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Notation and Facts

• For x = (x1, . . . , xd) in Rd, define |x| :=
√∑

i x
2
i , the usual ℓ2 norm

on Rd, and use ⟨·, ·⟩ for the corresponding inner product.

• Write md for Lebesgue measure on Rd.

• Let B[a, r] := {x ∈ Rd : |x − a| ≤ r} denote the closed ball in Rd

with center a and radius r. If r = 0 then the ball is degenerate;
it reduces to the singleton set {a}. The corresponding open ball is
denoted by B(a, r). That is B(a, r) := {x ∈ Rd : |x− a| < r}.

• The symbol ∆ will denote mdB[0, 1]. Fortunately, it is not necessary
to know that ∆ = πd/2/Γ(1 + d/2). Invariance properties of Lebesgue
measure give mdB[a, r] = ∆rd for each a ∈ Rd and r ≥ 0.

• A measure λ on B(Rd) is a called a Radon measure if λK < ∞ for
each compact K and λD = sup{λK : K ⊂ D and K is compact }
for each Borel set D. Such a measure is necessarily locally finite: for
each x in Rd there is an open neighborhood U of x with λU < ∞,
because Rd is locally compact. (In fact every locally finite λ on B(Rd)
must be a Radon measure.) Radon measures are also outer regular:
λD = inf{λG : G ⊃ D and G open }

version: 30jan23
printed: May 14, 2024

Besicovitch
©David Pollard



§1 Motivation 1

• The support of a Radon measure λ, henceforth denoted by Sλ or supp(λ),
is the smallest closed set F for which λF c = 0. Each nondegenerate
open ball B(x, r) for x in supp(λ) has nonzero λ-measure, for other-
wise we would have λ (F c ∪B(x, r)) = 0. The ratio µB[x, r]/λ[x, r] is
well defined for each r > 0 and x ∈ supp(λ)

This note collects together some ideas that I have learned by reading
parts of:

• S := Simon (1983)

• M := Mattila (1999)

• EG := Evans and Gariepy (2015)

I also found that many of the methods from P :=Pollard (2001, Chap 3),
for md and differentiation of measures dominated by md carry over to more
general measures on B(Rd) once the analog (Theorem <7>) of the Vitali
Covering Lemma (P, page 68) is established.

1 Motivation
S:motivation

Several years ago I was asked to referee a paper on the interpretation of
conditional probability distributions. The authors made heavy use of facts
about measures on Euclidean spaces. In particular they relied on theory
described by the excellent book of Evans and Gariepy (2015), particularly
those parts involving the “area formula”. Eventually, because my knowledge
in this general area was mostly rusted away, I bought that book then read
it up to end of their chapter 3.

Along the way to the ‘area formula’ I learned a lot about differentiation
theorems. In particular, I learned that such theorems were not just restricted
to measures on Rd that had densities with respect to Lebesgue measure but
could also be extended to general Radon measures on Euclidean spaces. The
main tool was a result due to Besicovitch (1945), which took over the role
of the Vitale covering theorem that I learned many years ago.

<1> Theorem. (Besicovitch) Let A be a bounded subset of Rd and BA be a set ofBes

closed balls {B[a, r(a)] : a ∈ A}, where r(a) > 0 for each a in A. Then there
is a finite or countably infinite sequence T = (a1, a2, . . . ) in A, with r(ai) a
decreasing function of i, for which

(i) 1{x ∈ A} ≤
∑

a∈T 1{x ∈ B[a, r(a)]} ≤ 15d. for each x in Rd. That is,
{B[a, r(a)] : a ∈ T} covers A but no point of Rd is contained in more
than 15d members of the covering.

(ii) T can be partitioned into subsequences T1, . . . , Tn with n ≤ Nd :=
1 + 60d such that, for each γ, all the balls {B[a, r(a)] : a ∈ Tγ} are
disjoint.□
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To simplify notation I also abbreviate B[a, r(a)] to Ba.
After working my way through the proof given by Evans and Gariepy

(2015, 39–46) I stumbled on another excellent account of the Besicovish the-
orem given by Mattila (1999, pages 28–34). I even tried to read the original
8 page paper by Besicovitch (1945), without much gain in my understand-
ing; and I got totally lost trying to read Federer (1969), which seems to
be the source for real experts in this area. One of those experts is Leon
Simon, whose oft revised lecture notes (Simon, 1983) were very helpful to
me, particularly during my initial struggles.

The proof of Theorem <1> (given in the next Section) consists mainly of
repeated applications of two greedy algorithms, which I very imaginatively
call greedy1 and greedy2.

The set T will be constructed as a finite or countably infinite sequence
made up of finite blocks, T = (S1, S2, . . . ), with each Sγ being obtained
by an appeal to greedy1. This T will satisfy (i). It will also have the
useful property that r(a) is decreasing (maybe better: nonincreasing, as
one is forced to say to when there is any danger that decreasing might be
misinterpreted to imply strict inequality) as we move along the sequence.

Then disjoint subsequences T1, T2, . . . of T will be defined using greedy2.
For each i, the balls {Ba : a ∈ Ti} will be disjoint. Finally T will be re-
placed by ∪i≤NTi for a cunningly chosen N , which will be shown to preserve
property (i). By construction, the new T will satisfy (ii).

For me, it was at first puzzling that Lebesgue measure md should figure so
prominently in an argument that is mostly intended for application to other
measures on Rd, measures that need not have a density with respect to md.
Eventually it dawned on me that it is the invariance and scaling properties
of md that provide the vital information about geometrical properties of sets
of closed balls. Those properties translate into pointwise inequalities, which
can then be integrated with respect to any finite measure.

2 Description of the greedies, for use while walking
S:walk

Remember that we have a bounded set A and for each point of A we are
given a nondegenerate ball centered at that point. (Nondegenerate means
that the radius is not zero). We are trying to find a sequence (T ) of centers,
sorted in order of decreasing radius of the corresponding balls, such the
union covers A. We allow some overlap in the balls in the sequence but
want no point in the underlying euclidean space Rd to be covered more than
some fixed number (depending on the dimension of the space) of times.

If we want the final sequence to be in order of decreasing radius, it might
seems that we should just start with the biggest ball and work our way down.
Of course that can’t work because an uncountable set of radii need not have
a largest member. Instead we can find the supremum—call it R—of the
radii in the given collection of balls then initially consider only those balls
with radius lying between R and R/2.
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Start by picking any center in A whose ball has radius in the R/2 to R
range. Carve that ball away from A then choose another center (again in
the R/2 to R range) from the bit of A left after the first carving. And so
on.

By construction, the center of each ball in the sequence lies outside all
the previous balls in the sequence, which implies that all the selected centers
are at least R/2 apart. There can be only finitely many such centers in a
bounded region, so the selections from the R/2 to R range run out of centers
to choose from after a finite number of steps. Take that finite sequence of
balls, sort them into the order of decreasing radius, then use them to start
the T sequence.

We have now reduced the set A to a subset. Call it A1. For all the centers
in A1 the radius of the corresponding ball is at most R/2. (Otherwise, such
a ball would have been chopped out by the initial greedy procedure.)

Now start all over again from the centers in A1. And so on.
The bit about the number of balls in the sequence that contain a given

point in Rd needs a picture (see Lemma <2>). It reduces to the task of
bounding the number of points that can be placed on the unit sphere with
mutual separations of at least 1/2. (The idea is: the vectors joining the
common point to each of the centers of the balls cut the unit sphere at points
that inherit a separation from the assumed separation of the centers.)

The partitioning of T into subsequences, with the balls in each subse-
quence being disjoint, is also just an exercise in greed. Think of T as a
sequence of balls, not just centers. For T1 start with the first ball in T .
Call it B1. Then hunt along T for the first ball disjoint from B1. Call it
it B2. Then continue the hunt for the first ball that is disjoint from both B1

and B2. And so on. It might take quite a while to process the whole of T
in this way. You might want to hire an inductive assistant who can process
an infinite sequence in a finite time.

Remove T1 from the sequence T , then repeat the procedure to con-
struct T2, starting from the first ball of T that is not in T1. You will
probably need many inductive assistants.

Actually, you won’t need an infinite number of assistants: a little piece
of geometry will show that T1, T2, . . . , Tn, for some n depending on the
dimension, will be enough to cover the original A.

3 Proof of the Besicovich Covering Theorem
S:covering

This Section is based on M(28-34). My contributions consist mainly of
minor modifications, such as drawing pictures and emphasizing that the
construction is based on greedy arguments. The proof makes use of two
simple geometric properties of Euclidean space.

separation <2> Lemma. Let B[ai, ri] for 1 ≤ i ≤ k be closed balls in Rd with the properties
that

⋂k
i=1B[ai, ri] ̸= ∅ and

\E@ centers\E@ centers <3> ai /∈ B[aj , rj ] for each pair (i, j) with i ̸= j.
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Then k ≤ 3d.

Remark. Condition <3> could also be written as: |ai − aj | >
max(ri, rj) for all i ̸= j.

Proof. Let x be a point in
⋂k

i=1B[ai, ri]. If ri were 0 then x would equal ai,
which would violate <3>. Thus ri > 0 for each i.

I

a1

a2 a3

x
u2

0

u3

u2

For each i we have ai = x + siui with ui a unit vector and 0 < si ≤ ri.
Consider a pair with i ̸= j. Without loss of generality suppose si ≥ sj .
Then, by <3>,

s2i ≤ max(r2i , r
2
j ) < |ai − aj |2 = |siui − sjuj |2 = s2i + s2j − 2sisj⟨ui, uj⟩,

which implies 2⟨ui, uj⟩ < s2j/(sisj) ≤ 1. It follows that

|ui − uj |2 = 2− 2⟨ui, uj⟩ > 1 for i ̸= j.

The balls B[ui, 1/2] are disjoint and each has Lebesgue measure ∆(1/2)d.
The union ∪i≤kB[ui, 1/2] is a subset of B[0, 3/2], which has Lebesgue mea-
sure ∆(3/2)d. It follows that k∆(1/2)d ≤ ∆(3/2)d.□

Remark. The final paragraph of the proof used the standard trick for
bounding packing numbers in Euclidean spaces, exploiting invariance
properties of Lebesgue measure. The inequality ⟨ui, uj⟩ < 1/2 implies
that the angle between the two unit vectors is greater than 60◦, as
asserted by M(Lemma 2.5).

shrink <4> Lemma. Suppose b ∈ B[a, r] with r > 0. Then for each R in [0, r] there is
an x for which b ∈ B[x,R] ⊂ B[a, r].

Proof. Without loss of generality a = 0, so that b = su for some unit
vector u and some s in [0, r]. If s ≤ R choose x = 0. If s = R+ δ with δ > 0
choose x = δu. Then |b − x| = s − δ = R, implying b ∈ B[x,R]. Also,
if y ∈ B[x,R] then |y| ≤ |x|+R = s ≤ r, implying B[x,R] ⊂ B[0, r].□

As explained in Section 1, most of the proof for part (i) of the Theorem
consists of repeated applications of the following greedy procedure. For the
first application, W will equal A.

 

a

B»1

B»2 B»3

WW4

1: procedure greedy1(W )
2: ▷ W can be any subset of A. ◁
3: Initialize: R← sup{r(a) : a ∈W} and j ← 1 and W1 ←W .
4: ▷ On the first pass through the loop j is 1 and WDj equals W . ◁
5: while {a ∈Wj : r(a) > R/2} ≠ ∅ do
6: Arbitrarily choose some member ξj of Wj with r(ξj) > R/2.
7: ▷ Any such ξj suffices; no cleverness here. ◁
8: Wj+1 ←Wj\B[ξj , r(ξj)]
9: Increment j by 1.
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10: ▷ The boundedness of A forces the loop to exit after some finite
number of iterations. After the loop completes k iterations we
have ξj /∈ B[ξi, r(ξi)] for 1 ≤ i < j ≤ k. Thus |ξj − ξi| > r(ξi) >
R/2 for i < j. The closed balls B[ξj , R/4] for 1 ≤ j ≤ k are
disjoint with union contained in B[0,diam(A) +R/4]. It follows
that k∆(R/4)d ≤ ∆(diam(A) +R/4)d, which provides an upper
bound for k. ◁

11: Suppose the loop completes J iterations before exiting.
12: Define S as the finite sequence {a1, . . . , aJ} obtained by sort-

ing (ξ1, . . . , ξJ) to ensure that i 7→ r(ai) is decreasing.
13: return (WJ+1, S,R).

The proof for part (ii) of the Theorem consists of repeated applications
of greedy2. Initially, D will be the sequence T constructed in the first part
of the proof. It will generate a subsequence E of D for which the balls Ba

with a ∈ E are disjoint.

1: procedure greedy2(D)
2: ▷ D = (ai : i ∈ I) is a sequence of points in A, with I = N or

I = {1, 2, . . . , n} for some finite n, with r(ai) decreasing. ◁
3: Initialize: Attach label ‘extract’ to a1 and set j equal to 2.
4: while j ∈ I do
5: Attach label ‘extract’ to aj if B[aj , r(aj)] has an empty inter-

section with B[ai, r(ai)] for each i that is < j and is labelled
‘extract’. Otherwise attach label ‘keep’.

6: Increment j by 1.
7: Let E be the subsequence of D consisting of the elements labelled

‘extract’ and K be the subsequence of D labelled ‘keep’.
8: return (E,K).
9: ▷ The balls Ba for a ∈ E are disjoint. The procedure greedy2(K)

will then extract another disjoint sequence. And so on. ◁

Proof (of Theorem <1>). Without loss of generality, suppose 0 ∈ A,
so that the set A is contained within the ball B[0,diam(A)]. Also, the
whole Theorem is trivial if there exists an a ∈ A for which r(a) is larger
than diam(A). So assume that sup{r(a) : a ∈ A} ≤ diam(A). Define
A0 := A.

The construction starts off with (A1, S1, R1) ← greedy1(A0). The
set S1 is finite with diam(A) ≥ R1 ≥ r(a) > R1/2 for each a in S1
and r(a′) ≤ R1/2 for each a′ in the set A1 := A\∪a∈S1Ba. For each pair a, a′

of distinct members of S1 we have |a−a′| > R1/2 because min (r(a), r(a′)) >
R1/2 and either a′ /∈ B[a, r(a)] or a /∈ B[a′, r(a′)]. Take S1 to be the first |S1|
members of the sequence T .

Remark. The next three paragraphs could be compressed into a more
cryptic inductive assertion. I prefer a more verbose description, both
to provide a check on notation and to make sure there are no special
complications with the initial step. Many authors would prefer to
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write: inductively, assuming the ith step is completed, leaving a
nonempty Ai+1, for the (i+ 1)st step we . . . .

If A1 ̸= ∅, run (A2, S2, R2) ← greedy1(A1) to define the next |S2|
members of T . We then have:

• A2 = A1\ ∪a∈S2 B[a, r(a)] = A\ ∪a∈S1∪S2 B[a, r(a)] ;

• R2 := sup{r(a) : a ∈ A1} ≤ R1/2 ;

• R2 ≥ r(a) > R2/2 for each a in S2 ;

• R2/2 ≥ r(a′) for each a′ in A2 ;

• For each pair a, a′ of distinct members of S2 we have |a− a′| > R2/2 ;

• For each a in S1 and each a′ in A2 we have |a− a′| > r(a) > R1/2 ≥ r(a′)
so that |a− a′| > max (r(a), r(a′)), an instance of the property needed
by Lemma <2>.

If A2 ̸= ∅ run (A3, S3, R3)← greedy1(A2), and so on.
In summary, if Aγ−1 ̸= ∅ then (Aγ , Sγ , Rγ)← greedy1(Aγ−1) produces:

(a) Aγ = A\ ∪ {B[a, r(a)] : a ∈ ∪α≤γSα} ;

(b) Rγ := sup{r(a) : a ∈ Aγ−1} ≤ Rγ−1/2 ;

(c) Rγ ≥ r(a) > Rγ/2 for each a in Sγ ;

(d) Rγ/2 ≥ r(a′) for each a′ in Aγ ;

(e) |a− a′| > Rγ/2 for each pair a, a′ of distinct members of Sγ ;

(f) |a − a′| > r(a) = max (r(a), r(a′)) for each a in Sγ and each a′ in Aγ .
Consequently, if a ∈ Sγ and a′ ∈ Sβ, with, γ ̸= β, then |a − a′| >
max (r(a), r(a′)).

The lower bound in assertion (i) of Theorem <1> is an easy consequence
of (a)—(f): If Aγ = ∅ for some γ then

A ⊂ ∪{B[a, r(a)] : a ∈ ∪α≤γSα} ⊆ ∪a∈TB[a, r(a)];

and if Aγ ̸= ∅ for all γ then r(a) ≤ Rγ/2 ≤ diam(A)/2γ for all a in Aγ . If x ∈
A and r(x) > diam(A)/2γ then x /∈ Aγ , so that x ∈ ∪α≤γ ∪a∈Sα B[a, r(a)].

The upper bound in assertion (i) takes a little more work and help from
Lemma <2>. For each x ∈ Rd the sum

∑
a∈T 1{x ∈ B[a, r(a)]} counts the

number of times that x is included in a covering ball.
First consider how many balls containing x could come from a single Sγ .

Suppose there are ℓ of them. The centers of those balls would lie in B[x,Rγ ]
and each pair of them would be separated by at least Rγ/2. The balls
of radius Rγ/4 around those centers would be disjoint and would all be
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contained within B[x, 5Rγ/4]. It follows that ℓ∆(Rγ/4)
d ≤ ∆(5Rγ/4)

2, or
ℓ ≤ 5d.

Next consider

Γ := {γ : x ∈ B[t, r(t)] for at least one t in Sγ }.

By (f), we have |t−t′| > max(r(t), r(t′)) if t ∈ Sγ and t′ ∈ Sβ, for distinct γ, β
in Γ. Lemma <2> then ensures that |Γ| ≤ 3d.

Thus there are at most 3d × 5d balls centered in T that contain x.
For the proof of assertion (ii) of the Theorem, first decompose T into the

union of disjoint subsequences T1, T2, . . . with the balls {B[a, r(a)] : a ∈ Tγ}
disjoint for each γ. Start with (T1,K1) = greedy2(T ). If K1 ̸= ∅, apply
(T2,K2) = greedy2(K1). And so on. The sequence T is the union of all
the Tγ ’s.

The Theorem effectively claims that we only need a given finite number
of the Tγ ’s to get balls that cover A. If we replace T by T̃ = ∪γ≤NTγ then

the upper bound in (i) is still holds, because T̃ ⊂ T . It remains only to
show that the balls {Ba : a ∈ T̃} still cover A. The proof again involves
invariance of Lebesgue measure.

Consider any a ∈ A. By assertion (i), there exists a t in T for which
a ∈ B[t, r(t)]. There exists an n for which t ∈ Tn. We just need to show
that n ≤ 1 + 60d.

Think about why t ended up in Tn rather than in some Tα for an α with
1 ≤ α < n. For each such α there must be some tα ∈ Tα appearing earlier
than t in the T sequence for which the corresponding ball has a nonempty
intersection with B[t, r(t)]. That is, there exists at least one point bα with
bα ∈ B[tα, r(tα)]∩B[t, r(t)]. Moreover, the decreasing property of the radius
function on T ensures that r(tα) ≥ r(t).

By Lemma<4> there exists a zα for which bα ∈ B[zα, r(t)/2] ⊂ B[tα, r(tα)].
If x ∈ B[zα, r(t)/2] then

|t− x| ≤ |t− bα|+ |bα − zα|+ |zα − x| ≤ r(t) + r(t)/2 + r(t)/2 = 2r(t).

Thus B[zα, r(t)/2] ⊂ B[t, 2r(t)].

 

b®

B[t®; r(t®)]
B[z®; r(t)=2]

B[t; r(t)]

t
t®

z®

Define f(x) :=
∑

α<n 1{x ∈ B[zα, r(t)/2]} for x ∈ Rd. The previous
inclusion shows that

\E@ f=0\E@ f=0 <5> f(x) = 0 for x /∈ B[t, 2r(t)].

The upper bound in (i) shows that no point in Rd is covered by more than 15d

balls of the form B[t, r(t)] for t ∈ T . Consequently,

\E@ f.le15d\E@ f.le15d <6> f(x) ≤
∑

α<n
1{x ∈ B[tα, r(tα)]} ≤ 15d for each x in Rd.

Taken together, <5> and <6> give the neater bound:

f(x) ≤ 15d1{x ∈ B[t, 2r(t)]} for each x in Rd.
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Integrate with respect to md:

mdf = (n− 1)∆ (r(t)/2)d ≤ 15d∆(2r(t))d ,

which implies n ≤ 1 = 15d× 4d. To cover each point of a we only need balls
B[t, r(t)] with t in T̃ := ∪γ≤NTγ . We can replace T by T̃ and still have (i)
holding. And we also get (ii).□

4 A Vitali-like result for Radon measures
S:Vitali

A collection F of closed subsets of Rd is said to cover a set A in the Vitali
sense if to each a in A and each ϵ > 0 there is an F in F with diam(F ) < ϵ
for which a ∈ F . The collection is also called a Vitali covering for A.

Under some regularity assumptions that prevent the sets in such an F

from being too ‘thin’, a classical result of Vitali asserts: for each Borel set A
with mdA finite there is a finite or countably infinite subset FA of F for
which md (A\ ∪ FA) = 0. (See Pollard, 2001, Section 3.5 for a proof.) With
the help of Theorem <1>, the Theorem can be extended to arbitrary finite
measures on B(Rd), for F a Vitali covering consisting of closed balls. The
next Section shows how this extension leads to differentiation theorems for
pairs of finite measures on B(Rd).

Vitali.Radon <7> Theorem. Suppose A is a bounded, Borel-measurable subset of Rd and λ is
a Radon measure. Let F be a collection of nondegenerate closed balls (that
is, with radius > 0), with centers in A, that covers A in the Vitali sense.
Then for each open set G containing A there exists a countable (or finite)
subcollection FA of F consisting of pairwise disjoint balls for which ∪FA ⊂ G
and λ (A\ ∪ FA) = 0.

Remark. The important role of G (and other Gi’s in the proof) is
not obvious until one sees the step in the argument where λ(G0\F0)
is used to bound λ(A\F0). Surreptitiously, the Theorem is trying to
break A into a disjoint union of closed balls plus a λ-negligible set.
Clearly that is not literally possible. For example, think what would
happen if a λ-negligible, countable, dense subset were removed from A,
which would prevent it from containing any nondegerate closed ball.
The next best thing is to break the enclosing G into a disjoint union of
closed balls plus a a set of very small λ measure.

Proof. The following argument is based on M(page 34) and EG(page 45).
The Theorem is trivial unless λA > 0. With Nd as in Theorem <1>,

define ϵ = (4Nd)
−1 and ρ := 1 − ϵ < 1. Choose an open set G0 with

G ⊃ G0 ⊃ A and λG0 < (1 + ϵ)λA. For each point a in A, choose an F-ball
Ba := B[a, r(a)] with r(a) small enough that Ba ⊂ G0.

Remark. The strategy is to carve out from G0 a closed set F0 (a finite
union of F-balls) with λ measure at least 2ϵλA, thereby ensuring that
λ (A\F0)) ≤ ρλA. With a sequence of such steps we can whittle A
down to a set with zero λ measure.
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Invoke Theorem <1> to find T and T1, . . . , Tn with n ≤ Nd for which
A ⊂ ∪γ≤nDγ where Dγ := ∪a∈TγBa. For each γ the balls {Ba : a ∈ Tγ} are
disjoint. Then we have

λA ≤
∑

γ≤n
λDγ ≤ Ndmaxγ λDγ .

For the γ that maximizes λDγ find k for which the closed set

F1 := ∪{Ba : a is one of the first k members of Tγ}

satisfies the inequalities λF1 ≥ λ(Dγ)/2 ≥ λA/(2Nd). Remember that the
balls contributing to F1 are disjoint and their centers lie in A.

The set A1 := A\F1 is contained in the open set G0\F1 and

λA1 ≤ λG0\F1 = λG0 − λF1 < (1 + ϵ)λA− (2Nd)
−1λA = ρλA.






A1

G0

Choose another open set G1 for which A1 ⊂ G1 ⊂ G0\F1 and λG1 <
(1 + ϵ)λA1 then repeat the argument to find a closed subset F2 that is a
finite union of F-balls contained in G1 such that λF2 ≥ λA1/(2Nd). The set
A2 := A1\F2 then has λA2 ≤ ρ2λA. Moreover F1 ∩ F2 = ∅. And so on.

In this way we generate disjoint closed sets Fi, each a union of finitely
many closed balls in G, for which λ (A\ ∪i Fi)) = 0. The closed balls that
make up all the Fi’s are disjoint.□

5 Differentiation of measures
S:density

As shown by P(Sections 3.1 and 3.2), general results about densities (such as
the Lebesgue decomposition) can be deduced from the special case where λ
and µ are finite measures on B(Rd) with λ ≥ µ. For that case, the Radon-
Nikodym theorem shows that µ has a density dµ/dλ = h with respect to λ
for which 0 ≤ h ≤ 1. That is, µA = λh(x){x ∈ A} for each Borel set A.

density.balls <8> Theorem. Suppose λ and µ are finite measures on B(Rd) with λ ≥ µ and
h = dµ/dλ. Then

lim
r↘0

µB[x, r]

λ[x, r]
= h(x) for λ almost all x in Sλ, the support of λ.□

It will be easy to extend this Theorem to a full Lebesgue decomposition
for pairs of Radon measures. See Corollary <13>.

To avoid a lot fiddling with special cases, let me first note that, for
fixed x in Sλ, the function Λx(r) := λB[x, r] is continuous from the right
and nondecreasing. The limit from the left is given by Λx(r−) = λB(x, r). If
there is a discontinuity in Λx at r then the size of the jump, Λx(r)−Λx(r−),
equals λ{y : |x − y| = r}. Disjointness of the spheres {y : |x − y| = r} for
different r values ensures that Λx can have at most countably many points
of discontinuity. Consequently,

for each r0, δ, ϵ > 0 there exists a continuity point r of Λx such that

r0 < r < r0 + δ abd |Λx(r)− Λx(r0)| < ϵ.\E@ cty.points\E@ cty.points <9>
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Start of proof of Theorem <8>.
Write ψ(x, r) for the ratio µB[x, r]/λB[x, r] for x in Sλ.

Let {ϵn} be any sequence that decreases to zero, such as ϵn = n−1. For
each n and x ∈ Sλ define

fn(x) := sup{ψ(x, r) : 0 < r < ϵn},
gn(x) := inf{ψ(x, r) : 0 < r < ϵn}.

The values fn(x) decrease to a limit f(x); the values gn(x) increase to a
limit g(x). At each x in Sλ we have

1 ≥ fn(x) ≥ f(x) ≥ g(x) ≥ gn(x) ≥ 0.

Theorem <8> will be an easy consequence of f and g being Borel-
measurable functions for which

\E@ density.balls2\E@ density.balls2 <10> f(x) = h(x) = g(x) ae[λ] on Sλ.

To establish <10>, it helps to first show (Lemma <11>) that each fn and gn
(and hence f and g) is Borel-measurable. The main idea in the proof is that
µ should be bigger than sλ for sets where f > s and smaller than tλ for
sets where g < t, whose proof (Lemma <12>) uses the Besicovitch results
in the form of Theorem <7>. After that step the rest of the argument is a
standard measure-theoretic exercise.

semi.cty <11> Lemma. For each t > 0, both {fn > t} ∩ Sλ and {gn < t} ∩ Sλ belong
to B(Rd).

Proof. Actually, as this Proof will show, both Gt := {x ∈ Sλ : fn(x) > t}
and Ht := {x ∈ Sλ : gn(x) < t} are open as subsets of Sλ. That is, they are
of the form U ∩Sλ, where U is an open subset of Rd. To prove this assertion
for Gt, we have to show that if x ∈ Gt then B(x, δ)∩Sλ ⊂ G for some δ > 0.

Consider an x in Sλ at which fn(x) > t. By definition of ‘supremum’,
there must exist a ball B = B[x, rx] with 0 < rx < ϵn and ψ(x, rx) > t. We
may assume that rx is a continuity point of Λx. (Actually, for this part of
the argument it suffices to invoke continuity from the right. Continuity from
the left is useful for the gn result.) Choose δ > 0 for which B[x, rx + 2δ] ⊂
B(x, ϵn). If |y − x| < δ then

B[x, rx] ⊂ B[y, rx + δ] ⊂ B[x, rx + 2δ] ⊂ B(x, ϵn).

 

B (x; ²n)

xy

B [y; r + ±]

B [x; r + 2±]

B [x; r]

Hence

fn(y) ≥ ψ(y, rx + δ) =
µB[y, rx + δ]

λB[y, rx + δ]
≥ µB[x, rx]

λB[x, rx + 2δ]
.

If δ is small enough then λB[x, rx+2δ] is close enough to λB[x, rx] to ensure
that the final ratio is > t. That is, B(x, δ) ∩ Sλ ⊂ Gt.

The argument for gn is similar, except that we need 0 < 2δ < t and
λB[x, rx − 2δ] close to λB[x, rx], for which left-continuity of Λx at rx is
needed.□
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inequalities <12> Lemma. Suppose A is a bounded Borel-measurable subset of Sλ.

(i) If f(x) > s for all x in A then µA ≥ sλA.

(ii) If t > g(x) for all x in A then µA ≤ tλA.

Proof. Let G be an open set with A ⊂ G. For (i), let F denote the set of
all nondegenerate balls B = B[a, r] with a ∈ A and B ⊂ G and µB ≥ sλB.
I claim that F is a Vitali covering for A.

For each a in A there is a strictly positive δa for which B[a, r] ⊂ G when
r < δa. In particular, if ϵn < δa the inequality

s < f(a) ≤ fn(a) = sup{ψ(a, r) : 0 < r < ϵn}

implies the existence of a ball B = B[a, r] with 0 < r < ϵn and B ⊂ G and
ψ(a, r) = µB/λB > s. That is, B ∈ F.

By Theorem <7>, there is a subset FA of F consisting of disjoint balls
for which λ(A\D) = 0, where D := ∪FA. The set D is Borel-measurable
because FA is at worst countably infinite. Then we have

µG ≥ µD =
∑

B∈FA

µB ≥
∑

B∈FA

sλB = sλD.

Via the inequality λA ≤ λD+λ(A\D) = λD it then follows that µG ≥ sλA.
Take the infimum over all open G with A ⊂ G to deduce that µA ≥ sλA.

For (ii) the argument is similar, except that F should now be the set of
all nondegenerate balls B = B[a, r] with a ∈ A and B ⊂ G and µB ≤ tλB.□

To get <10>, first consider all the sets of the form

A = As,t,R := {x ∈ Sλ : |x| ≤ R and f(x) > s > t > h(x)}

By Lemma <12> part (i) and definition of the density h,

tλA ≥ λh(x){x ∈ A} = µA ≥ sλA.

The requirement s > t forces a contradiction unless λA = 0. Take a union
over R in N and s, t ranging over pairs of positive rationals with s > t to
conclude that f(x) ≤ h(x) ae[λ] on Sλ.

Argue similarly for the sets {x ∈ Sλ : |x| ≤ R and h(x) > s > t > g(x)}
to deduce that g(x) ≥ h(x) ae[λ] on Sλ.

The fact that f ≥ g on Sλ then leads to the desired equality <10>,
whence the desired the limit assertion <8>.

End of proof of Theorem <8>.□

Radon <13> Corollary. Suppose µ and ν are Radon measures on Rd. Define λ = µ+ ν.
Then

µB[x, r]

ν[x, r]
→ dµ

dν
(x) as r ↓ 0, for ν almost all x in supp(ν).
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Proof. It is enough to prove the assertion for x in B(0, R) for each finite R.
Thus we lose no generality in working with the restrictions of µ and ν to
that open set. Equivalently, we can just assume that λ = µ+ ν is finite.

As explained by Pollard (2001, Sections 3.1 and 3.2), there is a measur-
able function h with 0 ≤ h ≤ 1 such that

µf = λhf and νf = λ(1− h)f for each f in M+.

Here M+ denotes the set of all [0,∞]-valued, Borel measurable functions
on Rd.

Necessarily µ{h = 0} = 0 = ν{h = 1}. The restrictions of the mea-
sures µ and ν to the set {0 < h < 1} are mutually absolutely continuous.
On the set {h < 1} the measure µ has density g(x) = h(x)/(1− h(x)) with
respect to ν. That is, µf{h < 1} = νfg{h < 1} for each f in M+. By
Theorem <8>,

νB[x, r]

νB[x, r] + µB[x, r]
→ 1−h(x) as r ↓ 0, for λ almost all x in supp(λ).

Excluding the ν-negligible set {h = 1}, we can transform this assertion to

1 +
µB[x, r]

νB[x, r]
→ 1

1− h(x)
for ν almost all x in supp(ν),

which is equivalent to assertion of the Corollary.□
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