Fat-Shattering Dimension and Majorizing Measures: two ways to quantify complexity

David Pollard Statistics Department Yale University http://www.stat.yale.edu/~pollard

Talk given at the Workshop on *Simplicity and Likelihood* Yale University November 2009 http://cowles.econ.yale.edu/conferences/simplicity/ VC classes of sets

 Ω = all quadrants $(-\infty, a] \times (-\infty, b]$ in \mathbb{R}^2

How many patterns picked out from $\{x_1, x_2, x_3\}$?

For all x_1, x_2, x_3 cannot get all 2^3 patterns: V has < 8 rows. For some x_1, x_2 can get all 2^2 patterns.

• VCdim(Q) = 2

[packing numbers for Q as subset of $\mathcal{L}^1(P)$, for each probability measure P on \mathbb{R}^2] If $Q_1, \ldots, Q_N \in Q$ and

 $P(Q_i \Delta Q_{i'}) > \epsilon$ for $1 \le i < i' \le N$

then

 $N \leq \text{constant} \times (1/\epsilon)^2$

Hard to prove with exponent 2 (I think).
 Easy to prove with exponent 4.

► Haussler (1995) got constant × $(1/\epsilon)^{VCdim}$ for general VC classes of sets.

Fat shattering?

```
\epsilon-shattering: Kearns and Schapire (1994, §6)
=
fat-shattering: Bartlett, Long, and Williamson (1996);
Anthony and Bartlett (2002, §11.3)
\approx
(not) stable: Talagrand (1987a);
shatter at levels \alpha, \beta: Talagrand (1996a);
??? Talagrand (1984);
Fremlin??
```

- $\mathcal{F} = a$ set of real-valued functions on a set \mathcal{X} $x = (x_1, x_2, \dots, x_n) \in \mathcal{X}^n$ levels: $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ with $\beta_j \ge \alpha_j$
 - \mathcal{F} picks out pattern $\mathbb{K} \subseteq \{1, 2, \dots, n\}$ at levels α and β means: There exists $f_{\mathbb{K}} \in \mathcal{F}$ such that

$$f_{\mathbb{K}}(x_j) \begin{cases} \geq \beta_j & \text{if } j \in \mathbb{K} \\ \leq \alpha_j & \text{if } j \in \mathbb{K}^c \end{cases}$$

• $S(x, \alpha, \beta, \mathcal{F}) =$ number of distinct patterns picked out $\leq 2^n$

- \mathfrak{F} shatters x at levels α and β means: $\mathfrak{S}(x, \alpha, \beta, \mathfrak{F}) = 2^n$
- sdim (ϵ, \mathfrak{F}) is largest n such that \mathfrak{F} shatters some x in \mathfrak{X}^n at some levels α and β with $\beta_j \ge \alpha_j + 2\epsilon$ for all j

Example:

$$\mathcal{F}=$$
 all increasing functions f on \mathbb{R} with $0\leq f\leq 1$

Why must we have

$$0 \leq \alpha_1 \leq \cdots \leq \alpha_3 + 2\epsilon \leq \beta_3 \leq \alpha_4 \dots$$
?

Why is sdim
$$(\epsilon, \mathfrak{F}) \leq (2\epsilon)^{-1}$$
?

Suppose $0 \le f \le 1$ for all f in \mathcal{F} and $X_1, X_2, \dots \sim \text{iid } P$

$$\Delta_n := \sup_{\mathcal{F}} |n^{-1} \sum_{i \le n} f(X_i) - \int f \, dP| = \sup_{\mathcal{F}} |P_n f - Pf|$$

Talagrand (1987a) and Talagrand (1996a): failure of $\Delta_n \rightarrow 0$ a.s. (uniform SLLN) iff

(roughly) \exists subset A with PA > 0 for which (almost) every sample from (nonatomic) $P(\cdot | A)$ can be shattered at some fixed levels α and β (with $\alpha_j \equiv \alpha_1$ and $\beta_j \equiv \beta_1$)

Mendelson and Vershynin (2003)

If
$$0 \leq f \leq 1$$
 for all f in \mathfrak{F}
and P is a probability measure and $\alpha \geq 1$
and f_1, \ldots, f_N in \mathfrak{F} with

$$\int |f_i - f_{i'}|^{\alpha} dP > (c_{\alpha} \epsilon)^{\alpha} \quad \text{for } 1 \le i < i' \le N$$

(a packing assumption) then

$$N \leq (C_{\alpha}/\epsilon)^{6\operatorname{sdim}(\epsilon,\mathfrak{F})}$$

for known constants c_{α} and C_{α} .

• Good consequences for bounding Δ_n when $X_1, X_2, \dots \sim \text{iid } P$ if

$$\int_0^1 \sqrt{\operatorname{sdim}(\epsilon, \mathfrak{F}) \log(1/\epsilon)} \, d\epsilon < \infty$$

M&V method:

For some sample x₁,..., x_m from P,
 with m = something involving log N and ε,
 discretize:

$$V[i,j] := \lfloor f_i(x_j)/\epsilon \rfloor$$

to get an $N \times m$ matrix V with entries in $S_p = \{0, 1, \dots, p\}$ for $p = \lfloor 1/\epsilon \rfloor$.

For a good realization x_1, \ldots, x_m get $\bigvee m^{-1} \sum_{j \leq m} |V[i, j] - V[i', j]|^{\alpha} > C'_{\alpha}$ for $1 \leq i < i' \leq N$ for some magic constant C'_{α}

Key question: For how many distinct (\mathbb{J}, z) with $\mathbb{J} \subseteq S_p$ and $z \in \mathbb{Z}^{\mathbb{J}}$ can V "surround" (\mathbb{J}, z) in the sense: for each $\mathbb{K} \subseteq \mathbb{J}$ there is an $i_{\mathbb{K}}$ for which

$$V[i_{\mathbb{K}}, j] egin{cases} \geq z_j + 1 & ext{if } j \in \mathbb{K} \ \leq z_j - 1 & ext{if } j \in \mathbb{J} igkslash \mathbb{K} \end{cases}$$
?

$$V = \begin{bmatrix} 6 & 3 & 2 \\ 5 & 1 & 1 \\ 4 & 2 & 3 \\ 1 & 0 & 5 \\ 2 & 6 & 4 \end{bmatrix}$$

Answer:

If \heartsuit holds then

distinct (\mathbb{J}, z) surrounded by V is $\geq \sqrt{N} - 1$.

Majorizing measures

```
Long and glorious history:
Fernique (1975),
```

. . . ,

Talagrand (1987b), Talagrand (1990), Ledoux and Talagrand (1991, Chapter 11), Talagrand (1996b), Talagrand (2001), Talagrand (2005), Kwapień and Rosiński (2004), Bednorz (2006), Bednorz (2007),

(List woefully incomplete)

- $\Psi : \mathbb{R}^+ \to \mathbb{R}^+$ convex, increasing, with $\Psi(0) = 0$ eg. $\Psi_{gaus}(x) := \exp(x^2/2) - 1$ useful for Gaussian processes
- Stochastic process $\{Z_t : t \in T\}$ indexed by metric space (T,d)with $||Z_s - Z_t||_{\Psi} \le d(s,t)$, that is,

$$\mathbb{P}\Psi\left(rac{|Z_t - Z_s|}{d(s,t)}
ight) \le 1$$
 for all $s \ne t$

Probability measure μ on T is a majorizing measure if

$$\sup_{t \in T} \int_0^{\operatorname{diam}(T)} \Psi^{-1}\left(\frac{1}{\mu B(t,r)}\right) \, dr < \infty$$

where B(t,r) = closed ball of radius r around t.

► (Talagrand 1987b) for Gaussian process

$\mathbb{P}\sup_{t\in T} Z_t < \infty$

if and only if there exists a majorizing measure (using Ψ_{gaus})

Actually, Talagrand gave explicit bounds.

One way to build a MM: (under mild conditions on Ψ)

- T_k is a maximal set of points separated by at least diam $(T)/2^k$, for k = 1, 2, ...
- $\blacktriangleright \quad N_k := \#T_k$
 - $\mu_k =$ uniform distribution on T_k , mass $1/N_k$ at each point

•
$$\mu = \sum_{k=1}^{\infty} 2^{-k} \mu_k$$
 is a MM if $\sum_{k=1}^{\infty} 2^{-k} \Psi^{-1}(N_k) < \infty$

Other kinds of MM's exist and are useful

Use MM to construct nested partitions for "chaining argument" (Talagrand 2005)

- Use MM as a local smoothing operator [Kwapień and Rosiński (2004), Bednorz (2006), Bednorz (2007)]; get bounds on supremum (and increments) of stochastic process
- Traditional chaining arguments seem to require "local complexity" the same everywhere in T
- MM gives control where "local complexity" differs from one part of T to another

Wild analogies and speculation

- Arguments for minimax rates of convergence of estimators often use Bayes argument with uniform prior on a maximal set of points separated by at least ε_n
- Some minimax arguments have a suggestive similarity to MM arguments
 - MM like a (possibly nonuniform) Bayes prior?

References

Anthony, M. and P. Bartlett (2002). *Neural Network Learning: Theoretical Foundations*. Cambridge University Press.

Bartlett, P. L., P. M. Long, and R. C. Williamson (1996). Fat-shattering and the learnability of real-valued functions. *Journal of Computer and System Sciences 52*, 434–452.

Bednorz, W. (2006). A theorem on majorizing measures. *Annals of Probability 34*, 1771–1781.

Bednorz, W. (2007). Hölder continuity of random processes. Journal of Theoretical Probability 20, 917–934. Fernique, X. (1975). Regularité des trajectoires des fonctions aléatoires gaussiennes. *Springer Lecture Notes in Mathematics 480*, 1–97.

Haussler, D. (1995). Sphere packing numbers for subsets of the Boolean *n*-cube with bounded Vapnik-Chervonenkis dimension. *Journal of Combinatorial Theory 69*, 217–232.

Kearns, M. J. and R. E. Schapire (1994). Efficient distributionfree learning of probabilistic concepts. *Journal of Computer and System Sciences 48*, 464–497.

Kwapień, S. and J. Rosiński (2004). Sample Hölder continuity of stochastic processes and majorizing measures. *Progress in Probability 58*, 155–163. Ledoux, M. and M. Talagrand (1991). *Probability in Banach Spaces: Isoperimetry and Processes*. New York: Springer.

- Mendelson, S. and R. Vershynin (2003). Entropy and the combinatorial dimension. *Inventiones Mathematicae 152*, 37– 55.
- Talagrand, M. (1984). *Pettis Integral and Measure Theory*, Volume 307 of *Memoirs AMS*. American Mathematical Society.
- Talagrand, M. (1987a). The Glivenko-Cantelli problem. *Annals* of *Probability* 15(3), 837–870.

Talagrand, M. (1987b). Regularity of gaussian processes. *Acta Mathematica 159*, 99–149.

- Talagrand, M. (1990). Sample boundedness of stochastic processes under increment conditions. Annals of Probability 18(1), 1–49.
- Talagrand, M. (1996a). The Glivenko-Cantelli problem, ten years later. *Journal of Theoretical Probability* 9(2), 371–384.
- Talagrand, M. (1996b). Majorizing measures: The generic chaining (in special invited paper). *Annals of Probability* 24, 1049–1103.
- Talagrand, M. (2001). Majorizing measures without measures. The Annals of Probability 29(1), 411-417.
- Talagrand, M. (2005). *The Generic Chaining: Upper and lower* bounds of stochastic processes. Springer-Verlag.