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1 Gaussian processes indexed by ellipsoids

S:gaussian

The set ¢* := {s € RN : 3 _s2} is a separable HILBERT space under
the inner product (s,t) = ) -y Snln, With corresponding norm |[s||, =

(> nen s%)l/Q. If {gn : n € N} is a sequence of independent N(0,1) random

variables then
X = Zn tngn for t € ¢?

converges in both the almost sure and L? senses. The collection {X; : t € 2}
is a centered gaussian process with

cov(Xs, Xt) = Za Sata = (8,t) for s,t € (2.

Without loss of generality we may assume that the process is DOOB-SEPARABLE.
Talagrand (2021, pp. 73-80) considered the case where T' is an ellipsoid,
that is,

T =¢&la):={tc*: Z (tn/an)? < 1} for some fixed a in £2.
n

The set T is a compact, convex subset of £2. Talagrand noted (Prop. 2.13.1)
that Psup;cr X is of order ||al|,. His argument can be slightly simplified.
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§2 REDUCTION TO BLOCKS 1

Lemma. For T := &al,
co llally < Psup, X; < [lall,  where co := \/2/7m = Plg1].
Proof. Rescale X, as (u, W) where W; := a;g; and w; := t;/a;, so that
supger Xt = sup{(u, W) : [|lully < 1}.

By CAUCHY-SCHWARZ, (u, W) < |jully [[W]|, = |[W], with equality when
u; = Wi/ ||W]||y. Thus sup,cr X¢ = [|[W]|, and

Psupier Xi = P[W|ly < \/PIWIl3 = llall,-

For the lower bound, let S denote the set of sequences u = (uj,ug,...)
with u; = +a;/ |||, Bach such u has |[ul]3 = 3, a2/ ||a|j3 = 1 and

up,cs(u, W) = supycs Y 2adgi/ llally = 3 a?lgil/ all.
with expected value Y, aZco/ |lall, = co ||ally-

Talagrand (2021, pp. 73-80) showed how to construct subsets 7;, C ¢?
with

Uy = {0} and |U,| < N,, := 22" and
SuPtGTZ 2"2d(t,U,) < Ch [lall,,

for some constant Cf.

Remark. It suffices to construct the U,,’s so that log, |U,| < 2""¢| for
some universal constant c¢. Then work with the approximating sets
U,, = {0} for n < m and U,, = U4, for some integer m greater than c.

The subset U, could then be replaced by {r(s) : s € U,}, where
denotes the map that takes each s in £? to its closest point in T. For
each s in U,, and ¢ in T we have ||s — t||, > ||s — 7(s)||5, which implies

[t =m(s)lly <[t = slly+lls = w(s)lly < 21t — s,

Reduction to blocks

Without loss of generality we can assume that a; \, 0. For the purpose of
controlling the size of the approximating set U,, we will need to partition N
into disjoint blocks F1, Eo,.... My choice of blocks will differ slightly from
the blocks used by Talagrand. For each positive integer n define

E,={ieN:ay, <i<ap} where a,, 1= 2""1,
Jpi={ieN:1<i<api}={ieN:i<2"}

Ay, = alay).
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§2 REDUCTION TO BLOCKS 2

Then we have |E,| = 2""! and |.J,| = 2" — 1. The reason for this particular
choice of the «,’s will only become evident when bounds involving those
constants are studied. The following calculation is an example.

First note that |a|® = > oneN 2oic, @7 and, by monotonicity of the
(a; : i € N) sequence we have A,, > a; > A, 11 for i € E,,. Hence

R 2 2 2
vpppri= Y] (A2 al? 2 YD (EalAZ,
= 1 (UPPER — |E1|A7) .
From the fact that |E1|A2? = a? < ||a|? it then follows that
2 2 2
> >
3l = Y B2 > [al.

Remark. This form of “condensation argument” is often attributed
(Rudin, 1976, Theorem 3.27) to Cauchy.

The argument leading to <2> works separately for each ¢ in T', using
a sequence (as described in Lemma <6>) of non-negative integers py =
0,p1,p2,... depending on t. The construction works a block at a time,
starting from

Ry:=t=(7,72,...) where 73, := (t; : i € E},) € RFk,

It helps to rescale the problem so that ||a|l, = 1. Then the fact that
> t2/a? < 1 shows that not only do we have t7 < a? for each i but also

- 2 2 _ 2
1= ZiEN @ = ZieN ti ZnEN 7l and
12y #/ad =" |ml3/A7

The argument leading to <2> is recursive. The first step replaces
Ro[J1] := (Ro[i] : @ € Ji} using an x; in R/ such that the difference
r1 := Ro[J1] — z1 has |r1]a < 27P1/2. The working vector is then

}%1 = (Tl,TQ,Tg,...).

The next step finds an x in R’2 such that the difference 75 := R; [Jo] — x2
has |ra]e < 27P2/2 with new working vector

]%2 = (T2,73,74,...).

And so on.

Each x, in R’ defines an element Ty := (z3,0,0,...) of £2. For each ¢
in T the challenge is to choose xj, from a subset V} of Rk with |Vi| suitably
small size. The approximating set U, then consists of all possible sums
T1+ -+ T, with 2}, € V}, as t ranges over T.

Remark. The tildes are just to remind you that we need to identify
the zj, from R7F with an element of ¢2. I was rather tempted to abuse
notation by writing xj, instead of Zj.
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§3 THE MAIN CONSTRUCTION: APPROXIMATION FOR ELLIPSOIDS 3

The next Lemma establishes the important properties of the p,,, which
I initially write as p[n,t]’s to emphasize the dependence on t.

Lemma. For a fized t = (11, 72,...) in T = Ela] with ||a||, =1 define
Bln,t] :=sup{k € Ng: 27% > |72}
and then recursively define a sequence of monnegative integers p[n,t] by
p[0,t] :=po :=0 and
p[n,t] == min(p[n — 1, + Q,B[n,t]) for n > 1.
Then:

(i) pln,t] < pln — 1,t] +2 for n > 1 so that pn,t] < 2n for each n
andt eT.

(ii) 27Plmtl > 2=Bntl > 7,12 for each n.
(41) Y neng on/2=plntl/2 < ) where ¢y is a universal constant.

Proof. As the argument works independently for each ¢ let me drop the ¢
from the notation, abbreviating p[n,t] to p, and so on. Also I'll write h,
for |7,|2.

Assertions (i) and (ii) come directly from the definition of p,, as a mini-
mum of two quantities. Assertion (iii) is a bit more subtle.

Define Ng := {n € N: p, = 3,}. If n € Ng then 3, is finite and

9P — 9=Fn >~ 9 Pl _ 9=pn—l implying ~ 2h, > 27",
Consequently,

—Pn J A2 < 2 . .
ZneNﬁ 27 AL < ZnENB 2hy, /A; <2 by inequality <5>.

By cAuCHY-SCHWARZ and inequalities <3> and <8> we then have
2n=pn

2
n/2—pn/2 < n A2 <
(Za, 272) < g Lo, 22 <6

If N\Ng is nonempty then it must be union of disjoint stretches Iy, I, . ..
of consecutive integers. Suppose

I:i={k+j:1<j<}CNp\Ng

for some k € {0} UNg and some ¢ € N. By assumption p, < f, which
forces p, = 2 + p,_1, for n € I. It then follows that py,; = py + 27 for
1 <j </so that

n/2-pn/2 _ ok/2-pi/2 N 9-j/2 k/2—pi /2
Znel2 =2 ijlz < 2 ,

where ¢y = (v2 — 1)7! & 2.5. A similar inequality holds if |I| is infinite.
If £ = 0 the upper bound equals cy. If & € Ng then 9k/2=Pk/2 ig one of the
summands on the left-hand side of inequality <9>. Assertion (iii) follows.
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The main construction: approximation for ellip-
soids

Throughout this Section I assume [lall, = 1 so that by inequalities <4>
and <5>,

2 2/ 42 _ :
max (ZneN |73, ZneN ]Tnlz/An) <1 for each t = (71, 72,...) in T.

Define §(p) := 27P/2 for p = 0,1,.... From Lemma 6 with p, = p[n, |
we have |1,]2 < d(pn) and p, < pp—1 + 2 for n > 1, implying

d(pn) = 2 Pn/2 > 2 Pl = %5(pn—1)‘
For each finite subset J of N and each non-negative integer p define
B(J.p) :={y €R”: |yl < 4d(p)}.

the euclidean ball with center 0 and radius 4 x 277/2. Let V(J,p) be a d(p)
packing set for B(J,p). From PTTM SECTION 10.4

4 <V (J,p)| == pack(8(p), B(J,p)) < 1211,

Each point of B(.J,p) lies within distance 277/2 of V(.J,p). Thus there
is a map V¥, : B(n,p) — V(J,p) for which

ly — Wypyle <27P for each y in B(J,p).

Remark. Without loss of generality it can be assumed that 0 € V' (J, p)
for all (J,p), which ensures that ¥;,0 = 0.

1: procedure APPROX(t)

2 Initialize: n < 1; Ry < t. % fixed t = (11, 72,...)in T
3 while R,,_1 # 0 do

4 Yp < Rn—l[Jn]

5: Tp < \I/Jmpn (yn)

6 Ry, (P, Tnt1, Tnt2, - - - ) Where rp, =y, — .

7 Increment n by 1.

8 end while

9: end procedure

It helped me to run through a few steps of the while loop.
For n=1:

lyil2 = |71]2 < 0(p1) so that y; € B(J1,p1),
1 =Yy py1 €V(Ji,p1) AND |ri|a < 6(p1)

R1 = (7’1,7’2,7’3, .. )
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For n = 2:
2l = [(r1, m2)l2 < [rif2 + [72l2 < 6(p1) + 0(p2) < 46(p2)
so that yo € B(J2,p2),
2y =Wl ys €V, p, and |rafs < 3(pa),
Ry = (19,73, T4, ... ).
For n = 3:

lysl2 = |(r2, 13)|2 < |r2l2 + |73]2 < 0(p2) + d(p3) < 46(p3)
so that y3 € B(J3,p3),

w3 =Wl Y3 € Vi, py and |r3la < 6(ps),
R3 = (T3>T37T51 cee )

In general we have y,, € B(J,,pn) and z,, € V(J,, pn) with that |r,l2 <
46(pp,) with

RTL = (T’nv Tn+1, Tn+2y - - - ) = (yn — Ty Tn41, Tn42, - - - )
Ry_1 = (Tn—lv Tns Tn+l,--- ) = (yna'rn—i-l, . )
so that R,—1 — R, = (2,,0,0,...) =: Z,,. It follows that
n no
t— R, = Zk:l (Rp—1 — Rp) = Zk:l Ty =: Up.
The remainders tend to zero as n goes to infinity because

[Bnlly < [rnl2 + Zk>n Tkl <4) o(pn).

Finally
S 2T <Y R el =Y 2Ryl
=3 ZnEN 22 ZkEN{k = n}2_pk/2
=3 ZkeN 2o ZnEN 2n/2{k <n}
5T (1),

which by Lemma <6> is smaller than 301\@/ (\/5 - 1).
As t ranges over T we get different {p[n, t]} sequences, but always in the
range 1 < pp < 2k and

yr € Vi := Ur<p<arV (Jk, p)-
By inequality <11>,
< 7l < 2 <
Vi| < ZlSpSQk 12kl < 9k x 122" <12
Similarly, |Uy| < [1r_; |Vk|, implying
" ok+Ch k+Ch
logy |Un| < Zk:l 2 < k+C2

for some universal constants C7 and Cs.
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Why chaining with packing numbers can fail

If a € £% then <3> gives Y. .\ 2"AZ < oo, where A, := a[2""!]. However
it does not imply finiteness of ) _\ 27/2 (A, — Any1), as shown by the
example a; 1= (\ﬂlogZ(Qi))_l where A,,/2 =27"/?n~1,

For such an a the packing bound gives Picg () Xt < o0

Suppose F' is an e-packing set for T := E[a] with |F| = N. Define
By, := {s € RFk : |s|]y < A;}. Consider the vector t =5 = (0,...,0,s,0,...).
By definition of a packing set, there exists an f in F' for which

s = fIER]l2 < [t = flly < e

Consequently, the set of vectors { f[Ex| : f € F'} is an e-covering set for By.
Inequality <11> gives N > (Ay,/e)Pxl.

N > (Ag/e)l Bl
In particular, it follows that

log, PACK(e, T') > |Ep| =21 if e < 4;/2

and hence
Ap/2
V1og PACK(r, T) dr > const.2%/% (Aj, — Apy1) > const./k.
Apt1y/2

Sum over k& to deduce that

diam(T)
/ V1og PACK(r,T) dr = +o00
0

Remark. Check §10.4 to see if pack vs. cover makes a difference.

Problems

Suppose t € E[a] with t; = 0 for ¢ ¢ Ej. Assume 0 € V(J,p) for all (J,p),
which ensures that ¥ ;,0 = 0. Find the sequences p[n, t] and the vectors R,
generated by procedure APPROX. (Note the dependence on k.)
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