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AN IDEA AND A HOPE

o Statistical model: P = {Py : 60 € O}

e Partition ® into digoint regions Oy, ..., O,
with points 6, € ®;, such that it is “difficult
to distinguish statistically between” models
Py : 0 € B;}.

e Hope: Statistical decision problems for P are
“comparable in difficulty” to the analogous
problems for the submodel {4 :1 =1, ..., k}.



The Annals of Statistics
1973, Vol. 1, No. 1, 38-53

CONVERGENCE OF ESTIMATES UNDER DIMENSIONALITY
RESTRICTIONS!

By L. LECam
University of California, Berkeley

Consider independent identically distributed observations whose distri-
bution depends on a parameter §. Measure the distance between two pa-
rameter points 01, 62 by the Hellinger distance A(61, 6z).

Suppose that for n observations there is a good but not perfect test of
6o against 6,. Then nth(y, 6,) stays away from zero and infinity. The usual
parametric examples, regular or irregular, also have the property that there
are estimates 4, such that n%h(ﬂn, 6o) stays bounded in probability, so that
rates of separation for tests and estimates are essentially the same.

The present paper shows that need not be true in general but is correct
under certain metric dimensionality assumptions on the parameter set. It
is then shown that these assumptions imply convergence at the required
rate of the Bayes estimates or maximum probability estimates.

1. Introduction. Let 2" be a set carrying a o-field .% and a family of proba-
bility measures {p,; ¢ € ©}. Let .9 be the product of n copies of % and let P,"
be the product measure which corresponds to the distribution of n independent
observations from p,.

It is a familiar phenomenon that, when O is the real line, a number of well worn
regularity restrictions imply the existence of estimates §, such that ni(d, — 6)
stays bounded in P," probability. Another familiar phenomenon occurs if p; is
the uniform distribution of (0, #). There, the usual estimates are such that
n(@, — 0) stays bounded in P,* probability.

In both examples the factors n* or n correspond to a certain natural rate of
separation of the measures P,* which can be described in terms of the Hellinger
distance of the measures. If P and Q are two probability measures on the same
o-field, their Hellinger distance H(P, Q) will be defined by

HXP, Q) = § { [(dP)} — (dQ)*[
=1- (P, Q)

where p(P, Q) is the affinity p(P, Q) = § (dP dQ)}.
Letting A(s, t) = H(p,, p,) the two factors n* and n correspond now to the same
rate. In both cases the statement is that nth(f,, 6) stays bounded in probability.
For any two sequences {s,}, {f,} inequalities of the type 0 < a < n*Ai(s,, t,) <
b < oo correspond to the fact that the best test between p; and p; has proba-
bilities of error which do not tend to zero or unity. Thus the two examples
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Kraft (1955, p133):

" ... theorem, which,

together with the proof,
40 L. LECAM is due to L. Le Cam."

It has been shown in [2] that when A and B are dominated families of measures
the number =(4, B) is precisely equal to

7(A, By = 1 — inf (D(P, Q); Pe 4, Qe B}

where the sets 4 and B are the convex hulls of 4 and B respectively.

Consider now direct products {2°", %7} and the corresponding product meas-
ures P* for measures P defined on .. Define numbers z,(4, B; ¢)and r,(4, B)
as follows. For a test function ¢ defined on {27, %7}, let

7.(A4, B; ¢) = sup{§ (1 — ¢)dP" + § ¢ dQ"; Pe 4, Qe B}.
Let 7,(4, B) be the infimum of this over all &7 ™ measurable test functions ¢.

To compute =,(4, B) would amount to the computation of the L, distance
between the convex hulls of sets such as 4" = {P"; Pe A}. This is usually dif-
ficult but bounds may occasionally be obtained through use of the Hellinger
distances. In fact, if 4 is reduced to the one element P and B is reduced to the
single element Q, then = = =(P, Q) is the L,-norm of the infimum P A Q. This
is related to the affinity p = p(P, Q) by the inequalities

<l —(1—n)=r2—n).
We shall need repeatedly the following easy lemmas.

LemMa 1. Let P and Q be two probability measures on {27, .57’} IfnH(P, Q) <
y £ 1 then
D(P", Q") £ y(2 = )}
Similarly, if nH(P, Q) = = 0 then
D", QM =1 —e?t.

Proor. For the first inequality note that H*P, Q) = y*/n is equivalent to

o(P, Q) = 1 — y*n. This gives p*(P, Q) = (1 — y'/n)" = 1 — »*. Hence

(P oy = (1— o™ S 1 — (=P =yC—))
For the second inequality one can write o(P, Q) = (1 — B/n). Thusp™(P, Q) =
(1 — B/n)» < e?. Since D(P*, Q") = H*P", Q") = 1 — (P, Q), the result
follows.

A rather immediate consequence of these inequalities is that estimates cannot
converge faster than the usual nt rate where the distance used is the Hellinger
distance. Since this may be needed to place the results in perspective, we shall
state it formally.

Let {py; 0 € ©} be a family of probability measures on {77, 7). Leth(s, 1) =
H(p, p.)-

ProposITION 1. Let {8, .}; i = 1,2 be two sequences of elements of ©. For each
n, let T, be a map from 27" to ©. Assume that for both values of i the quantities
nh(T,, 0, ;) converge to zero in Py . probability. Then the possible cluster points of
the sequence nh(0,,, 0, ,) are only zero and infinity.



TESTS BETWEEN HELLINGER BALLS

B(vp.r)

not a path through
probability measures

unit ball of £2

e Hellinger distance«~ total variation distance
<> existence of tests between convex sets of
probability measures (minimax theorem)

e Use likelihood ratio test between centers or
between closest points?

e See Le Cam & Yang (2000, p224),
Le Cam(1986, 814) and Birge (198*, 2003).



LE CaM (1973)

cover annulus
with Hellinger balls
of radius aR

(

B(6,r)

B(6,R)

B(6,2R)

e TestB(#,r) against each of the balls in the
covering of the annulus.

e How many balls needed to cover? How good
atestifr <« R?

e Be pessimistic foB(6,r).





