Chapter 0

Notation and Preview

> WebYale $=$ http://www.stat.yale.edu/ pollard
> WebParis $=$ http://www.ihp.jussieu.fr/ pollard
> UGMTP $=$ User's Guide to Measure-Theoretic Probability

Let X be a set equipped with a sigma-field \mathcal{A}, and \mathscr{y} be a set equipped with a sigma-field \mathcal{B}. Write $\mathcal{M}^{+}(\mathcal{X}, \mathcal{A})$ for the set of all \mathcal{A}-measurable functions on \mathcal{X} taking values in $[0, \infty]$, and $\mathbb{L}^{+}(\mathcal{X}, \mathcal{A})$ for the set of all nonnegative, finite measures on \mathcal{A}.

For a measure μ on \mathcal{A} and a measurable function f (from $\mathcal{M}^{+}(\mathcal{X}, \mathcal{A})$, or μ-integrable) write μf or $\mu^{x} f(x)$ for $\int f(x) \mu(d x)$. Identify sets with their indicator functions [UGMTP §1.4]. Identify integrals with increasing "linear functionals" on $\mathcal{M}^{+}(\mathcal{X}, \mathcal{A})$ with the Monotone Convergence property [UGMTP $\left.\S 2.3\right]$.

If T is an $\mathcal{A} \backslash \mathcal{B}$-measurable map from X to \mathcal{y}, and μ is a measure on \mathcal{A}, the image measure $T \mu$ is defined on \mathcal{B} by $(T \mu)(B):=\mu\{x: T(x) \in B\}$ for each $B \in \mathcal{B}$. Equivalently,

$$
(T \mu)^{y} g(y):=\mu^{x} g(T(x)) \quad \text { for } g \in \mathcal{M}^{+}(y, \mathcal{B})
$$

The \mathcal{L}^{1} distance between two finite measures, μ and v, on \mathcal{A} is defined as

$$
\|\mu-v\|_{1}:=\sup _{|f| \leq 1}|\mu f-v f|
$$

the supremum running over all measurable functions f that are bounded in absolute value by 1 . If both μ and v are probability measures, then

$$
\frac{1}{2}\|\mu-v\|_{1}=\sup _{A \in \mathcal{A}}|\mu A-v A|=\sup _{0 \leq f \leq 1}|\mu f-v f|
$$

a quantity that is often called the total variation distance between the measures [UGMTP §3.3].

Markov kernels

A Markov kernel, or randomization, from $(\mathcal{X}, \mathcal{A})$ to $(\mathcal{Y}, \mathcal{B})$ is a family of probability measures $K:=\left\{K_{x}: x \in \mathcal{X}\right\}$ such that $x \mapsto K_{x} B$ is \mathcal{A}-measurable, for each $B \in \mathcal{B}$. For each f in $\mathcal{M}^{+}(\mathcal{X} \times \mathcal{y}, \mathcal{A} \otimes \mathcal{B})$, the function $x \mapsto K_{x}^{y} f(x, y):=\int f(x, y) K_{x}(d y)$ is \mathcal{A}-measurable. If μ is a measure on \mathcal{A} then a measure $\mu \otimes K$ can be defined on $\mathcal{A} \otimes \mathcal{B}$ by

$$
(\mu \otimes K) f:=\mu^{x}\left(K_{x}^{y} f(x, y)\right)
$$

It has marginals μ and λ, with λ the measure on \mathcal{B} defined by

$$
\lambda^{y} g(y):=\mu^{x}\left(K_{x}^{y} g(y)\right) \quad \text { for } g \in \mathcal{N}^{+}(y, \mathcal{B})
$$

I will also write $K \mu$ or $\mu^{x} K_{x}$ for λ. The map $\mu \mapsto K \mu$ from $\mathbb{L}^{+}(\mathcal{X}, \mathcal{A})$ to $\mathbb{L}^{+}(y, \mathcal{B})$ is "linear", and it takes probability measures to probability measures.

If μ is a probability measure, the pair (x, y) generated by

$$
x \sim \mu \quad \text { and } \quad y \mid x \sim K_{x}
$$

has joint distribution $\mu \otimes K$. The y has marginal distribution $\mu^{x} K_{x}$.

Decision theory

Call a family of probability measures $\mathcal{P}:=\left\{\mathbb{P}_{\theta}: \theta \in \Theta\right\}$, all defined on the same sigma-field \mathcal{A} on a sample space X, a statistical model (or statistical experiment). Let \mathcal{T} be some set, equipped at least with a sigma-field \mathcal{C}. A decision procedure is a measurable map T from \mathcal{X} to \mathcal{T}. (If $\mathcal{T}=\Theta$, then T is usually called an estimator for the parameter θ.) A randomized procedure is defined as a Markov kernel τ from $(\mathcal{X}, \mathcal{A})$ to $(\mathcal{T}, \mathcal{C})$.

A map ℓ from $\mathcal{T} \times \Theta$ into $[-\infty, \infty]$ is called a loss function. Typically I will assume ℓ is either nonnegative or bounded, so that there are no problems with the next definition. The risk function for a procedure T is defined as

$$
R(T, \theta):=\mathbb{P}_{\theta}^{x} \ell(T(x), \theta)=\left(T \mathbb{P}_{\theta}\right)^{t} \ell(t, \theta) \quad \text { for } \theta \in \Theta
$$

The risk function for a randomized procedure τ is defined as

$$
R(\tau, \theta):=\mathbb{P}_{\theta}^{x} \tau_{x}^{t} \ell(t, \theta)=\left(\tau \mathbb{P}_{\theta}\right)^{t} \ell(t, \theta) \quad \text { for } \theta \in \Theta
$$

1. Preview of Le Cam distance

Let $\mathcal{P}:=\left\{\mathbb{P}_{\theta}: \theta \in \Theta\right\}$ and $Q:=\left\{\mathbb{Q}_{\theta}: \theta \in \Theta\right\}$ be two statistical models, indexed by the same parameter set Θ. Suppose each \mathbb{P}_{θ} is defined on $(\mathcal{X}, \mathcal{A})$, and each \mathbb{Q}_{θ} is defined on $(\mathcal{y}, \mathcal{B})$. Le Cam defined the quantity $\delta(\mathcal{P}, Q)$ to be the smallest ϵ for which there is a randomization K (which must not depend on θ) from $(\mathcal{X}, \mathcal{A})$ to $(\mathcal{y}, \mathcal{B})$ for which

$$
\frac{1}{2} \sup _{\theta}\left\|\mathbb{Q}_{\theta}-K \mathbb{P}_{\theta}\right\|_{1} \leq \epsilon
$$

REMARK. The factor of $1 / 2$ makes the definition fit well with other plausible ways to define δ, in a sense that I will explain later. Actually Le Cam did not restrict his randomizations to be Markov kernels, but allowed what I will be calling generalized randomizations, that is, linear maps from $\mathbb{L}^{+}(\mathcal{X}, \mathcal{A})$ to $\mathbb{L}^{+}(\mathcal{y}, \mathcal{B})$ that take probability measures onto probability measures.

If $\epsilon:=\delta(\mathbb{P}, \mathbb{Q})$ is small, then we can almost reproduce the Q model from the \mathcal{P} model by randomization:

$$
\text { if } x \sim \mathbb{P}_{\theta} \quad \text { and } \quad y \mid x \sim K_{x}
$$

then the distribution of y is close to \mathbb{Q}_{θ} (in the \mathcal{L}^{1}, or total variation, sense). For measurable functions g on y with $0 \leq g \leq 1$, we have

$$
\left|\mathbb{Q}_{\theta}^{y} g(y)-\mathbb{P}_{\theta}^{x} K_{x}^{y} g(y)\right| \leq \epsilon \quad \text { for every } \theta
$$

Now suppose τ is a randomized procedure defined for the 2 model. Then we can define a randomized procedure ρ for \mathcal{P} by a two-step construction:

$$
\text { for } x \sim \mathbb{P}_{\theta}, \quad \text { generate } y \mid x \sim K_{x}, \quad \text { then generate } t \sim \tau_{y} .
$$

That is, ρ_{x} is the probability measure τK_{x} on \mathcal{C} :

$$
\rho_{x}^{t} h(t)=K_{x}^{y} \tau_{y}^{t} h(t) \quad \text { for } h \in \mathbb{M}^{+}(\mathcal{T}, \mathcal{C})
$$

and

$$
\mathbb{P}_{\theta}^{x} \rho_{x}^{t} h(t)=\mathbb{P}_{\theta}^{x} K_{x}^{y} \tau_{y}^{t} h(t) \quad \text { for every } \theta
$$

If $0 \leq h \leq 1$ then the function $g(y):=\tau_{y}^{t} h(t)$ also takes values in $[0,1]$, and so the right-hand side lies within ϵ of $\mathbb{Q}_{\theta}^{y} g(y)=\mathbb{Q}_{\theta}^{y} \tau_{y}^{t} h(t)$. In particular, if ℓ is a loss function taking values in the range $[0,1]$, then

$$
\left|\mathbb{P}_{\theta}^{x} \rho_{x}^{t} \ell(t, \theta)-\mathbb{Q}_{\theta}^{y} \tau_{y}^{t} \ell(t, \theta)\right| \leq \epsilon \quad \text { for every } \theta
$$

That is, $|R(\rho, \theta)-R(\tau, \theta)| \leq \epsilon$ for every θ.
In effect, the randomization K has carried the problem of evaluating randomized procedures for \mathcal{Q} back to an analogous problem for \mathcal{P}, with less than an ϵ of error if the loss function takes values in $[0,1]$.

If we also had $\delta(\mathscr{Q}, \mathcal{P})$ small, then there would be a similar transfer of problems for \mathcal{P} back to problems for Q.

If the quantity $\Delta(\mathcal{P}, \mathcal{Q}):=\max (\delta(\mathcal{P}, \mathcal{Q}), \delta(Q, \mathcal{P}))$ is close to zero, then there is an approximate correspondence (via randomizations) between solutions to decision theoretic problems for \mathcal{P} and decision theoretic problems for \mathcal{Q}. Such a correspondence is very helpful if one of the experiments is much easier to work with than the other.

