sigma-field \mathcal{B} . Write $\mathcal{M}^+(\mathfrak{X}, \mathcal{A})$ for the set of all \mathcal{A} -measurable functions on \mathfrak{X} taking values in $[0, \infty]$, and $\mathbb{L}^+(\mathfrak{X}, \mathcal{A})$ for the set of all nonnegative, finite measures on \mathcal{A} .

For a measure μ on \mathcal{A} and a measurable function f (from $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$, or μ -integrable) write μf or $\mu^x f(x)$ for $\int f(x) \mu(dx)$. Identify sets with their indicator functions [UGMTP §1.4]. Identify integrals with increasing "linear functionals" on $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$ with the Monotone Convergence property [UGMTP §2.3].

If *T* is an $A \setminus B$ -measurable map from X to \mathcal{Y} , and μ is a measure on A, the *image measure* $T\mu$ is defined on \mathcal{B} by $(T\mu)(B) := \mu\{x : T(x) \in B\}$ for each $B \in \mathcal{B}$. Equivalently,

$$(T\mu)^y g(y) := \mu^x g(T(x))$$
 for $g \in \mathcal{M}^+(\mathcal{Y}, \mathcal{B})$.

The \mathcal{L}^1 distance between two finite measures, μ and ν , on \mathcal{A} is defined as

$$\|\mu - \nu\|_1 := \sup_{|f| \le 1} |\mu f - \nu f|,$$

the supremum running over all measurable functions f that are bounded in absolute value by 1. If both μ and ν are probability measures, then

$$\frac{1}{2} \|\mu - \nu\|_1 = \sup_{A \in \mathcal{A}} |\mu A - \nu A| = \sup_{0 < f < 1} |\mu f - \nu f|,$$

a quantity that is often called the total variation distance between the measures [UGMTP §3.3].

Markov kernels

A Markov kernel, or randomization, from $(\mathcal{X}, \mathcal{A})$ to $(\mathcal{Y}, \mathcal{B})$ is a family of probability measures $K := \{K_x : x \in \mathcal{X}\}$ such that $x \mapsto K_x B$ is \mathcal{A} -measurable, for each $B \in \mathcal{B}$. For each f in $\mathcal{M}^+(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B})$, the function $x \mapsto K_x^{\mathcal{Y}} f(x, y) := \int f(x, y) K_x(dy)$ is \mathcal{A} -measurable. If μ is a measure on \mathcal{A} then a measure $\mu \otimes K$ can be defined on $\mathcal{A} \otimes \mathcal{B}$ by

$$(\mu \otimes K) f := \mu^x \left(K_x^y f(x, y) \right).$$

It has marginals μ and λ , with λ the measure on \mathcal{B} defined by

$$\lambda^{y}g(y) := \mu^{x} \left(K_{x}^{y}g(y) \right) \quad \text{for } g \in \mathcal{M}^{+}(\mathcal{Y}, \mathcal{B}).$$

I will also write $K\mu$ or $\mu^x K_x$ for λ . The map $\mu \mapsto K\mu$ from $\mathbb{L}^+(\mathfrak{X}, \mathcal{A})$ to $\mathbb{L}^+(\mathfrak{Y}, \mathcal{B})$ is "linear", and it takes probability measures to probability measures.

If μ is a probability measure, the pair (x, y) generated by

 $x \sim \mu$ and $y|x \sim K_x$

has joint distribution $\mu \otimes K$. The *y* has marginal distribution $\mu^x K_x$.

Decision theory

2

Call a family of probability measures $\mathcal{P} := \{\mathbb{P}_{\theta} : \theta \in \Theta\}$, all defined on the same sigma-field \mathcal{A} on a sample space \mathcal{X} , a *statistical model* (or statistical experiment). Let \mathcal{T} be some set, equipped at least with a sigma-field \mathcal{C} . A *decision procedure* is a measurable map T from \mathcal{X} to \mathcal{T} . (If $\mathcal{T} = \Theta$, then T is usually called an estimator for the parameter θ .) A randomized procedure is defined as a Markov kernel τ from (\mathcal{X}, \mathcal{A}) to (\mathcal{T}, \mathcal{C}).

A map ℓ from $\mathcal{T} \times \Theta$ into $[-\infty, \infty]$ is called a *loss function*. Typically I will assume ℓ is either nonnegative or bounded, so that there are no problems with the next definition. The risk function for a procedure *T* is defined as

 $R(T,\theta) := \mathbb{P}^{x}_{\theta} \ell(T(x),\theta) = (T\mathbb{P}_{\theta})^{t} \ell(t,\theta) \quad \text{for } \theta \in \Theta.$

The risk function for a randomized procedure τ is defined as

$$R(\tau,\theta) := \mathbb{P}_{\theta}^{x} \tau_{r}^{t} \ell(t,\theta) = (\tau \mathbb{P}_{\theta})^{t} \ell(t,\theta) \quad \text{for } \theta \in \Theta.$$

1. Preview of Le Cam distance

Let $\mathcal{P} := {\mathbb{P}_{\theta} : \theta \in \Theta}$ and $\mathcal{Q} := {\mathbb{Q}_{\theta} : \theta \in \Theta}$ be two statistical models, indexed by the same parameter set Θ . Suppose each \mathbb{P}_{θ} is defined on $(\mathcal{X}, \mathcal{A})$, and each \mathbb{Q}_{θ} is defined on $(\mathcal{Y}, \mathcal{B})$. Le Cam defined the quantity $\delta(\mathcal{P}, \mathcal{Q})$ to be the smallest ϵ for which there is a randomization *K* (which must not depend on θ) from $(\mathcal{X}, \mathcal{A})$ to $(\mathcal{Y}, \mathcal{B})$ for which

$$\frac{1}{2}\sup_{\theta} \|\mathbb{Q}_{\theta} - K\mathbb{P}_{\theta}\|_{1} \leq \epsilon$$

REMARK. The factor of 1/2 makes the definition fit well with other plausible ways to define δ , in a sense that I will explain later. Actually Le Cam did not restrict his randomizations to be Markov kernels, but allowed what I will be calling *generalized randomizations*, that is, linear maps from $\mathbb{L}^+(\mathcal{X}, \mathcal{A})$ to $\mathbb{L}^+(\mathcal{Y}, \mathcal{B})$ that take probability measures onto probability measures.

If $\epsilon := \delta(\mathbb{P}, \Omega)$ is small, then we can almost reproduce the Ω model from the \mathcal{P} model by randomization:

if
$$x \sim \mathbb{P}_{\theta}$$
 and $y|x \sim K_x$

0.1 Preview of Le Cam distance

then the distribution of y is close to \mathbb{Q}_{θ} (in the \mathcal{L}^1 , or total variation, sense). For measurable functions g on \mathcal{Y} with $0 \le g \le 1$, we have

 $|\mathbb{Q}^{y}_{\theta}g(y) - \mathbb{P}^{x}_{\theta}K^{y}_{x}g(y)| \leq \epsilon \quad \text{for every } \theta.$

Now suppose τ is a randomized procedure defined for the Ω model. Then we can define a randomized procedure ρ for \mathcal{P} by a two-step construction:

for $x \sim \mathbb{P}_{\theta}$, generate $y|x \sim K_x$, then generate $t \sim \tau_y$.

That is, ρ_x is the probability measure τK_x on \mathbb{C} :

$$\rho_x^t h(t) = K_x^y \tau_y^t h(t) \qquad \text{for } h \in \mathbb{M}^+(\mathcal{T}, \mathcal{C}).$$

and

$$\mathbb{P}_{\theta}^{x} \rho_{x}^{t} h(t) = \mathbb{P}_{\theta}^{x} K_{x}^{y} \tau_{y}^{t} h(t) \quad \text{for every } \theta.$$

If $0 \le h \le 1$ then the function $g(y) := \tau_y^t h(t)$ also takes values in [0, 1], and so the right-hand side lies within ϵ of $\mathbb{Q}_{\theta}^y g(y) = \mathbb{Q}_{\theta}^y \tau_y^t h(t)$. In particular, if ℓ is a loss function taking values in the range [0, 1], then

$$|\mathbb{P}_{\theta}^{x}\rho_{x}^{t}\ell(t,\theta) - \mathbb{Q}_{\theta}^{y}\tau_{y}^{t}\ell(t,\theta)| \leq \epsilon \quad \text{for every } \theta$$

That is, $|R(\rho, \theta) - R(\tau, \theta)| \le \epsilon$ for every θ .

In effect, the randomization *K* has carried the problem of evaluating randomized procedures for Ω back to an analogous problem for \mathcal{P} , with less than an ϵ of error if the loss function takes values in [0, 1].

If we also had $\delta(\Omega, \mathcal{P})$ small, then there would be a similar transfer of problems for \mathcal{P} back to problems for Ω .

If the quantity $\Delta(\mathcal{P}, \Omega) := \max(\delta(\mathcal{P}, \Omega), \delta(\Omega, \mathcal{P}))$ is close to zero, then there is an approximate correspondence (via randomizations) between solutions to decision theoretic problems for \mathcal{P} and decision theoretic problems for Ω . Such a correspondence is very helpful if one of the experiments is much easier to work with than the other.

3