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VC classes of sets

Q = all quadrants (−∞, a]× (−∞, b] in R2

I How many patterns picked out from {x1, x2, x3}?

Q111

Q110

Q100

Q010

Q000

x1

x2

x3

V =


0 0 0
0 1 0
1 0 0
1 1 0
1 1 1



I For all x1, x2, x3 cannot get all 23 patterns: V has < 8 rows.
For some x1, x2 can get all 22 patterns.

I VCdim(Q) = 2



I [packing numbers for Q as subset of L1(P ),

for each probability measure P on R2]

If Q1, . . . , QN ∈ Q and

P (Qi∆Qi′) > ε for 1 ≤ i < i′ ≤ N

then

N ≤ constant× (1/ε)2

I Hard to prove with exponent 2 (I think).

Easy to prove with exponent 4.

I Haussler (1995) got constant×(1/ε)VCdim for general VC classes

of sets.



I Fat shattering?

ε-shattering: Kearns and Schapire (1994, §6)

=

fat-shattering: Bartlett, Long, and Williamson (1996);

Anthony and Bartlett (2002, §11.3)

≈
(not) stable: Talagrand (1987a);

shatter at levels α, β: Talagrand (1996a);

??? Talagrand (1984);

Fremlin??



I F = a set of real-valued functions on a set X

x = (x1, x2, . . . , xn) ∈ Xn

levels: α = (α1, . . . , αn) and β = (β1, . . . , βn) with βj ≥ αj

I F picks out pattern K ⊆ {1,2, . . . , n} at levels α and β means:
There exists fK ∈ F such that

fK(xj)

≥ βj if j ∈ K
≤ αj if j ∈ Kc

I S(x, α, β,F) = number of distinct patterns picked out ≤ 2n

I F shatters x at levels α and β means: S(x, α, β,F) = 2n

I sdim(ε,F) is largest n such that F shatters some x in Xn at some
levels α and β with βj ≥ αj + 2ε for all j



Example:

F = all increasing functions f on R with 0 ≤ f ≤ 1

I Why must we have

0 ≤ α1 ≤ · · · ≤ α3 + 2ε ≤ β3 ≤ α4 . . . ?

I Why is sdim(ε,F) ≤ (2ε)−1?

x1 x2 x3 x4
0

1

α1

α2
?α4

β2

α3

β3

β1

?



I Suppose 0 ≤ f ≤ 1 for all f in F

and X1, X2, · · · ∼ iid P

I

∆n := supF |n−1∑
i≤n f(Xi)−

∫
f dP | = supF |Pnf − Pf |

I Talagrand (1987a) and Talagrand (1996a):

failure of ∆n → 0 a.s. (uniform SLLN)

iff

(roughly) ∃ subset A with PA > 0 for which (almost) every sample

from (nonatomic) P (· | A) can be shattered at some fixed levels α

and β (with αj ≡ α1 and βj ≡ β1)



Mendelson and Vershynin (2003)

I If 0 ≤ f ≤ 1 for all f in F

and P is a probability measure and α ≥ 1
and f1, . . . , fN in F with∫

|fi − fi′|
αdP > (cαε)

α for 1 ≤ i < i′ ≤ N

(a packing assumption) then

N ≤ (Cα/ε)
6 sdim(ε,F)

for known constants cα and Cα.

I Good consequences for bounding ∆n

when X1, X2, · · · ∼ iid P if∫ 1

0

√
sdim(ε,F) log(1/ε) dε <∞



M&V method:

I For some sample x1, . . . , xm from P ,

with m = something involving logN and ε,

discretize:

V [i, j] := bfi(xj)/εc

to get an N ×m matrix V with entries in Sp = {0,1, . . . , p}
for p = b1/εc.

I For a good realization x1, . . . , xm get

♥ m−1∑
j≤m |V [i, j]− V [i′, j]|α > C′α for 1 ≤ i < i′ ≤ N

for some magic constant C′α



I Key question:

For how many distinct (J, z) with J ⊆ Sp and z ∈ ZJ

can V “surround” (J, z) in the sense:

for each K ⊆ J there is an iK for which

V [iK, j]

≥ zj + 1 if j ∈ K
≤ zj − 1 if j ∈ J\K

?



V =


6 3 2
5 1 1
4 2 3
1 0 5
2 6 4



J = (1,2)   z = (3,2)
0

1

2

3

4

5

6



I Answer:

If ♥ holds then

# distinct (J, z) surrounded by V is ≥
√
N − 1.



Majorizing measures

I Long and glorious history:

Fernique (1975),

. . . ,

Talagrand (1987b), Talagrand (1990),

Ledoux and Talagrand (1991, Chapter 11),

Talagrand (1996b), Talagrand (2001), Talagrand (2005),

Kwapień and Rosiński (2004),

Bednorz (2006), Bednorz (2007), . . .

(List woefully incomplete)



I Ψ : R+ → R+ convex, increasing, with Ψ(0) = 0

eg. Ψgaus(x) := exp(x2/2)− 1 useful for Gaussian processes

I Stochastic process {Zt : t ∈ T} indexed by metric space (T, d)

with ‖Zs − Zt‖Ψ ≤ d(s, t), that is,

PΨ

(
|Zt − Zs|
d(s, t)

)
≤ 1 for all s 6= t

I Probability measure µ on T is a majorizing measure if

sup
t∈T

∫ diam(T )

0
Ψ−1

(
1

µB(t, r)

)
dr <∞

where B(t, r) = closed ball of radius r around t.



I (Talagrand 1987b) for Gaussian process

P sup
t∈T

Zt <∞

if and only if there exists a majorizing measure (using Ψgaus)

I Actually, Talagrand gave explicit bounds.



One way to build a MM: (under mild conditions on Ψ)

I Tk is a maximal set of points separated by at least diam(T )/2k,

for k = 1,2, . . .

I Nk := #Tk

I µk = uniform distribution on Tk, mass 1/Nk at each point

I µ =
∑∞
k=1 2−kµk is a MM if

∑∞
k=1 2−kΨ−1(Nk) <∞

I Other kinds of MM’s exist and are useful



I Use MM to construct nested partitions for “chaining argument”

(Talagrand 2005)

I Use MM as a local smoothing operator [Kwapień and Rosiński

(2004), Bednorz (2006), Bednorz (2007)]; get bounds on supre-

mum (and increments) of stochastic process

I Traditional chaining arguments seem to require “local complex-

ity” the same everywhere in T

I MM gives control where “local complexity” differs from one part

of T to another



Wild analogies and speculation

I Arguments for minimax rates of convergence of estimators often

use Bayes argument with uniform prior on a maximal set of points

separated by at least εn

I Some minimax arguments have a suggestive similarity to MM

arguments

I MM like a (possibly nonuniform) Bayes prior?
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