NOTATION

UGMTP = User's Guide to Measure-Theoretic Probability

Let \mathcal{X} be a set equipped with a sigma-field \mathcal{A} . Identify sets with their indicator functions [UGMTP §1.4]. Define

- $\mathcal{M}(\mathcal{X}, \mathcal{A}) :=$ all \mathcal{A} -measurable functions from \mathcal{X} into $[-\infty, \infty, \infty]$
- $\mathcal{M}^+(\mathcal{X}, \mathcal{A}) :=$ all nonnegative functions in $\mathcal{M}(\mathcal{X}, \mathcal{A})$
- $\mathbb{M}(\mathfrak{X}, \mathcal{A}) :=$ all bounded functions in $\mathcal{M}(\mathfrak{X}, \mathcal{A})$
- $\mathbb{M}^+(\mathfrak{X}, \mathcal{A}) :=$ all bounded, nonnegative functions in $\mathcal{M}(\mathfrak{X}, \mathcal{A})$.

Unless stated otherwise, measures will always be understood to be nonnegative and countably additive. Finitely additive measures on \mathcal{A} correspond to maps λ from $\mathbb{M}^+(\mathcal{X}, \mathcal{A})$ to \mathbb{R}^+ that are linear, in the sense that

$$\lambda(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 \lambda(f_1) + \alpha_2 \lambda(f_2)$$
 for all $\alpha_i \in \mathbb{R}^+$ and $f_i \in \mathbb{M}^+(\mathcal{X}, \mathcal{A})$

Write $\mathbb{L}^+(\mathcal{X}, \mathcal{A})$ for the set of all such functionals. For functionals in $\mathbb{L}^+(\mathcal{X}, \mathcal{A})$, write $\lambda_1 \geq \lambda_2$ to mean that $\lambda_1 f \geq \lambda_2 f$ for all f in $\mathbb{M}^+(\mathcal{X}, \mathcal{A})$. Define a distance between functionals λ_1 and λ_2 in $\mathbb{L}^+(\mathcal{X}, \mathcal{A})$ via the norm

<1>

$$\|\lambda_1 - \lambda_2\| := \sup\{|\lambda_1 f - \lambda_2 f| : f \in \mathbb{M}(\mathcal{X}, \mathcal{A}) \text{ and } \sup|f(x)| \le 1\}$$

If $\lambda_1(1) = \lambda_2(1)$ then $\|\lambda_1 - \lambda_2\| := 2 \sup\{|\lambda_1 g - \lambda_2 g| : 0 \le g \le 1\}$.

Countably additive measures on \mathcal{A} can be identified [UGMTP §2.3] with those increasing linear functionals μ on $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$ that have the *Monotone Convergence* property,

if
$$0 \leq f_n \uparrow f$$
 then $\mu f_n \uparrow \mu f$.

For finite countably additive measures, it is sometimes more convenient to make an identification with the functionals in $\mathbb{L}^+(\mathcal{X}, \mathcal{A})$ that are σ -smooth at 0,

if $\{f_n : n \in \mathbb{N}\} \subseteq \mathbb{M}^+(\mathcal{X}, \mathcal{A})$ and $f_n \downarrow 0$ pointwise then $\lambda f_n \downarrow 0$.

Write $\mathbb{L}^+_{\sigma}(\mathcal{X}, \mathcal{A})$ for the set of all such σ -smooth functionals. If λ is a countably additive, sigma-finite measure, write then $\mathbb{L}^+_{\lambda}(\mathcal{X}, \mathcal{A})$ for the subset of $\mathbb{L}^+_{\sigma}(\mathcal{X}, \mathcal{A})$ consisting of the measures dominated by λ . That is, $\mu \in \mathbb{L}^+_{\lambda}(\mathcal{X}, \mathcal{A})$ if and only if there exists a density $g \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ for which $\lambda g < \infty$ and $\mu f = \lambda(gf)$ for all f in $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$.

For countably additive measures, the norm defined by <1> is sometimes called the \mathcal{L}^1 norm, and is denoted by $\|\cdot\|_1$. If both μ and ν are probability measures, then

$$\frac{1}{2} \|\mu - \nu\|_1 = \sup_{A \in \mathcal{A}} |\mu A - \nu A| = \sup_{0 < f < 1} |\mu f - \nu f|,$$

a quantity that is often called the total variation distance between the measures [UGMTP §3.3].

When the choice of \mathcal{X} or of \mathcal{A} is clear, abbreviate $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$ to $\mathcal{M}^+(\mathcal{X})$, or $\mathcal{M}^+(\mathcal{A})$, or even just \mathcal{M}^+ . And so on.

1

Let \mathcal{Y} be another set, equipped with a sigma-field \mathcal{B} . If T is an $\mathcal{A}\setminus\mathcal{B}$ -measurable map from \mathcal{X} to \mathcal{Y} , and μ is a measure on \mathcal{A} , the *image measure* $T(\mu)$, or $T\mu$, is defined on \mathcal{B} by $(T\mu)(B) := \mu\{x : T(x) \in B\}$ for each $B \in \mathcal{B}$. Equivalently,

$$(T\mu)^{y}g(y) := \mu^{x}g(T(x))$$
 for $g \in \mathcal{M}^{+}(\mathcal{Y}, \mathcal{B})$.

Markov kernels

A Markov kernel from $(\mathcal{X}, \mathcal{A})$ to $(\mathcal{Y}, \mathcal{B})$ is a family of probability measures $\mathbb{K} := \{\mathbb{K}_x : x \in \mathcal{X}\}$ such that $x \mapsto \mathbb{K}_x B$ is \mathcal{A} -measurable, for each $B \in \mathcal{B}$. As a consequence, for each f in $\mathcal{M}^+(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B})$ the function $x \mapsto \mathbb{K}_x^y f(x, y) := \int f(x, y) \mathbb{K}_x(dy)$ is \mathcal{A} -measurable. If μ is a measure on \mathcal{A} then the measure $\mu \otimes \mathbb{K}$ is defined on $\mathcal{A} \otimes \mathcal{B}$ by

 $(\mu \otimes K) f := \mu^x \left(\mathbb{K}^y_x f(x, y) \right) \quad \text{for } f \in \mathcal{M}^+(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B}).$

It has marginals μ and λ , with λ the measure on \mathcal{B} defined by

 $\lambda^{y}g(y) := \mu^{x} \left(\mathbb{K}^{y}_{x}g(y) \right) \quad \text{for } g \in \mathcal{M}^{+}(\mathcal{Y}, \mathcal{B}).$

The measure λ is also denoted by $\mathbb{K}\mu$ or $\mu^{x}\mathbb{K}_{x}$ for λ . The map $\mu \mapsto \mathbb{K}\mu$ from $\mathbb{L}^{+}_{\sigma}(\mathfrak{X}, \mathcal{A})$ to $\mathbb{L}^{+}_{\sigma}(\mathfrak{Y}, \mathcal{B})$ is linear, and it takes probability measures to probability measures.

If μ is a probability measure, the pair (x, y) generated by

 $x \sim \mu$ and $y|x \sim \mathbb{K}_x$

has joint distribution $\mu \otimes \mathbb{K}$. The *y* has marginal distribution $\mathbb{K}\mu$.

Decision theory

A *statistical model* (or statistical experiment) is defined to be a family of probability measures $\mathcal{P} := \{\mathbb{P}_{\theta} : \theta \in \Theta\}$, all defined on the same sigma-field \mathcal{A} on a set \mathcal{X} . Let \mathbb{D} be some set, equipped at least with a sigma-field \mathcal{D} . A *decision procedure* for \mathcal{P} is a measurable map T from \mathcal{X} to \mathbb{D} . (If $\mathbb{D} = \Theta$, then T is usually called an estimator for the parameter θ .) A randomized procedure is defined as a Markov kernel τ from $(\mathcal{X}, \mathcal{A})$ to $(\mathbb{D}, \mathcal{D})$.

A map *L* from $\mathbb{D} \times \Theta$ into $[-\infty, \infty]$ is called a *loss function*. Typically I will assume *L* is either nonnegative or bounded, so that there are no problems with the next definition. The risk function for a procedure *T* is defined as

$$R(T,\theta) := \mathbb{P}_{\theta}^{x} L(T(x),\theta) = (T\mathbb{P}_{\theta})^{t} L(t,\theta) \quad \text{for } \theta \in \Theta.$$

The risk function for a randomized procedure τ is defined as

$$R(\tau,\theta) := \mathbb{P}_{\theta}^{x} \tau_{x}^{t} L(t,\theta) = (\tau \mathbb{P}_{\theta})^{t} L(t,\theta) \quad \text{for } \theta \in \Theta.$$

2