Chapter 10

Randomization via quantile
coupling

SECTION 1 explains why the method from the previous Chapter cannot quite capture
Nussbaum’s asymptotic equivalence over his full range of smoothness parameters.
SECTION 2 describes Andrew Carter's second method of randomization, based on quantile

coupling, which solves the problem described in Section 1.
SECTION 3 derives Carter’s inequality for randomization via the quantile coupling.

1. Randomization of Binomials

Carter's method, as described in Chapter 9, relied on repeated convolution smoothing
as the randomization to make the (conditional) Binomials close to normals in total
variation. The key inequality was:

<1> H?2 (Bin(n, p) = &, N(np, n < -
(Bin(n, p) (np. npg)) drmpa

where 4l denotes the Uniform distribution o6-1/2,1/2) andC is a universal
constant. After some further randomizations involving the normal models, the
method led to a bound

mlogm _ ma; 6;
2 AM, Nstapi) < Cly ——— rovided sup— ,
<2> ( stabi) < Cg NG p ee@pm <00

where M = {M(n,0) : 0 € ©}, a collection of multinomials withm cells, and
Nstavit = {Np : 8 € ©} with Ny = ®i<mN(v/n6;, 1/4).

In order to recover the result of Nussbaum (1996), we work with a valua of
that increases with. For example, itx < 3/ then the methods like those described
in the last Section of Chapter 9 give approximations to the multinomial white noise
processes of orden—*n%?, For the approximation inc2> to be of value, we
needmlogm = o (n*/?). Thus the convolution method can reproduce Nussbaum's
asymptotic equivalence when> 1.

Check rate form

REMARK. Of course the method also works far> 3/2, but then edge effects
prevent faster rates of convergence than are achieved whei3/2.
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For the range 12 < o < 1, we need an improvement over randomization based
on convolution smoothing of conditional Binomials, at least wheiis large. In
fact, Carter (2001) showed that the construction underlying could be invoked
to derive a preliminary approximation based onrarof order n/+2 - At that
stage all the cells correspond to very short subintervals of][0The smoothness
condition on the density ensures that thefor neighboring cells are close, which
means that the parameteps for the conditional Birs, p;) distributions are all
close to ¥2. For those cases a randomization based on the quantile coupling of
Bin(s, 1/2) and N(s /2, 5/4) distributions gives a superior approximation. The
result is based on slight modification by Carter & Pollard (2000) of a bound due to
Tusrady (1977).

REMARK. See Cefgd & Réwvész (1981, Section 4.4) and Bretagnolle &
Massart (1989) for a discussion of the role of Tady's lemma in the so-called
Hungarian construction. The Appendix to the latter actually contains a full proof
of the lemma. Chapter 10 of Pollard (2001) also contains an exposition of the
Hungarian construction, with an Appendix that explains in a more leisurely
fashion the Carter-Pollard results.

Randomization via quantile coupling

Let Y have aN(n/2, n/4) distribution. There is an
increasing functiony, for which v¥,(Y) has exactly a
Bin(n, 1/2) distribution. The function is defined by the
sequence of cutpoints

NY ‘/—x:k,yDJk —00o=fo<pP1<...<pfn<Pny1=00

for which P{Bin(n, 1) > k} = P{Y > B} for eachk.
‘ Define J := (Bk, Bk+1]- Then

Un(y) ==Y, {y € K

is the desired function. Symmetry @, aboutn/2

implies a similar symmetry for théy intervals: y € Jg

if and only if n —y € J,_x. We can also think of

the joint distribution ofy,(Y) andY as a probability
measurel’ on = {0,1,...,n} x R with marginalsP; := Bin(n, 1/2) and
Qo := N(n/2,n/4). That is,

DYh(x, y) = QSh(Un(y). y) = Y, {y € kthik,y)  for h e M*(Q).

The joint distribution can also be specified by a conditional distribution for the
Y given ¥ (Y). That is,I' = Py ® K, whereK is the probability kernel from
{0,1,...,n} to R for which Ky = Qq(- | Jy).

Write Ps for the Bin(n, (1+ 8)/2) and Q; for the N(n(1 + §)/2,n/4)
distribution. The kerneK is defined so thaK Py = Qq. If § is close to O,
then we might hope thak P; ~ Q; in a total variation sense. Indeed, Carter
showed there is a neat bound for(K Ps| Qs), which makes it worthwhile to
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replace convolution smoothing by the randomizatlorwhen the probabilities for
neighboring multinomial cells are close.

REMARK. Notice that the variance fo®; was chosen as fixed, not depending

on §. When§ is close enough to O, this simplification will add only small

terms in the recursive step when we need to compare the randomized conditional
Binomials with the appropriate conditional normals.

I will not give all the details required for modification of the recursive argument
from Chapter 9, but instead | refer you to Carter (2001). Once we have a bound for
H2(K Ps, Qy), or for the larger quantityp (K Ps||Qs), the argument is similar to the
argument based or2>.

3. Bound for the quantile randomization

The calculation starts from the densities,

fs(X) == a8 _ 1+ A=

dPRy
d
gs(X) == Qs _ exp(28(y — n/2) — ns?/2).
dQo
We first need to determine the density KfP; with respect toQq. For

h € M*T(R),
(KPy)”h(y) := P{KIh(y) = Py fs()KIh(y)
= Y H,00h(y) = Q) Y, {y € I fs(oh(y).

Thus
d(KP
<a> ;T;) =Y 0 iy e I k) = f3(n(y)).
Notice that f_s(n — k) = fs(k) andg_s(n — y) = gs(y). Together with
the symmetries foIQq and the Jy, these equalities imply thatl (K Ps, Q;) is a
symmetric functions o6. Thus we need only consider positie

From <4>,
fs(Yn(Y))

D(KP = Q)| fs(wn(y)l 8—)

(K Ps]1Qs) QO(S(W(Y)OQ %)

fs(X)>
— Y (5001
( 10010 )

= P f5(x) (N8 + 3n8” + log fs(x) — 28X) + ™Y (28f5(x) (X — ¥)) .
The first integral equals
Ps (3n8% + log f5(x) — 8(2x — n))
= —2n8%+ 2n((148)log(1 + &) + (1 — 8)log(1 — 8))

= 112 (5*+ 09).
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The second integral equals

25 ZE:O f5(K)Qo ((k — Y){y € I} .

There is a partial cancellation between ttb and (n — k)th terms, becausg
andn — y have the same distribution und€:

fs(n =K Qo ({y € Ikl(n—k—y)) = f5(KQo({n—y € I}(h—y—k))
=—f_s(0Qo({y € I}k —y)).
If nis even, the central term, fdec= n/2, is identically zero. Thus
<5>  WTi0k-y) =25 . (f) — f-5(K) (QoI) Qok—y |y e Jo.

Notice that
f 5(k) 1—8\*" 252k —n)
6 0<1- =1-(—— < —".
= =77 Tk 1+ 1+s
Carter & Pollard (2000) showed that there is a universal constafar which
<7> B« > k-3 —con 2 whenk > n/2.

| think | have made a silly mistake somewhere in the calculations that follow.
Somehow | have gotten and extra factomof’/? into one of the terms derived by
Carter. Problem [2] seems the likely suspect. | will track down the mistake and
correct it in the revised version of these Paris notes.

REMARK. Check to see whether the original Tasly’bound,8¢ > k — 1, would
be enough. Probably not, unless my extra/? factor survives.

By Problem [1],

Qok—ylyed)=Qo(k—ylk—Bu1<k—y=k—§8)
<Qok—ylk—-yel),

where | := [con Y2 — 1, con~Y2 + 1). By Problem [2], the final conditional
expectation is less than
2% "N
23)°| % (k 2)’/(n/4).

From this upper bound ande> we get an upper bound for the right-hand side
of <5>,

(28)? 2Co|2k —n| 2
= Qo) HOly € I — 5 tl&-n
2 _
- (26) P, 2Co|2k — n|
J/n
Under P, the difference R—n has meams and variancen(1— §2), which suggests
the simple bounds
Ps|2k — n| < né + /var2k) < né + +/n
Ps12k — n|? < (n8)? + var(2k) < n + n%82,

+ |2k—n|2>.
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10.3 Bound for the quantile randomization 5

leading to the inequality
25T fs(x)(k — y) < C(82+ns*  for some constant.
If the my calculations are to be believed, the final inequality takes the form
D(K Ps||Qs) < C'(62+ns*)  for some constant’.
For the sake of comparison, Carter (2001) asserts that
D(KPs[|Qs) < C'(8% + /n[8|> +ns*  for some constant’.

He needs to use his bound for cases whéfe< c;m= with ./n/m* — 0, that is,
for values withs = o(n~%/2). For those cases, t& dominates the bound. Thus,

H2(KPs, Qs) = O(8%)  for § = o(n~Y/2).

Compare with<1>, which gives a bound of order! for the randomization based
on convolution smoothing.

4. Problems

[1] Let Q be a probability measure on the real line, such tQdt > 0 for every
nondegenerate interval. Show th@t(y | a < y < b) is an increasing function of
botha andb. Hint: Fort € (a, b), show that

Qla,t) Qlt, b)

Then argue from the fact th® (y |la<y <t) <t < Q(y |t <y <b).

Qlyla=y<b =

This result seems too good td2] Supposew has aN (i, o?) distribution. For eacth > 0 and eaclx € R, show that
be true

2|x — u|h?
|P(W|x—h5W<x+h)—x|5%.

Hint: Reduce to the case where= 0 ando = 1. Fors > 0, defineF(s) :=
[F3t - 29t dt andG(h) := [ 4(t) dt. Show that

$(z+9) —p(z—79)
$(z+s) —¢p(z—9)
Invoke the mean value theorem fBrth/o)/G(h/o).

[F'()/G'(s)| =5 < 2178 |28 < 1} + Isl{lzs > 1}.
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