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Chapter 4
Randomization

SECTION 1 : reminder of about role of randomization in Le Cam dist
SECTION 2 : facts about linear fnals

SECTION 3 : introduce M-, K-, and L-randomizations

SECTION 4 : express conditioning via randomizations

SECTION 5 : prove K-sufficiency of LR; canonical measures
SECTION 6 : advantages of Le Cam randomization

SECTION 7 : choice of sample space

Chapter incomplete. First draft. Many remarks intended only as reminders 40 DP.

1. Le Cam distance

A probability model consists of a probability measure on a sigma-fieldf
some setX. A statistical model is an indexed family of probability measures,
Pi={Py:0 e ® on(X,A). LetQ :={Qy : 0 € ®} be another statistical model,
with the same index se®, but with theQ, measures living on someg}y, B).
The Le Cam distancé(Q, ?) from Q to P is defined as the infimum of all those
constants for which there exists a randomizatidgh for which

<1> TIKQy —Pylly <€ for everyd in ©.

The symmetric form of the Le Cam distanag(P, Q), is defined as the maximum of
(P, Q) ands(Q, P). If A(P, Q) = 0 then the experiments are said to be equivalent

comment on whether inf (in Le Cam’s sense)
achieved; note advantage of ’ o . . . .
L-randn The subtlety of the definition lies in the meaning given to the weand

domization In this Chapter, | shall temporarily distinguish between three types of
construction that capture the idea of randomization, to which | shall give slightly
artificial names: M-randomization, K-randomization, and L-randomization. Here
the M is intended as a reminder of the role played bgrkév kernels, the K refers
to the similarity to_Kolmogorov’s abstract conditional expectation, and the L refers
to Le Cam.
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2 Chapter 4:  Randomization

For the moment | shall ignore the question of whether the infima in the
definition of A(P, Q) are achieved, and refer to statistical modklandQ as being
M-equivalent if there are M-randomizatiofis and K’ for which KQ, = P, and
K'P, = Qp for all 0 in ®. The definitions for K- and L-equivalence are analogous.
In fact, one of the advantages of the L-randomizations will be that the infima in the

definitions are achieved, whereas extra regularity conditions are needed before the

same assertion can be made for the other two concepts.
My main purpose is to explain the value of the abstract definition introduced

by Le Cam (1964)—expanding on ideas of Bohneblust, Shapley & Sherman (1949),

Blackwell (1951), and Blackwell (1953)—as a way to sidestep a host of “regularity
conditions” that Le Cam regarded as superfluous to the statistical interpretation.
REMARK. Over the years | have slowly come to agree with much of Le Cam’s
argument, although | cannot claim complete comfort with some of the abstractions.

As | explain in Section7, | believe some of my difficulties are related to an

unjustifiable belief in the idea that probability models should start with a choice of
sample space.

Linear functionals and measures

For a setX equipped with a sigma-field, define
M*(X, A) := all A-measurable functions froid§ into R = R, U {oo},
M+ (X, A) := all bounded functions it (X, A).
Remember that countably additive, nonnegative measure$ can be identified
with those increasing linear functionals &t (X, A) that have the Monotone
Convergence property. For finite measures, it is more convenient to make an
identification with increasing linear functionals & (X, .A).
DefineL* (X, .A) to consist of all maps : M* (X, A) — R* for which
)L(Oll fl + a9 fg) = Oll)\(fl) + OlQ)\.(fQ) for all oj € R*™ and fi € MJF(:X:, .A)
For functionals inL*(X, A), write A.; > A, to mean that,, f > A, f for all f
in M (X, A).
The finite (countably additive, nonnegative) measuresiororrespond to the
subsetL} (X, A) of such functionals that are-smooth atO:
if {f,:neN}cM"(X,.A) and f, | O pointwise then.f, | 0.
If Q e L} (X, A) thenL{ (X, .A) will denote the subset df (X, .A) consisting of the
measures dominated .
When the choice o¥ or of A is clear, | will abbreviateM* (X, A) to M™(X),
or M*(A), or even justM™*. And so on.

REMARK. The setsM*, L*, and L} are the positive cones of various vector
lattices. Everything to be discussed in this Section is actually just a special case of
general results for abstract vector lattices. See Appendix D for the general case.

There is a small collection of results about linear functionals that explains some
of the reasons for the success of Le Cam’s abstract approach to decision theory.
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4.2 Linear functionals and measures 3

<2> Lemma. Let); andx, be functionals irlL.* (X, A). The functionals defined by
wf i=supr; fi + Ao fy 1 £ = f, 4+ fy with f; € MT(X, A)}
vii=inf(A fi +Axfy 0 f = f1 + f5 with f; e MY (X, A)}
both belong tdL" (X, A). The linear functional. is the smallest for whichu > A;
fori =1, 2, andv is the largest for which < x; fori =1, 2.

REMARK. The functionaly is usually denoted by v A,, and is called the
lattice-theoretic maximum of; and A,. Similarly v is denoted byi; A A, and is
called their lattice-theoretic minimum.

Proof. It is easy to see thgi(g + h) > u(g) + w(h) for all g, h € M*. For if
01 + 92 =g andh; +hy =h then
A0 + 2202 + A1hy + Aohy = A1(91 + 1) +22(g2 + h) < (g +h).

Take the supremum over all sugh pairs andh; pairs to get the stated inequality.
For the reverse inequality, suppo$e+ fo = g+ h. It is possible to split eachj
into g + h; in such a way thay = g; + g> andh = h; + hy:

g :="fiAg %= (- f)f=(f—" 9
hy == (h—- f)* =(f; —g* hy = fo Ah h
fy fa fi+fo=9g+h

We then have
png+ puh > (191 + 2202) + (A1hy + Aoho) = A1 f1 + A fo.
Take the supremum over all sudh pairs to getu(g + h) < u(g) + n(h). An even
easier argument shows thataf) = au(f) for« € R and f ¢ M+. Thusu € L*.
If y is another functional for whicly > A; fori = 1,2, and if f; + f; = f,
theni; f; + Ax fy < yfy + yfy = ¥ f, which implies thatu < y.
d The arguments for € L™ are similar.
<3> Corollary. If 1 € LY(X, A) andxr, € L} (X, A) theniy; A xo € LE(X, A).
2 mention interpretationlLy, is O Proof. If f, | O pointwise, theni; A Ag) fy < Ao f, | O.

a band inlL <4> Theorem. For each. in L*(X,A) the collectionB, := {u € L} (X, A) : u < 1}
check projection argument for contains a largest member, denotedny. The mapx — w, A is linear and.. .

what more is needed Proof. Defines := sugul : u € B;}. Note thats < A1 < oo. Find {i; : i € N}
with sup i1 = 8. Let y be a finite measure, such &S, 2", that dominates
each uj. Write m; for the densitydu;/dy. Define u,, as the measure with
densitym,, := sup m; with respect toy.

To prove thatu € By, fix ann, then define setg; € A such thatf; = max -, f;
on A;. For f e M+, we have

y(fmagaam) =2 v (fmA)=2 " uw(fA)=) r(fA)=Af
Let n increase to infinity to deduce thatf < Af.

Clearly u. > w; for eachi, and henceu.,1 = 6. If ug is any other member
of By, with no loss of generality we may suppose it has a demsityith respect
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4 Chapter 4:  Randomization

to y. A small variation on the argument in the preceding paragraph shows that
Moo V o € By, and hences > (u Vv o)l = y(Me vV Mg) > y(My) = pnl =36 It
follows thatm,, vmy = my, a.e. ], andug < . The measure,, definesr, (1),
the largest member d8,.

It is easy to see that, (A1 + A2) > 7, (A1) + 75 (h2) @andw, (ar) = an, (1) for
« € Rt, becausd.} is stable under sums and multiplication by positive constants.
Write w; for =, (%i). To establish the reverse inequality, supppgses B;,.;,. Then
A1+ Ae = uo + o for somey, in L*. There is a decompositiofng = 1 + w2 With
ui <A fori=1,2:

M1 = o A Ay Yii=G— o)t = — A" A1
p2 = (Ao —yo)T = (o — A" V2 i= Yo A A2 A2
o Yo A1+ Ao

Here (o — A1) equalsyy — yo A A1, the smallesy in L* for whichy > 3, — 24, and
so on. We therefore havey = p1 + pa < 7, (A1) + 7, (12), for everyug in By, 4s,.
The linearity ofr, follows.

REMARK. It is no accident that the proofs of Lemme2> and Theorem<4>

both involved the decomposition shown in the tabular displays. In fact, both
constructions correspond to the same fact for vector lattices. Perhaps it would be
better to argue directly from the more general constructions in Appendix D.

Randomization: three possibilities

To understand the meaning given by Le Cam to khan <1>, you should think of

a randomization as a mechanism to convert observations from one distribution into
observations from another distribution: samplg faom Q, crank up the randomizer,
then out pops an observationfrom P. The randomization might be provided by a
Markov kernel K := {Ky : y € Y}, a family of probability measures o for which

K} f(x) € M* (Y, B) for eachf in M*(X, A). In that casePf is given by

Pf = QYKJ f(x) for f ¢ M*T(X, A).

More generally, we can use the kernel to define a linear map froiy, B)
to LI(X, A), by (Ku) f = WK f(X). If u is a probability measure then sols..
I will call a randomization defined in this way avi-randomization

Example. The simplest example of a M-randomization is given by a measurable
map,S:Y — X. TakeK, as the probability measure degenerate at the 8yt
thenKQ is just the image measu®), defined by(SQ)f = Q(f o ).

If we focus not on the mechanism by which thes generated from thg, but
on the correspondence between thehat goes in and th® that comes out, then
it is natural to think of a randomization as a map from measures to measures that
preserves total mass. This idea underlies Le Cam’s definition of randomizations
(which he called transitions). Define &nrandomizationfrom Y to X to be a map
K from L} (Y, B) to L} (X, A) for which
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4.3 Randomization: three possibilities 5

(i) K(oapr +aops) = a1 Ky + aaKpueo for all uj € L (Y, B) anda; € R,

(i) (Kp)(X) = u().
Between the two extremes of M- and L-randomizations lies a concept suggested
by the definition of the Kolmogorov conditional expectation from classical probability
theory.

Definition. Let Q be measure o, and let« be a map fromM™* (X, A) to
MY, B), with the value off at the pointy being denoted by(y, f). Callx a
K-randomizationmoduloQ if

() «x,1)=1a.e. Q.
(ii) for each fy, f € M (X, A) and eachy,, as € RT,

k(X, 01 f1 +az fa) = a1y, f1) +aa(X)k(y, f2) a.e. Q]

(iii) if {f,} is a sequence iM™* (X, A) that decreases pointwise fthen
k(y, fn) J 0 a.e. ].

REMARK. Ignore this remark. [In what sense could we think of a K-
randomization« (y, -) as a recipe for generating = from an observationy

on Q? There need be no probability measiig for which K, f = «(y, f); there
is no probability distribution from which to generate However, if we are only
interested in some particular random variallle= Z(x) it is possible to define a
Markov kernelH,(-) from Y to R, in such a way thak(y, h(2)) = Hih(z), for
eachh in M*(R). Indeed,x(y, h(Z)) defines a K-randomization moduf@ from Y
into the locally compact metric spad®, so Corollary<9> applies.]

Every M-randomization defines a K-randomization, in the obvious way:
k(y, ) ;== K} f(x). The precautions abowt-negligible sets are not needed in this
case. Indeed, it is largely the accumulation of uncountably many negligible sets that
prevents us, in general, from finding a sin@enegligible setN such thatc(y, -) is
a probability measure for eaghin N°¢.

Every K-randomization defines a L-randomization, but the construction must
accommodate the fact thatly, -) might behave badly o)-neglible sets. If
n e Ly(Y, B), thatis, ifu e LY (Y, B) andu < Q, then(ep) f 1= Vi (y, f) defines
a linear functional inL} (X, A). (Countable additivity, in the form of -smoothness
at 0, comes from property (iii) of.) In fact, k. € L (X, A), whereP := «Q. For
ifO=Pf =Q«(y, f), with f ¢ M+ (X, A), thenk(y, f) =0 a.e. ], which implies
k(y, fy=0a.e. u] and (xn) f =0.

If « does not belong td.g (Y, B), write it as i + p*, with i « Q and
wt singular, that is, it concentrates onGanegligible set. For fixed probability
measureP, on A (the same for every.), define a measurew in L} (X, A) by

(ep) fi= @iy, ) +pt Py f  for f e MT(X, A).

Linearity of the mapu — & ensures that is linear in . The construction also
ensures thatcp)(X) = 2Y + 'Y = uY. That is,« is an L-randomization.

REMARK. Ignore this remark. [The proof works becaubg is a band inL,.
The mapu — i is the projection onto the band. See Appendix D.]
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6 Chapter 4:  Randomization

The construction from the last two paragraphs can be run in reverse, to build

many K-randomizations from any L-randomizati&n

Theorem. For each L-randomizatioK and eachQ in L} (Y, B) there exists a
K-randomizationc moduloQ such thatcu = Ku for eachu in %(y, B).

Proof. Forg e M™*(Y) with Qg < oo, write Qg for the finite measure with density
with respect taQ. Then definev; (g) := (KQg)(f) for f € M*(X). For fixed f, the
mapg +— v¢(g) is linear. If 0< f < C, with C constant, then

vi(g) < C (KQq) (1) = CQql = CQg.
Thusvs € L@(g), with densityx (y, f) with respect taQ bounded above bg:

(KQg)(f) = vi(9) = Q¥ (g(y)x(y, ) for f e M™(X) andg € M* ().

We need to check properties (i), (ii), and (ii) of Definitiers>. For f =1 we
havev, = Q, which lets us choose(y, 1) = 1. For fixedg, the mapf — v¢(g) is
linear. Thus, for alky; € R* and allg e M+ (Y),

QYK (y, a1 fi + a2 f2)) = 1 Q ((Y)k (Y, 1)) +a2Q (g(Y)k(y, f2)).

With strategic choices fog we then recover the linearity property (ii). (In conse-
quence, iff; < f5 thenk(y, f1) <«(y, f2) a.e. RQ].)
Finally, if {f; :i e N} € M*(X) and f; | O pointwise, then

Q¥k(y, fa) = (KQ) fn | O,
from which property (iii) follows. Thusc is a K-randomization. The definining
property fork becomegKw)(f) = Yk (y, f) = (k) (f) if we write u for Qj.
REMARK. Not surprisingly, the method of proof for the Theorem is based on

the same idea as the method for proving existence of conditional expectations in
Kolmogorov's sense.

Example. LetX =Y =][0, 1] equipped with its Borel sigma-field = B. Define
an -randomizatiorK by K4y := §;_y for point masses, anidv := v for nonatomicv.
Extend by linearity. Note that th& cannot be represented by a Markov kernel.

REMARK. Ignore this remark. [The Example will be worth a revisit when we
consider the Kakutani representation, whereby every L-randomization is represented
by a Markov kernel. Something interesting happens to the sample space where the
measures live, so that point masses live on a part of the space disjoint from the
support of nonatomic measures.]

Under topological regularity conditions, the conclusion of Theorens can
be strengthened, replacing the K-randomization by an M-randomization.

Corollary. If X is a locally compact metric space, with its Borel sigma-field,
then the conclusion of Theoreaw> holds withk replaced by a Markov kernel.

Corollary. If X is a compact Hausdorff space, withits Borel sigma-field, and
if B contains allQ-negligible sets, then the conclusion of Theorem holds with
K« replaced by a Markov kernel.
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4.3 Randomization: three possibilities 7

Use separability argument for Corollage>, as in construction of disintegration.
Use linear lifting for Corollary<io>. In both cases, build the kernel as a linear
functional on the continuous functions it (XX) with compact support.

The bottom line: the distinctions between the three forms of randomizations
are largely a matter of regularity conditions to manage negligible sets, and choice
of the state space to getsmoothness automatically for continuous functions with
compact support.

Conditioning

In classical probability theory, randomizations also appear in the study of condition-
ing. Consider the case wheTeis a measurable map froX, A) to (Y, B), with
Q = TP, the image of some probability measutreon A.

The strongest concept is that of a disintegration, or regular conditional
distribution. The conditional distribution fdP is then a Markov kerneK from
(Y,B) to (X, A), for which KQ = P and K{T # y} = 0 for Q-almost ally.
Sometimes the integra{w(x) is written P(f | T = y), which, unfortunately, is
also used to denote the related Kolmogorov conditional expectation.

REMARK. Unfortunately, existence of regular conditional distributions does not
come for free. If we want conditional distributions represented by Markov kernels we
have to impose regularity conditions on the niBpnd on the probability measures.
Le Cam would probably have pointed to these regularity conditions as unwanted
intrusions on the idea of randomization.

The Kolmogorov conditional expectation can be defined in any of three
equivalent ways. It is a K-randomization modulofor which either
() P*(f0g(Tx) = Q¥ (g« (y, ) for all g e M*(Y) and f e M*(X)
(i) kQ=Pandx(y,(goT) f) =gy)«(y, f) a.e. @], forall f e M*(X) and
geM*(®)
(iii) for each w in L{(Y, B), if di/dQ = g thend(icp)/dP = go T.

The form (iii) suggests that we might regard a Le Cam randomization as
representing conditioning om if d(Ku)/dP = go T whendu/dQ = g. Under
conditions such as those of Corollagg> or <10>, and a mild assumption such as
product measurability of(x, Tx) : x € X}, this definition would lead to a regular
conditional distribution.

Sufficiency and canonical measures

Let P := {P, : 6 € ©®} be a statistical model, with all the measures living(@i.A),

and letT be a measurable map fro¢fX, A) into (Y, B). Roughly speaking, if it is
possible to recoveP, from Q, := TP, by a randomizationwhich does not depend
on 0, then the measurable mdpis said to besufficient for 2. More formally, say
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8 Chapter 4:  Randomization

that T is M-sufficient if there is a M-randomization for whiclKQy = P, for all 9,
with analogous definitions fak—sufficient and L—sufficient

REMARK.  The K-sufficiency requires & that is a K-randomization modul@,
for every 9. If P is not dominated by a sigma-finite measure, the construction of
such ax would require extremely delicate handling of negligible sets.

Statistical folklore asserts that,#is dominated by som®,, then the likelihood
ratios py (x) := dPy/dPy, are sufficient. More formally, the map— {os(x) : 6 € B}
from X into R® is supposed to be sufficient, in some sense that is seldom made
explicit. It is possible to make the idea more precise in several cases. To avoid
difficulties related to the the choice of versions of densities and the handling of
infinite families of negligible sets, let us first consider the case where the index
set® is finite, dominated by a sigma-finite measure that need not necessarily be a
member ofP.

<11> Theorem. Let the statistical modé} .= {P, : § € ®}, with ® finite, be dominated
by a measure., for whichdP,/dx. = py. DefineT : X — RY as the map taking
to the point with coordinatep,(x). ThenT is K-sufficient for®.

Proof. Without loss of generality suppose= {1, 2, ..., k}. Write ; for TP, for
i =1,...,k. DefineP:=® +...+P)/kandQ = TP = (Q; +... + Q) /k.
Let « be the Kolmogorov conditional expectation fBrgiven T. That is,« is a
K-randomization modul@ (and hence also modul@; for eachi) such that: ifu
is a finite measure with densitju/dQ = g thend(xw)/dP = g(Tx). It is enough
to show thatcQ; = I} for eachi.

For eachi andy € R¥, defineqgi(y) := kyi{y:1 +... + Y > 0}/ (V1 + ...+ V).
The measuré; has density

kp (X)
q(Tx) = pl(x)+'_.+pk(x){pl(X)+...+pk(X)>0}

with respect tdP. (More precisely, the ratio is one possible choice for the density.)
It follows thatQ; has densityg, with respect toQ, because

Qig(y) = PXg(Tx) = P*q (TX)g(Tx) = Q¥ (G (Y)9(y)) -

By definition of «, the measureQ; has densityq; (T x) with respect taP. That is,
O «Q =P, as required.

To do: Develop general form of the factorization theorem for sufficiency.

REMARK. Ignore this remark. [Compare with Le Cam (1986, Sections 3.1 and
3.2) for general®. Maybe state as L-equivalence for genega]

As the proof of the Theoremr11> shows, it is convenient to take:= )", P,
as the dominating measure whenis finite. The densitieg,(x) := dPy/dA then
sum to one. The vector of densiti@gx) := {ps(X) : 6 € O} mapsX into the
simplex8g :={y € RE : Y, Yo = 1}. The image measure := T concentrates on
the simplex, with total mass equal to the cardinalitysof The measure. is called
the canonical measureof P. The image measur®, := TP, hasu-densityy, for
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4.5 Sufficiency and canonical measures 9

eachd. The statistical moded = {Q, : 6 € ®} is K-equivalent taP. If two statistical

models have the same canonical measure then they must be equivalent, because the
canonical measures generate the s@nom R?. The converse proposition is slightly

less obvious.

Theorem. If P:={P,:0 c ®} andP := (P, : 6 € ©} are L-equivalent, ane is

finite, then both models have the same canonical measure.

Proof. With no loss of generality, assunte := {1, 2, ..., k}. Write kQ and k@

for the two canonical measures, living on separate cdsieady of the simplexsy.

They generate statistical models= {Q; :i € ®} andQ = {Qy : 0 € 0}, with

dQi /dQ = kx andd(@I /dQ = ky. Notice thatkQ = )", Q; and k(@ Z, Q. We
are given that andQ are L- -equivalent. We need to deduce tiat Q

As Sk is a compact metric space, L-equivalence implies M-equivalence. Thus
there exist Markov kernel& (from X to Y) andK (from Y to X) for which
KQ =Q and KQ = O for eachi.

Sum overi to deduce thakQ = Q and KQ = Q.

The kernelK and the measur® define a probability measure ;= Q ® K on
X x Y, with marginalsQ andKQ = Q. We can also writd” asQ ® H, with H a
Markov kernel fromY to X.

REMARK. _ At the moment we _know nothing about the relationship between the
two kernelsK and H, except thatkQ = Q = HQ. In particular, we cannot assert
that Q@ K =T.

The ‘conditional meanHx has a striking property. For eachin M*(¥),
Qg =9y
= (KQi)” 9(y)
= Q" (xKJa(y))
=TV (x9(y)
= QH (x 9(y)) = @ (9(y)Hx;) .
ThusHyx =y a.e. [0]. Consequently, the cross-product term in
Hy(x — 1% =Hy (6 —¥)? + 206 — ) — D+ (v = D?)
vanishes, leaving an identity that integrates to
Q' — D = QH(x — D = Y(x — y)? + QV(yi — D = Q(yi — D2

If we reverse the roles of and Q, and repeat the whole argument leading
to <13> (with a joint distribution different fronT"), we arrive at a similar identity
with the roles ofx andy reversed, which implies tha(y, — 1)2 > Q(x; — 1)2. We
must therefore conclude th@¥ (y; — 1)2 = Q(x — 1)2, and hencd™Y(x — y;)2 = 0.
That is,x = y; a.e. [']. The joint distributionT" concentrates on the diagonal
{(X,y) € X xY:x=y}. Its marginalsQ andQ, are therefore equal.
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Advantages of Le Cam randomizations

Expand the following into a real proof.

Not yet edited from here onwards. Old notation

Theorem. Let?P ={P;:0 € ®} andQ = {Q, : 8 € ®} be statistical models with
the property that, for each finite subsgibf © there exists an L-randomizatiqrg
such thatk sPy = Qy for eachd € S. Then there exists an L-randomizati&nsuch
thatKP, = Q, for every in ©.

Proof. Regard the collectios of all finite subsets ob as a directed set, ordered
by inclusion. Let{S : i € J} be a universal subnet dKs : S € 8}. For each
g € M(Y) and eachn in caX), the net{AKsg : S € 8} takes value in a bdd interval.
Hence

R}, Q) = Iiim rKsg

is well defined and finite. As a functional davi(y) the mapg — R(, g) is
increasing and linear. ldentifR with a linear map from caX) into the Banach
lattice M, (Y). It defines an element of the dual spade (Y), which contains the
space cé)) as a band. Write for the projection operator onto that band. Check
that

Ki=toR+(1—|70oR[Q

for a fixed but arbitrary probability measut® on Y, is a Le Cam-randomization
that maps eaclt, onto the correspondin@.

Choice of sample space

Meaning of equivalence?
Le Cam: the spacéX, A) is not uniquely determined. Effectively he regarded
experiments as equivalent if they generate isomorphic Banach lattices.

Problems
Use a linear lifting (Appendix AppLifting) to select a “linear version” of the
Kolmogorov conditional expectation.

Show how to get Markov-randomization for a function taking values in a locally
compact Hausdorff space, for dominated experiments.

Let? = {P : 0 € ©} be dominated by a sigma-finite measureShow that? is also
dominated by a probability measure of the fobm= ">, 2P, for some choice
of {6;}.
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4.9 Notes 11

Notes

See Schaefer (1986) for the theory of topological vector spaces, including the
separation theorems for locally convex, topological vector spaces..

See Schaefer (1974) for facts about L-spaces and M-spaces.

Torgersen (1991), Millar (1983), Strasser (1985), van der Vaart (1984).
Le Cam (1986, Section 2.3) for characterizationsedistance via comparison of
risks. Le Cam (1964).

Blackwell for canonical measure.

Following Bohneblust et al. (1949) Blackwell (1953) and Blackwell (1951),
Le Cam defined a notion of equivalence, between two experiments with the same
index set, using an extension of the idea of randomization

Blackwell for canonical measure. Explain connection with dilation. Check
Strassen paper.
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