
Chapter 10

Randomization via quantile
coupling

SECTION 1 explains why the method from the previous Chapter cannot quite capture
Nussbaum’s asymptotic equivalence over his full range of smoothness parameters.

SECTION 2 describes Andrew Carter’s second method of randomization, based on quantile
coupling, which solves the problem described in Section 1.

SECTION 3 derives Carter’s inequality for randomization via the quantile coupling.

1. Randomization of Binomials

Carter’s method, as described in Chapter 9, relied on repeated convolution smoothing
as the randomization to make the (conditional) Binomials close to normals in total
variation. The key inequality was:

<1> H2
(
Bin(n, p) � U, N(np, npq)

) ≤ C

(1 + n)pq
,

whereU denotes the Uniform distribution on(−1/2, 1/2) and C is a universal
constant. After some further randomizations involving the normal models, the
method led to a bound

<2> 	(M, Nstabil) ≤ C′



m logm√
n

provided sup
θ∈


maxi θi

mini θi
< ∞,

whereM := {M(n, θ) : θ ∈ 
}, a collection of multinomials withm cells, and
Nstabil := {Ñθ : θ ∈ 
} with Ñθ = ⊗i ≤mN(

√
nθi , 1/4).

In order to recover the result of Nussbaum (1996), we work with a value ofm
that increases withn. For example, ifα ≤ 3/2 then the methods like those described
in the last Section of Chapter 9 give approximations to the multinomial white noise
processes of orderm−αn1/2. For the approximation in<2> to be of value, we

Check rate form
needm logm = o

(
n1/2

)
. Thus the convolution method can reproduce Nussbaum’s

asymptotic equivalence whenα > 1.

Remark. Of course the method also works forα > 3/2, but then edge effects
prevent faster rates of convergence than are achieved whenα = 3/2.
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2 Chapter 10: Randomization via quantile coupling

For the range 1/2 < α ≤ 1, we need an improvement over randomization based
on convolution smoothing of conditional Binomials, at least whenm is large. In
fact, Carter (2001) showed that the construction underlying<2> could be invoked
to derive a preliminary approximation based on anm of order n1/(1+2α). At that
stage all the cells correspond to very short subintervals of [0, 1]. The smoothness
condition on the density ensures that theθi for neighboring cells are close, which
means that the parameterspi for the conditional Bin(si , pi ) distributions are all
close to 1/2. For those cases a randomization based on the quantile coupling of
Bin(si , 1/2) and N(si /2, si /4) distributions gives a superior approximation. The
result is based on slight modification by Carter & Pollard (2000) of a bound due to
Tusnády (1977).

Remark. See Cs¨orgő & Révész (1981, Section 4.4) and Bretagnolle &
Massart (1989) for a discussion of the role of Tusn´ady’s lemma in the so-called
Hungarian construction. The Appendix to the latter actually contains a full proof
of the lemma. Chapter 10 of Pollard (2001) also contains an exposition of the
Hungarian construction, with an Appendix that explains in a more leisurely
fashion the Carter-Pollard results.

2. Randomization via quantile coupling

Let Y have aN(n/2, n/4) distribution. There is any

Jk
x=k, y∈ Jk

βk

βk+1

increasing functionψn for which ψn(Y) has exactly a
Bin(n, 1/2) distribution. The function is defined by the
sequence of cutpoints

−∞ = β0 < β1 < . . . < βn < βn+1 = ∞
for which P{Bin(n, 1/2) ≥ k} = P{Y > βk} for eachk.
Define Jk := (βk, βk+1]. Then

ψn(y) :=
∑n

k=0
{y ∈ Jk}k

is the desired function. Symmetry ofQ0 about n/2
implies a similar symmetry for theJk intervals: y ∈ Jk

if and only if n − y ∈ Jn−k. We can also think of
the joint distribution ofψn(Y) and Y as a probability

measure� on � := {0, 1, . . . , n} × R with marginalsP0 := Bin(n, 1/2) and
Q0 := N(n/2, n/4). That is,

<3> �x,yh(x, y) = Qy
0h(ψn(y), y) =

∑n

k=0
{y ∈ Jk}h(k, y) for h ∈ M+(�).

The joint distribution can also be specified by a conditional distribution for the
Y given ψn(Y). That is,� = P0 ⊗ K , where K is the probability kernel from
{0, 1, . . . , n} to R for which Kx = Q0(· | Jx).

Write Pδ for the Bin(n, (1 + δ)/2) and Qδ for the N(n(1 + δ)/2, n/4)

distribution. The kernelK is defined so thatK P0 = Q0. If δ is close to 0,
then we might hope thatK Pδ ≈ Qδ in a total variation sense. Indeed, Carter
showed there is a neat bound forD(K Pδ‖Qδ), which makes it worthwhile to
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10.2 Randomization via quantile coupling 3

replace convolution smoothing by the randomizationK when the probabilities for
neighboring multinomial cells are close.

Remark. Notice that the variance forQδ was chosen as fixed, not depending
on δ. When δ is close enough to 0, this simplification will add only small
terms in the recursive step when we need to compare the randomized conditional
Binomials with the appropriate conditional normals.

I will not give all the details required for modification of the recursive argument
from Chapter 9, but instead I refer you to Carter (2001). Once we have a bound for
H2(K Pδ, Qδ), or for the larger quantityD(K Pδ‖Qδ), the argument is similar to the
argument based on<2>.

3. Bound for the quantile randomization

The calculation starts from the densities,

fδ(x) := d Pδ

d P0
= (1 + δ)x(1 − δ)n−x

gδ(x) := d Qδ

d Q0
= exp

(
2δ(y − n/2) − nδ2/2

)
.

We first need to determine the density ofK Pδ with respect toQ0. For
h ∈ M+(R),

(K Pδ)
yh(y) := Px

δ K y
x h(y) = Px

0 fδ(x)K y
x h(y)

= �x,y fδ(x)h(y) = Qy
0

∑n

k=0
{y ∈ Jk} fδ(k)h(y).

Thus

<4>
d(K Pδ)

d Q0
=

∑n

k=0
{y ∈ Jk} fδ(k) = fδ(ψn(y)).

Notice that f−δ(n − k) = fδ(k) and g−δ(n − y) = gδ(y). Together with
the symmetries forQ0 and theJk, these equalities imply thatH(K Pδ, Qδ) is a
symmetric functions ofδ. Thus we need only consider positiveδ.

From <4>,

D(K Pδ‖Qδ) = Qy
0

(
fδ(ψn(y) log

fδ(ψn(y))

gδ(y)

)

= �x,y

(
fδ(x) log

fδ(x)

gδ(y)

)
= Px

0 fδ(x)
(
nδ + 1

2nδ2 + log fδ(x) − 2δx
) + �x,y (2δ fδ(x) (x − y)) .

The first integral equals

Pδ

(
1
2nδ2 + log fδ(x) − δ(2x − n)

)
= − 1

2nδ2 + 1
2n

(
(1 + δ) log(1 + δ) + (1 − δ) log(1 − δ)

)
= n

12

(
δ4 + O(δ6)

)
.
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4 Chapter 10: Randomization via quantile coupling

The second integral equals

2δ
∑n

k=0
fδ(k)Q0 ((k − y){y ∈ Jk}) .

There is a partial cancellation between thekth and (n − k)th terms, becausey
andn − y have the same distribution underQ0:

fδ(n − k)Q0
({y ∈ Jn−k}(n − k − y)

) = f−δ(k)Q0
({n − y ∈ Jk}(n − y − k)

)
= − f−δ(k)Q0

({y ∈ Jk}(k − y)
)
.

If n is even, the central term, fork = n/2, is identically zero. Thus

<5> 2δ� fδ(x)(k − y) = 2δ
∑

k>n/2
( fδ(k) − f−δ(k)) (Q0Jk) Q0 (k − y | y ∈ Jk) .

Notice that

<6> 0 ≤ 1 − f−δ(k)

fδ(k)
= 1 −

(
1 − δ

1 + δ

)2k−n

≤ 2δ(2k − n)

1 + δ
.

Carter & Pollard (2000) showed that there is a universal constantc0 for which

<7> βk ≥ k − 1
2 − c0n−1/2 whenk > n/2.

I think I have made a silly mistake somewhere in the calculations that follow.
Somehow I have gotten and extra factor ofn−1/2 into one of the terms derived by
Carter. Problem [2] seems the likely suspect. I will track down the mistake and
correct it in the revised version of these Paris notes.

Remark. Check to see whether the original Tusn´ady bound,βk ≥ k − 1, would
be enough. Probably not, unless my extran−1/2 factor survives.

By Problem [1],

Q0 (k − y | y ∈ Jk) = Q0
(
k − y | k − βk+1 < k − y ≤ k − βk

)
≤ Q0 (k − y | k − y ∈ I ) ,

where I := [c0n−1/2 − 1
2, c0n−1/2 + 1

2). By Problem [2], the final conditional
expectation is less than

2
(

1
2

)2
∣∣∣∣ c0√

n
−

(
k − n

2

)∣∣∣∣ /(n/4).

From this upper bound and<6> we get an upper bound for the right-hand side
of <5>,

(2δ)2

n
Q0

∑
k>n/2

fδ(k){y ∈ Jk}
(

2c0|2k − n|√
n

+ |2k − n|2
)

≤ (2δ)2

n
Pδ

(
2c0|2k − n|√

n
+ |2k − n|2

)
.

Under Pδ, the difference 2k−n has meannδ and variancen(1− δ2), which suggests
the simple bounds

Pδ|2k − n| ≤ nδ +
√

var(2k) ≤ nδ + √
n

Pδ|2k − n|2 ≤ (nδ)2 + var(2k) ≤ n + n2δ2,
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10.3 Bound for the quantile randomization 5

leading to the inequality

2δ� fδ(x)(k − y) ≤ C(δ2 + nδ4) for some constantC.

If the my calculations are to be believed, the final inequality takes the form

D(K Pδ‖Qδ) ≤ C′(δ2 + nδ4) for some constantC′.

For the sake of comparison, Carter (2001) asserts that

D(K Pδ‖Qδ) ≤ C′(δ2 + √
n|δ|3 + nδ4) for some constantC′.

He needs to use his bound for cases where|δ| ≤ c1m−α with
√

n/mα → 0, that is,
for values withδ = o(n−1/2). For those cases, theδ2 dominates the bound. Thus,

H2(K Pδ, Qδ) = O(δ2) for δ = o(n−1/2).

Compare with<1>, which gives a bound of ordern−1 for the randomization based
on convolution smoothing.

4. Problems

[1] Let Q be a probability measure on the real line, such thatQI > 0 for every
nondegenerate interval. Show thatQ (y | a ≤ y < b) is an increasing function of
both a andb. Hint: For t ∈ (a, b), show that

Q (y | a ≤ y < b) = Q[a, t)

Q[a, b)
Q (y | a ≤ y < t) + Q[t, b)

Q[a, b)
Q (y | t ≤ y < b) .

Then argue from the fact thatQ (y | a ≤ y < t) ≤ t ≤ Q (y | t ≤ y < b).

[2] SupposeW has aN(µ, σ 2) distribution. For eachh > 0 and eachx ∈ R, show thatThis result seems too good to
be true

|P (W | x − h ≤ W < x + h) − x| ≤ 2|x − µ|h2

σ 2
.

Hint: Reduce to the case whereµ = 0 andσ = 1. For s > 0, defineF(s) :=∫ z+s
z−s (t − z)φ(t) dt andG(h) := ∫ z+s

z−s φ(t) dt. Show that

|F ′(s)/G′(s)| = s

∣∣∣∣φ(z + s) − φ(z − s)

φ(z + s) − φ(z − s)

∣∣∣∣ ≤ 2|z|s2{|zs| ≤ 1} + |s|{|zs| > 1}.

Invoke the mean value theorem forF(h/σ)/G(h/σ).
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