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Chapter 4

Randomization

SECTION 1 : reminder of about role of randomization in Le Cam dist
SECTION 2 : facts about linear fnals
SECTION 3 : introduce M-, K-, and L-randomizations
SECTION 4 : express conditioning via randomizations
SECTION 5 : prove K-sufficiency of LR; canonical measures
SECTION 6 : advantages of Le Cam randomization
SECTION 7 : choice of sample space

Chapter incomplete. First draft. Many remarks intended only as reminders to DP.

1. Le Cam distance

A probability model consists of a probability measure on a sigma-fieldA of
some setX. A statistical model is an indexed family of probability measures,
P := {Pθ : θ ∈ �} on (X, A). Let Q := {Qθ : θ ∈ �} be another statistical model,
with the same index set�, but with theQθ measures living on some(Y, B).
The Le Cam distanceδ(Q, P) from Q to P is defined as the infimum of all those
constantsε for which there exists a randomizationK for which

<1> 1
2
‖KQθ − Pθ‖1 ≤ ε for everyθ in �.

The symmetric form of the Le Cam distance,�(P, Q), is defined as the maximum of
δ(P, Q) and δ(Q, P). If �(P, Q) = 0 then the experiments are said to be equivalent
(in Le Cam’s sense).comment on whether inf

achieved; note advantage of
L-randn The subtlety of the definition lies in the meaning given to the wordran-

domization. In this Chapter, I shall temporarily distinguish between three types of
construction that capture the idea of randomization, to which I shall give slightly
artificial names: M-randomization, K-randomization, and L-randomization. Here
the M is intended as a reminder of the role played by Markov kernels, the K refers
to the similarity to Kolmogorov’s abstract conditional expectation, and the L refers
to Le Cam.
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2 Chapter 4: Randomization

For the moment I shall ignore the question of whether the infima in the
definition of �(P, Q) are achieved, and refer to statistical modelsP andQ as being
M-equivalent if there are M-randomizationsK and K′ for which KQθ = Pθ and
K′Pθ = Qθ for all θ in �. The definitions for K- and L-equivalence are analogous.K-equiv subtle,

because of negligible sets In fact, one of the advantages of the L-randomizations will be that the infima in the
definitions are achieved, whereas extra regularity conditions are needed before the
same assertion can be made for the other two concepts.

My main purpose is to explain the value of the abstract definition introduced
by Le Cam (1964)—expanding on ideas of Bohneblust, Shapley & Sherman (1949),

Check 64 citation
Blackwell (1951), and Blackwell (1953)—as a way to sidestep a host of “regularity
conditions” that Le Cam regarded as superfluous to the statistical interpretation.

Remark. Over the years I have slowly come to agree with much of Le Cam’s
argument, although I cannot claim complete comfort with some of the abstractions.
As I explain in Section7, I believe some of my difficulties are related to an
unjustifiable belief in the idea that probability models should start with a choice of
sample space.

2. Linear functionals and measures

For a setX equipped with a sigma-fieldA, define

M+(X, A) := all A-measurable functions fromX into R
+

:= R+ ∪ {∞},
M+(X, A) := all bounded functions inM+(X, A).

Remember that countably additive, nonnegative measures onA can be identified
with those increasing linear functionals onM+(X, A) that have the Monotone
Convergence property. For finite measures, it is more convenient to make an
identification with increasing linear functionals onM+(X, A).

DefineL+(X, A) to consist of all mapsλ : M+(X, A) → R+ for whichmention interpretation as finitely
additive measures?

λ(α1 f1 + α2 f2) = α1λ( f1) + α2λ( f2) for all αi ∈ R+ and fi ∈ M+(X, A).

For functionals inL+(X, A), write λ1 ≥ λ2 to mean thatλ1 f ≥ λ2 f for all f
in M+(X, A).

The finite (countably additive, nonnegative) measures onA correspond to the
subsetL+

σ (X, A) of such functionals that areσ -smooth at0:

if { fn : n ∈ N} ⊆ M+(X, A) and fn ↓ 0 pointwise thenλ fn ↓ 0.

If Q ∈ L+
σ (X, A) thenL+

Q (X, A) will denote the subset ofL+
σ (X, A) consisting of the

measures dominated byQ.density needn’t be bdd; still need

results forM+
When the choice ofX or of A is clear, I will abbreviateM+(X, A) to M+(X),

or M+(A), or even justM+. And so on.

Remark. The setsM+, L+, and L+
σ are the positive cones of various vector

lattices. Everything to be discussed in this Section is actually just a special case of
general results for abstract vector lattices. See Appendix D for the general case.

There is a small collection of results about linear functionals that explains some
of the reasons for the success of Le Cam’s abstract approach to decision theory.
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4.2 Linear functionals and measures 3

<2> Lemma. Let λ1 andλ2 be functionals inL+(X, A). The functionals defined by

µ f := sup{λ1 f1 + λ2 f2 : f = f1 + f2 with fi ∈ M+(X, A)}
ν f := inf{λ1 f1 + λ2 f2 : f = f1 + f2 with fi ∈ M+(X, A)}

both belong toL+(X, A). The linear functionalµ is the smallest for whichµ ≥ λi

for i = 1, 2, andν is the largest for whichν ≤ λi for i = 1, 2.

Remark. The functionalµ is usually denoted byλ1 ∨ λ2, and is called the
lattice-theoretic maximum ofλ1 and λ2. Similarly ν is denoted byλ1 ∧ λ2, and is
called their lattice-theoretic minimum.

Proof. It is easy to see thatµ(g + h) ≥ µ(g) + µ(h) for all g, h ∈ M+. For if
g1 + g2 = g andh1 + h2 = h then

λ1g1 + λ2g2 + λ1h1 + λ2h2 = λ1(g1 + h1) + λ2(g2 + h2) ≤ µ(g + h).

Take the supremum over all suchgi pairs andhi pairs to get the stated inequality.
For the reverse inequality, supposef1 + f2 = g + h. It is possible to split eachfi
into gi + hi in such a way thatg = g1 + g2 andh = h1 + h2:

g1 := f1 ∧ g g2 := (g − f1)+ = ( f2 − h)+ g

h1 := (h − f2)+ = ( f1 − g)+ h2 := f2 ∧ h h

f1 f2 f1 + f2 = g + h

We then have

µg + µh ≥ (λ1g1 + λ2g2) + (λ1h1 + λ2h2) = λ1 f1 + λ2 f2.

Take the supremum over all suchfi pairs to getµ(g + h) ≤ µ(g) + µ(h). An even
easier argument shows thatµ(α f ) = αµ( f ) for α ∈ R+ and f ∈ M+. Thusµ ∈ L+.

If γ is another functional for whichγ ≥ λi for i = 1, 2, and if f1 + f2 = f ,
thenλ1 f1 + λ2 f2 ≤ γ f1 + γ f2 = γ f , which implies thatµ ≤ γ .

The arguments forν ∈ L+ are similar.�
<3> Corollary. If λ1 ∈ L+(X, A) andλ2 ∈ L+

σ (X, A) thenλ1 ∧ λ2 ∈ L+
σ (X, A).

Proof. If fn ↓ 0 pointwise, then(λ1 ∧ λ2) fn ≤ λ2 fn ↓ 0.? mention interpretation:Lσ is
a band inL

�
<4> Theorem. For eachλ in L+(X, A) the collectionBλ := {µ ∈ L+

σ (X, A) : µ ≤ λ}
contains a largest member, denoted byπσλ. The mapλ �→ πσλ is linear and. . .check projection argument for

what more is needed
Proof. Defineδ := sup{µ1 : µ ∈ Bλ}. Note thatδ ≤ λ1 < ∞. Find {µi : i ∈ N}
with supi µi 1 = δ. Let γ be a finite measure, such as

∑
i 2−i µi , that dominates

eachµi . Write mi for the densitydµi /dγ . Define µ∞ as the measure with
densitym∞ := supi mi with respect toγ .

To prove thatµ ∈ Bλ, fix an n, then define setsAi ∈ A such thatfi = maxj ≤n f j

on Ai . For f ∈ M+, we have

γ
(

f maxj ≤n mj
) =

∑
j ≤n

γ
(

f mj Aj
) =

∑
j ≤n

µj
(

f Aj
) ≤

∑
j ≤n

λ
(

f Aj
) = λ f.

Let n increase to infinity to deduce thatµ f ≤ λ f .
Clearly µ∞ ≥ µi for eachi , and henceµ∞1 = δ. If µ0 is any other member

of Bλ, with no loss of generality we may suppose it has a densitym0 with respect
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4 Chapter 4: Randomization

to γ . A small variation on the argument in the preceding paragraph shows that
µ∞ ∨ µ0 ∈ Bλ, and henceδ ≥ (µ ∨ µ0)1 = γ (m∞ ∨ m0) ≥ γ (m∞) = µ1 = δ. It
follows thatm∞ ∨ m0 = m∞ a.e. [γ ], andµ0 ≤ µ∞. The measureµ∞ definesπσ (λ),
the largest member ofBλ.

It is easy to see thatπσ (λ1 + λ2) ≥ πσ (λ1) + πσ (λ2) andπσ (αλ) = απσ (λ) for
α ∈ R+, becauseL+

σ is stable under sums and multiplication by positive constants.
Write µi for πσ (λi ). To establish the reverse inequality, supposeµ0 ∈ Bλ1+λ2. Then
λ1 + λ2 = µ0 + γ0 for someγ0 in L+. There is a decompositionµ0 = µ1 + µ2 with
µi ≤ λi for i = 1, 2:

µ1 := µ0 ∧ λ1 γ1 := (λ1 − µ0)
+ = (γ0 − λ1)

+ λ1

µ2 := (λ2 − γ0)
+ = (µ0 − λ1)

+ γ2 := γ0 ∧ λ2 λ2

µ0 γ0 λ1 + λ2

Here(γ0 −λ1)
+ equalsγ0 −γ0 ∧λ1, the smallestγ in L+ for which γ ≥ γ0 −λ1, and

so on. We therefore haveµ0 = µ1 + µ2 ≤ πσ (λ1) + πσ (λ2), for everyµ0 in Bλ1+λ2.
The linearity ofπσ follows.�

Remark. It is no accident that the proofs of Lemma<2> and Theorem<4>
both involved the decomposition shown in the tabular displays. In fact, both
constructions correspond to the same fact for vector lattices. Perhaps it would be
better to argue directly from the more general constructions in Appendix D.

3. Randomization: three possibilities

To understand the meaning given by Le Cam to theK in <1>, you should think of
a randomization as a mechanism to convert observations from one distribution into
observations from another distribution: sample ay from Q, crank up the randomizer,
then out pops an observationx from P. The randomization might be provided by a
Markov kernel,K := {Ky : y ∈ Y}, a family of probability measures onA for which
Kx

y f (x) ∈ M+(Y, B) for each f in M+(X, A). In that case,P f is given by

P f = QyKx
y f (x) for f ∈ M+(X, A).

More generally, we can use the kernel to define a linear map fromL+
σ (Y, B)

to L+
σ (X, A), by (Kµ) f := µyKx

y f (x). If µ is a probability measure then so isKµ.
I will call a randomization defined in this way anM-randomization.

<5> Example. The simplest example of a M-randomization is given by a measurable
map, S : Y → X. TakeKy as the probability measure degenerate at the pointS(y)

thenKQ is just the image measureSQ, defined by(SQ) f = Q( f ◦ S).�
If we focus not on the mechanism by which thex is generated from they, but

on the correspondence between theQ that goes in and theP that comes out, then
it is natural to think of a randomization as a map from measures to measures that
preserves total mass. This idea underlies Le Cam’s definition of randomizations
(which he called transitions). Define anL-randomization from Y to X to be a map
K from L+

σ (Y, B) to L+
σ (X, A) for which
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4.3 Randomization: three possibilities 5

(i) K (α1µ1 + α2µ2) = α1Kµ1 + α2Kµ2 for all µi ∈ L+
σ (Y, B) andαi ∈ R+,

(ii) (Kµ)(X) = µ(Y).
Between the two extremes of M- and L-randomizations lies a concept suggested

by the definition of the Kolmogorov conditional expectation from classical probability
theory.

<6> Definition. Let Q be measure onB, and letκ be a map fromM+(X, A) to
M+(Y, B), with the value ofκ f at the pointy being denoted byκ(y, f ). Call κ a
K-randomizationmoduloQ if

(i) κ(x, 1) = 1 a.e. [Q].

(ii) for each f1, f2 ∈ M+(X, A) and eachα1, α2 ∈ R+,

κ(x, α1 f1 + α2 f2) = α1κ(y, f1) + α2(x)κ(y, f2) a.e. [Q]

(iii) if { fn} is a sequence inM+(X, A) that decreases pointwise to0 then
κ(y, fn) ↓ 0 a.e. [Q].

Remark. Ignore this remark. [In what sense could we think of a K-
randomizationκ(y, ·) as a recipe for generating ax from an observationy
on Q? There need be no probability measureKy for which Ky f = κ(y, f ); there
is no probability distribution from which to generatex. However, if we are only
interested in some particular random variableZ := Z(x) it is possible to define a
Markov kernelHy(·) from Y to R, in such a way thatκ(y, h(Z)) = Hz

yh(z), for
eachh in M+(R). Indeed,κ(y, h(Z)) defines a K-randomization moduloQ from Y
into the locally compact metric spaceR, so Corollary<9> applies.]

Every M-randomization defines a K-randomization, in the obvious way:
κ(y, f ) := Kx

y f (x). The precautions aboutQ-negligible sets are not needed in this
case. Indeed, it is largely the accumulation of uncountably many negligible sets that
prevents us, in general, from finding a singleQ-negligible setN such thatκ(y, ·) is
a probability measure for eachy in Nc.

Every K-randomization defines a L-randomization, but the construction must
accommodate the fact thatκ(y, ·) might behave badly onQ-neglible sets. If
µ ∈ L+

Q(Y, B), that is, if µ ∈ L+
σ (Y, B) andµ � Q, then(κµ) f := µyκ(y, f ) defines

a linear functional inL+
σ (X, A). (Countable additivity, in the form ofσ -smoothness

at 0, comes from property (iii) ofκ.) In fact, κµ ∈ L+
P (X, A), whereP := κQ. For

if 0 = P f = Qκ(y, f ), with f ∈ M+(X, A), thenκ(y, f ) = 0 a.e. [Q], which implies
κ(y, f ) = 0 a.e. [µ] and (κµ) f = 0.

If µ does not belong toL+
Q(Y, B), write it as µ̃ + µ⊥, with µ̃ � Q and

µ⊥ singular, that is, it concentrates on aQ-negligible set. For fixed probability
measureP0 on A (the same for everyµ), define a measureκµ in L+

σ (X, A) by

(κµ) f := µ̃yκ(y, f ) + µ⊥(Y)P0 f for f ∈ M+(X, A).

Linearity of the mapµ �→ µ̃ ensures thatκ is linear in µ. The construction also
ensures that(κµ)(X) = µ̃Y + µ⊥Y = µY. That is,κ is an L-randomization.

Remark. Ignore this remark. [The proof works becauseLQ is a band inLσ .
The mapµ �→ µ̃ is the projection onto the band. See Appendix D.]
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6 Chapter 4: Randomization

The construction from the last two paragraphs can be run in reverse, to build
many K-randomizations from any L-randomizationK .

<7> Theorem. For each L-randomizationK and eachQ in L+
σ (Y, B) there exists a

K-randomizationκ moduloQ such thatκµ = Kµ for eachµ in L+
Q(Y, B).

Proof. For g ∈ M+(Y) with Qg < ∞, write Qg for the finite measure with densitygbetter to useM+ then pass to
limit? with respect toQ. Then defineν f (g) := (KQg)( f ) for f ∈ M+(X). For fixed f , the

mapg �→ ν f (g) is linear. If 0≤ f ≤ C, with C constant, then

ν f (g) ≤ C
(
KQg

)
(1) = CQg1 = CQg.

Thusν f ∈ L+
Q(Y), with densityκ(y, f ) with respect toQ bounded above byC:

(KQg)( f ) = ν f (g) = Qy (g(y)κ(y, f )) for f ∈ M+(X) andg ∈ M+(Y).

We need to check properties (i), (ii), and (ii) of Definition<6>. For f ≡ 1 we
haveν1 = Q, which lets us chooseκ(y, 1) ≡ 1. For fixedg, the map f �→ ν f (g) is
linear. Thus, for allαi ∈ R+ and allg ∈ M+(Y),

Q (g(y)κ(y, α1 f1 + α2 f2)) = α1Q (g(y)κ(y, f1)) + α2Q (g(y)κ(y, f2)) .

With strategic choices forg we then recover the linearity property (ii). (In conse-
quence, if f1 ≤ f2 thenκ(y, f1) ≤ κ(y, f2) a.e. [Q].)

Finally, if { fi : i ∈ N} ⊆ M+(X) and fi ↓ 0 pointwise, then

Qyκ(y, fn) = (KQ) fn ↓ 0,

from which property (iii) follows. Thusκ is a K-randomization. The definining
property forκ becomes(Kµ)( f ) = µyκ(y, f ) = (κµ)( f ) if we write µ for Qg.�

Remark. Not surprisingly, the method of proof for the Theorem is based on
the same idea as the method for proving existence of conditional expectations in
Kolmogorov’s sense.

<8> Example. Let X = Y = [0, 1] equipped with its Borel sigma-fieldA = B. Define
an -randomizationK by K δy := δ1−y for point masses, andKν := ν for nonatomicν.
Extend by linearity. Note that theK cannot be represented by a Markov kernel.�

Remark. Ignore this remark. [The Example will be worth a revisit when we
consider the Kakutani representation, whereby every L-randomization is represented
by a Markov kernel. Something interesting happens to the sample space where the
measures live, so that point masses live on a part of the space disjoint from the
support of nonatomic measures.]

Under topological regularity conditions, the conclusion of Theorem<7> can
be strengthened, replacing the K-randomization by an M-randomization.

<9> Corollary. If X is a locally compact metric space, withA its Borel sigma-field,
then the conclusion of Theorem<7> holds withκ replaced by a Markov kernel.

<10> Corollary. If X is a compact Hausdorff space, withA its Borel sigma-field, and
if B contains allQ-negligible sets, then the conclusion of Theorem<7> holds with
κ replaced by a Markov kernel.

Is Q completion really needed?
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4.3 Randomization: three possibilities 7

Use separability argument for Corollary<9>, as in construction of disintegration.
Use linear lifting for Corollary<10>. In both cases, build the kernel as a linear
functional on the continuous functions inM+(X) with compact support.

The bottom line: the distinctions between the three forms of randomizations
are largely a matter of regularity conditions to manage negligible sets, and choice
of the state space to getσ -smoothness automatically for continuous functions with
compact support.

4. Conditioning

In classical probability theory, randomizations also appear in the study of condition-
ing. Consider the case whereT is a measurable map from(X, A) to (Y, B), with
Q = TP, the image of some probability measureP on A.

The strongest concept is that of a disintegration, or regular conditional
distribution. The conditional distribution forP is then a Markov kernelK from
(Y, B) to (X, A), for which KQ = P and Ky{T �= y} = 0 for Q-almost all y.
Sometimes the integralKx

y f (x) is written P( f | T = y), which, unfortunately, is
also used to denote the related Kolmogorov conditional expectation.

Remark. Unfortunately, existence of regular conditional distributions does not
come for free. If we want conditional distributions represented by Markov kernels we
have to impose regularity conditions on the mapT and on the probability measures.
Le Cam would probably have pointed to these regularity conditions as unwanted
intrusions on the idea of randomization.reference?

The Kolmogorov conditional expectation can be defined in any of three
equivalent ways. It is a K-randomization moduloQ for which either

(i) Px ( f (x)g(T x)) = Qy (g(y)κ(y, f )) for all g ∈ M+(Y) and f ∈ M+(X)
Use M+ or M+ for g?

(ii) κQ = P andκ(y, (g ◦ T) f ) = g(y)κ(y, f ) a.e. [Q], for all f ∈ M+(X) and
g ∈ M+(Y)

(iii) for each µ in L+
Q(Y, B), if dµ/dQ = g thend(κµ)/dP = g ◦ T .

even if g is not bdd?
The form (iii) suggests that we might regard a Le Cam randomization as

representing conditioning onT if d(Kµ)/dP = g ◦ T when dµ/dQ = g. Under
conditions such as those of Corollary<9> or <10>, and a mild assumption such as
product measurability of{(x, T x) : x ∈ X}, this definition would lead to a regular
conditional distribution.details?

5. Sufficiency and canonical measures

Let P := {Pθ : θ ∈ �} be a statistical model, with all the measures living on(X, A),
and letT be a measurable map from(X, A) into (Y, B). Roughly speaking, if it is
possible to recoverPθ from Qθ := TPθ by a randomizationwhich does not depend
on θ , then the measurable mapT is said to besufficient for P. More formally, say
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8 Chapter 4: Randomization

that T is M-sufficient if there is a M-randomization for whichKQθ = Pθ for all θ ,
with analogous definitions forK–sufficient andL–sufficient.

Remark. The K-sufficiency requires aκ that is a K-randomization moduloQθ

for every θ . If P is not dominated by a sigma-finite measure, the construction of
such aκ would require extremely delicate handling of negligible sets.

Statistical folklore asserts that, ifP is dominated by somePθ0 then the likelihood
ratiosρθ (x) := dPθ /dPθ0 are sufficient. More formally, the mapx �→ {ρθ (x) : θ ∈ �}
from X into R� is supposed to be sufficient, in some sense that is seldom made
explicit. It is possible to make the idea more precise in several cases. To avoid
difficulties related to the the choice of versions of densities and the handling of
infinite families of negligible sets, let us first consider the case where the index
set� is finite, dominated by a sigma-finite measure that need not necessarily be a
member ofP.

<11> Theorem. Let the statistical modelP := {Pθ : θ ∈ �}, with � finite, be dominated
by a measureλ, for which dPθ /dλ = pθ . Define T : X → R�

+ as the map takingx
to the point with coordinatespθ (x). ThenT is K-sufficient for P.

Proof. Without loss of generality suppose� = {1, 2, . . . , k}. Write Qi for TPi , for
i = 1, . . . , k. DefineP := (P1 + . . . + Pk)/k and Q := TP = (Q1 + . . . + Qk)/k.
Let κ be the Kolmogorov conditional expectation forP given T . That is,κ is a
K-randomization moduloQ (and hence also moduloQi for eachi ) such that: ifµ
is a finite measure with densitydµ/dQ = g thend(κµ)/dP = g(T x). It is enough
to show thatκQi = Pi for eachi .

For eachi and y ∈ Rk
+, defineqi (y) := kyi {y1 + . . . + yk > 0}/ (y1 + . . . + yk).

The measurePi has density

qi (T x) = kpi (x)

p1(x) + . . . + pk(x)
{p1(x) + . . . + pk(x) > 0}

with respect toP. (More precisely, the ratio is one possible choice for the density.)
It follows that Qi has densityqi with respect toQ, because

Qi g(y) = Px
i g(T x) = Pxqi (T x)g(T x) = Qy (qi (y)g(y)) .

By definition of κ, the measureκQi has densityqi (T x) with respect toP. That is,
κQi = Pi , as required.�

To do: Develop general form of the factorization theorem for sufficiency.

Remark. Ignore this remark. [Compare with Le Cam (1986, Sections 3.1 and
3.2) for general�. Maybe state as L-equivalence for general�.]

As the proof of the Theorem<11> shows, it is convenient to takeλ := ∑
θ Pθ

as the dominating measure when� is finite. The densitiespθ (x) := dPθ /dλ then
sum to one. The vector of densitiesT(x) := {pθ (x) : θ ∈ �} mapsX into the
simplexS� := {y ∈ R�

+ :
∑

θ yθ = 1}. The image measureµ := Tλ concentrates on
the simplex, with total mass equal to the cardinality of�. The measureµ is called
the canonical measureof P. The image measureQθ := TPθ hasµ-density yθ for
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4.5 Sufficiency and canonical measures 9

eachθ . The statistical modelQ = {Qθ : θ ∈ �} is K-equivalent toP. If two statistical
models have the same canonical measure then they must be equivalent, because the
canonical measures generate the sameQ on R�

+. The converse proposition is slightly
less obvious.

<12> Theorem. If P := {Pθ : θ ∈ �} and P̃ := {̃Pθ : θ ∈ �} are L-equivalent, and� is
finite, then both models have the same canonical measure.

Proof. With no loss of generality, assume� := {1, 2, . . . , k}. Write kQ and kQ̃

for the two canonical measures, living on separate copiesX andY of the simplexSk.
They generate statistical modelsQ = {Qi : i ∈ �} and Q̃ = {Q̃θ : θ ∈ �}, with
dQi /dQ = kxi anddQ̃i /dQ̃ = kyi . Notice thatkQ = ∑

i Qi andkQ̃ = ∑
i Q̃i . We

are given thatQ and Q̃ are L-equivalent. We need to deduce thatQ = Q̃.
As Sk is a compact metric space, L-equivalence implies M-equivalence. Thus

there exist Markov kernelsK (from X to Y) andK̃ (from Y to X) for which

KQi = Q̃i and K̃Q̃i = Qi for eachi .

Sum overi to deduce thatKQ = Q̃ andK̃Q̃ = Q.
The kernelK and the measureQ define a probability measure� := Q ⊗ K on

X × Y, with marginalsQ andKQ = Q̃. We can also write� as Q̃ ⊗ H, with H a
Markov kernel fromY to X.

Remark. At the moment we know nothing about the relationship between the
two kernelsK̃ and H, except that̃KQ̃ = Q = HQ̃. In particular, we cannot assert
that Q̃ ⊗ K̃ = �.

The ‘conditional mean’Hx
yx has a striking property. For eachg in M+(Y),

Q̃ (yi g(y)) = Q̃
y
i g(y)

= (KQi )
y g(y)

= Qx
(
xi K

y
xg(y)

)
= �x,y (xi g(y))

= Q̃yHx
y (xi g(y)) = Q̃y

(
g(y)Hx

yxi
)
.

ThusHx
yxi = yi a.e. [̃Q]. Consequently, the cross-product term in

Hx
y(xi − 1)2 = Hx

y

(
(xi − yi )

2 + 2(xi − yi )(yi − 1) + (yi − 1)2
)

vanishes, leaving an identity that integrates to

<13> Qx(xi − 1)2 = Q̃yHx
y(xi − 1)2 = �x,y(xi − yi )

2 + Q̃y(yi − 1)2 ≥ Q̃y(yi − 1)2.

If we reverse the roles ofQ and Q̃, and repeat the whole argument leading
to <13> (with a joint distribution different from�), we arrive at a similar identity
with the roles ofx and y reversed, which implies that̃Qy(yi − 1)2 ≥ Q(xi − 1)2. We
must therefore conclude that̃Qy(yi − 1)2 = Q(xi − 1)2, and hence�x,y(xi − yi )

2 = 0.
That is, xi = yi a.e. [�]. The joint distribution� concentrates on the diagonal
{(x, y) ∈ X × Y : x = y}. Its marginals,Q andQ̃, are therefore equal.�
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10 Chapter 4: Randomization

6. Advantages of Le Cam randomizations

Expand the following into a real proof.

Not yet edited from here onwards. Old notation

<14> Theorem. Let P = {Pθ : θ ∈ �} andQ = {Qθ : θ ∈ �} be statistical models with
the property that, for each finite subsetS of � there exists an L-randomizationρS

such thatKSPθ = Qθ for eachθ ∈ S. Then there exists an L-randomizationK such
that KPθ = Qθ for everyθ in �.

Proof. Regard the collectionS of all finite subsets of� as a directed set, ordered
by inclusion. Let{Si : i ∈ I} be a universal subnet of{KS : S ∈ S}. For each
g ∈ M(Y) and eachλ in ca(X), the net{λKSg : S ∈ S} takes value in a bdd interval.
Hence

R(λ, g) = lim
i

λKSi g

is well defined and finite. As a functional onM(Y) the mapg �→ R(λ, g) is
increasing and linear. IdentifyR with a linear map from ca+(X) into the Banach
lattice M+(Y). It defines an element of the dual spaceM+(Y), which contains the
space ca(Y) as a band. Writeτ for the projection operator onto that band. Check
that

Kλ = τ ◦ R + (1 − ‖τ ◦ R‖)Q0

for a fixed but arbitrary probability measureQ0 on Y, is a Le Cam-randomization
that maps eachPθ onto the correspondingQθ .�

7. Choice of sample space

Meaning of equivalence?
Le Cam: the space(X, A) is not uniquely determined. Effectively he regarded

experiments as equivalent if they generate isomorphic Banach lattices.

8. Problems

[1] Use a linear lifting (Appendix AppLifting) to select a “linear version” of the
Kolmogorov conditional expectation.

[2] Show how to get Markov-randomization for a function taking values in a locally
compact Hausdorff space, for dominated experiments.

[3] Let P = {Pθ : θ ∈ �} be dominated by a sigma-finite measureλ. Show thatP is also
dominated by a probability measure of the formP = ∑∞

i =1 2−i Pθi for some choice
of {θi }.
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4.9 Notes 11

9. Notes

See Schaefer (1986) for the theory of topological vector spaces, including the
separation theorems for locally convex, topological vector spaces..

See Schaefer (1974) for facts about L-spaces and M-spaces.
Torgersen (1991), Millar (1983), Strasser (1985), van der Vaart (1984).

Le Cam (1986, Section 2.3) for characterization ofδ-distance via comparison of
risks. Le Cam (1964).

Blackwell for canonical measure.
Following Bohneblust et al. (1949) Blackwell (1953) and Blackwell (1951),

Le Cam defined a notion of equivalence, between two experiments with the same
index set, using an extension of the idea of randomization. . .

Blackwell for canonical measure. Explain connection with dilation. Check
Strassen paper.
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