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1 Gaussian processes indexed by ellipsoids
S:gaussian

The set ℓ2 := {s ∈ RN :
∑

n∈N s2n} is a separable hilbert space under
the inner product ⟨s, t⟩ =

∑
n∈N sntn, with corresponding norm ∥s∥2 =(∑

n∈N s2n
)1/2

. If {gn : n ∈ N} is a sequence of independent N(0, 1) random
variables then

Xt :=
∑

n
tngn for t ∈ ℓ2

converges in both the almost sure and L2 senses. The collection {Xt : t ∈ ℓ2}
is a centered gaussian process with

cov(Xs, Xt) =
∑

α
sαtα = ⟨s, t⟩ for s, t ∈ ℓ2.

Without loss of generality we may assume that the process is doob-separable.
Talagrand (2021, pp. 73–80) considered the case where T is an ellipsoid,

that is,

T = E[a] := {t ∈ ℓ2 :
∑

n
(tn/an)

2 ≤ 1} for some fixed a in ℓ2.

The set T is a compact, convex subset of ℓ2. Talagrand noted (Prop. 2.13.1)
that P supt∈T Xt is of order ∥a∥2. His argument can be slightly simplified.
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§2 Reduction to blocks 1

eea <1> Lemma. For T := E[a],

c0 ∥a∥2 ≤ P suptXt ≤ ∥a∥2 where c0 :=
√

2/π = P|g1|.

Proof. Rescale Xt as ⟨u,W ⟩ where Wi := aigi and ui := ti/ai, so that

supt∈T Xt = sup{⟨u,W ⟩ : ∥u∥2 ≤ 1}.

By cauchy-schwarz, ⟨u,W ⟩ ≤ ∥u∥2 ∥W∥2 = ∥W∥2 with equality when
ui = Wi/ ∥W∥2. Thus supt∈T Xt = ∥W∥2 and

P supt∈T Xt = P ∥W∥2 ≤
√

P ∥W∥22 = ∥a∥2 .

For the lower bound, let S denote the set of sequences u = (u1, u2, . . . )
with ui = ±ai/ ∥a∥2. Each such u has ∥u∥22 =

∑
i a

2
i / ∥a∥

2
2 = 1 and

supu∈S⟨u,W ⟩ = supu∈A
∑

i
±a2i gi/ ∥a∥2 =

∑
i
a2i |gi|/ ∥a∥2 ,

with expected value
∑

i a
2
i c0/ ∥a∥2 = c0 ∥a∥2.□

Talagrand (2021, pp. 73–80) showed how to construct subsets Tn ⊂ ℓ2

with

U0 = {0} and |Un| ≤ Nn := 22
n
and

supt∈T
∑

n≥0
2n/2d(t, Un) ≤ C1 ∥a∥2 ,\E@ Tal2.6.1\E@ Tal2.6.1 <2>

for some constant C1.

Remark. It suffices to construct the Un’s so that log2 |Un| ≤ 2n+c| for
some universal constant c. Then work with the approximating sets
Ũn = {0} for n ≤ m and Ũn = Un+m for some integer m greater than c.

The subset Ũn could then be replaced by {π(s) : s ∈ Ũn}, where π
denotes the map that takes each s in ℓ2 to its closest point in T . For
each s in Ũn and t in T we have ∥s− t∥2 ≥ ∥s− π(s)∥2, which implies

∥t− π(s)∥2 ≤ ∥t− s∥2 + ∥s− π(s)∥2 ≤ 2 ∥t− s∥2 .

2 Reduction to blocks
S:blocks

Without loss of generality we can assume that ai ↘ 0. For the purpose of
controlling the size of the approximating set Un we will need to partition N
into disjoint blocks E1, E2, . . . . My choice of blocks will differ slightly from
the blocks used by Talagrand. For each positive integer n define

En := {i ∈ N : αn ≤ i < αn+1} where αn := 2n−1,

Jn := {i ∈ N : 1 ≤ i < αn+1} = {i ∈ N : i < 2n},
An = a[αn].
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Then we have |En| = 2n−1 and |Jn| = 2n− 1. The reason for this particular
choice of the αn’s will only become evident when bounds involving those
constants are studied. The following calculation is an example.

First note that ∥a∥2 =
∑

n∈N

∑
i∈En

a2i and, by monotonicity of the
(ai : i ∈ N) sequence we have An ≥ ai ≥ An+1 for i ∈ En. Hence

upper :=
∑

n∈N
|En|A2

n ≥ ∥a∥
2 ≥

∑
n∈N
|En|A2

n+1

= 1
2

(
upper− |E1|A2

1

)
.

From the fact that |E1|A2
1 = a21 ≤ ∥a∥

2 it then follows that

\E@ norm.bnds\E@ norm.bnds <3> 3 ∥a∥2 ≥
∑

n∈N
|En|A2

n ≥ ∥a∥
2 .

Remark. This form of “condensation argument” is often attributed
(Rudin, 1976, Theorem 3.27) to Cauchy.

The argument leading to <2> works separately for each t in T , using
a sequence (as described in Lemma <6>) of non-negative integers p0 =
0, p1, p2, . . . depending on t. The construction works a block at a time,
starting from

R0 := t = (τ1, τ2, . . . ) where τk := (ti : i ∈ Ek) ∈ REk .

It helps to rescale the problem so that ∥a∥2 = 1. Then the fact that∑
i t

2
i /a

2
i ≤ 1 shows that not only do we have t2i ≤ a2i for each i but also

1 =
∑

i∈N
a2i ≥

∑
i∈N

t2i =
∑

n∈N
|τn|22 and\E@ sum.tau2\E@ sum.tau2 <4>

1 ≥
∑

i∈N
t2i /a

2
i ≥

∑
n∈N
|τn|22/A2

n.\E@ sum.tau2/A2\E@ sum.tau2/A2 <5>

The argument leading to <2> is recursive. The first step replaces
R0[J1] := (R0[i] : i ∈ J1} using an x1 in RJ1 such that the difference
r1 := R0[J1]− x1 has |r1|2 ≤ 2−p1/2. The working vector is then

R1 := (r1, τ2, τ3, . . . ).

The next step finds an x2 in RJ2 such that the difference r2 := R1[J2]− x2
has |r2|2 ≤ 2−p2/2, with new working vector

R2 := (r2, τ3, τ4, . . . ).

And so on.
Each xk in RJk defines an element x̃k := (xk, 0, 0, . . . ) of ℓ

2. For each t
in T the challenge is to choose xk from a subset Vk of RJk with |Vk| suitably
small size. The approximating set Un then consists of all possible sums
x̃1 + · · ·+ x̃n with x̃k ∈ Vk as t ranges over T .

Remark. The tildes are just to remind you that we need to identify
the xk from RJk with an element of ℓ2. I was rather tempted to abuse
notation by writing xk instead of x̃k.
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The next Lemma establishes the important properties of the pn, which
I initially write as p[n, t]’s to emphasize the dependence on t.

pn <6> Lemma. For a fixed t = (τ1, τ2, . . . ) in T := E[a] with ∥a∥2 = 1 define

β[n, t] := sup{k ∈ N0 : 2
−k ≥ |τn|22 }

and then recursively define a sequence of nonnegative integers p[n, t] by
p[0, t] := p0 := 0 and

p[n, t] := min
(
p[n− 1, t] + 2, β[n, t]

)
for n ≥ 1.

Then:

(i) p[n, t] ≤ p[n − 1, t] + 2 for n ≥ 1 so that p[n, t] ≤ 2n for each n
and t ∈ T .

(ii) 2−p[n,t] ≥ 2−β[n,t] ≥ |τn|22 for each n.

(iii)
∑

n∈N0
2n/2−p[n,t]/2 ≤ c1 where c1 is a universal constant.

Proof. As the argument works independently for each t let me drop the t
from the notation, abbreviating p[n, t] to pn and so on. Also I’ll write hn
for |τn|2.

Assertions (i) and (ii) come directly from the definition of pn as a mini-
mum of two quantities. Assertion (iii) is a bit more subtle.

Define Nβ := {n ∈ N : pn = βn}. If n ∈ Nβ then βn is finite and

\E@ beta.finite\E@ beta.finite <7> 2−pn = 2−βn ≥ hn > 2−βn−1 = 2−pn−1 implying 2hn > 2−pn .

Consequently,

\E@ sum.NNbeta\E@ sum.NNbeta <8>
∑

n∈Nβ

2−pn/A2
n ≤

∑
n∈Nβ

2hn/A
2
n ≤ 2 by inequality <5>.

By cauchy-schwarz and inequalities <3> and <8> we then have

\E@ n2p2\E@ n2p2 <9>

(∑
n∈Nβ

2n/2−pn/2

)2

≤
∑

n∈Nβ

2n−pn

2nA2
n

∑
n∈Nβ

2nA2
n ≤ 6.

If N\Nβ is nonempty then it must be union of disjoint stretches I1, I2, . . .
of consecutive integers. Suppose

I := {k + j : 1 ≤ j ≤ ℓ} ⊂ N0\Nβ

for some k ∈ {0} ∪ Nβ and some ℓ ∈ N. By assumption pn < βn, which
forces pn = 2 + pn−1, for n ∈ I. It then follows that pk+j = pk + 2j for
1 ≤ j ≤ ℓ so that∑

n∈I
2n/2−pn/2 = 2k/2−pk/2

∑ℓ

j=1
2−j/2 ≤ c02

k/2−pk/2,

where c0 = (
√
2 − 1)−1 ≈ 2.5. A similar inequality holds if |I| is infinite.

If k = 0 the upper bound equals c0. If k ∈ Nβ then 2k/2−pk/2 is one of the
summands on the left-hand side of inequality <9>. Assertion (iii) follows.□
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3 The main construction: approximation for ellip-
soids

S:approximation
Throughout this Section I assume ∥a∥2 = 1 so that by inequalities <4>
and <5>,

max
(∑

n∈N
|τn|22,

∑
n∈N
|τn|22/A2

n

)
≤ 1 for each t = (τ1, τ2, . . . ) in T .

Define δ(p) := 2−p/2 for p = 0, 1, . . . . From Lemma 6 with pn = p[n, t]
we have |τn|2 ≤ δ(pn) and pn ≤ pn−1 + 2 for n ≥ 1, implying

\E@ delpn\E@ delpn <10> δ(pn) = 2−pn/2 ≥ 2−pn−1−1 = 1
2δ(pn−1).

For each finite subset J of N and each non-negative integer p define

B(J, p) := {y ∈ RJ : |y|2 ≤ 4δ(p)}.

the euclidean ball with center 0 and radius 4× 2−p/2. Let V (J, p) be a δ(p)
packing set for B(J, p). From PTTM SECTION 10.4

\E@ ball.pack\E@ ball.pack <11> 4|J | ≤ |V (J, p)| := pack(δ(p), B(J, p)) ≤ 12|J |.

Each point of B(J, p) lies within distance 2−p/2 of V (J, p). Thus there
is a map ΨJ,p : B(n, p)→ V (J, p) for which

|y −ΨJ,py|2 ≤ 2−p for each y in B(J, p).

Remark. Without loss of generality it can be assumed that 0 ∈ V (J, p)
for all (J, p), which ensures that ΨJ,p0 = 0.

1: procedure approx(t)
2: Initialize: n← 1; R0 ← t. % fixed t = (τ1, τ2, . . . ) in T
3: while Rn−1 ̸= 0 do
4: yn ← Rn−1[Jn].
5: xn ← ΨJn,pn(yn).
6: Rn ← (rn, τn+1, τn+2, . . . ) where rn := yn − xn.
7: Increment n by 1.
8: end while
9: end procedure

It helped me to run through a few steps of the while loop.

For n = 1:

|y1|2 = |τ1|2 ≤ δ(p1) so that y1 ∈ B(J1, p1),

x1 = ΨJ1,p1y1 ∈ V (J1, p1) and |r1|2 ≤ δ(p1)

R1 = (r1, τ2, τ3, . . . ).
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For n = 2:

|y2|2 = |(r1, τ2)|2 ≤ |r1|2 + |τ2|2 ≤ δ(p1) + δ(p2) ≤ 4δ(p2)

so that y2 ∈ B(J2, p2),

x2 = Ψ−1
J2,p2

y2 ∈ VJ2,p2 and |r2|2 ≤ δ(p2),

R2 = (r2, τ3, τ4, . . . ).

For n = 3:

|y3|2 = |(r2, τ3)|2 ≤ |r2|2 + |τ3|2 ≤ δ(p2) + δ(p3) ≤ 4δ(p3)

so that y3 ∈ B(J3, p3),

x3 = Ψ−1
J3,p3

y3 ∈ VJ3,p3 and |r3|2 ≤ δ(p3),

R3 = (r3, τ3, τ5, . . . ).

In general we have yn ∈ B(Jn, pn) and xn ∈ V (Jn, pn) with that |rn|2 ≤
4δ(pn) with

Rn = (rn, τn+1, τn+2, . . . ) = (yn − xn, τn+1, τn+2, . . . )

Rn−1 = (rn−1, τn, τn+1, . . . ) = (yn, τn+1, . . . ).

so that Rn−1 −Rn = (xn, 0, 0, . . . ) =: x̃n. It follows that

t−Rn =
∑n

k=1
(Rn−1 −Rn) =

∑n

k=1
x̃n =: un.

The remainders tend to zero as n goes to infinity because

∥Rn∥2 ≤ |rn|2 +
∑

k>n
|τk|2 ≤ 4

∑
k≥n

δ(pk).

Finally∑
n∈N

2n/2d(t, Un) ≤
∑

n∈N
2n/2 ∥t− un∥2 =

∑
n∈N

2n/2 ∥Rn∥2

≤ 3
∑

n∈N
2n/2

∑
k∈N
{k ≤ n}2−pk/2

= 3
∑

k∈N
2−pk/2

∑
n∈N

2n/2{k ≤ n}

≤ 3
∑

k∈N
2−pk/22(k+1)/2/

(√
2− 1

)
,

which by Lemma <6> is smaller than 3c1
√
2/

(√
2− 1

)
.

As t ranges over T we get different {p[n, t]} sequences, but always in the
range 1 ≤ pk ≤ 2k and

yk ∈ Vk := ∪1≤p≤2kV (Jk, p).

By inequality <11>,

|Vk| ≤
∑

1≤p≤2k
12|Jk| ≤ 2k × 122

k ≤ 122
k+1

.

Similarly, |Un| ≤
∏n

k=1 |Vk|, implying

log2 |Un| ≤
∑n

k=1
2k+C1 ≤ 2k+C2 ,

for some universal constants C1 and C2.
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4 Why chaining with packing numbers can fail
S:packing

If a ∈ ℓ2 then <3> gives
∑

n∈N 2nA2
n < ∞, where An := a[2n−1]. However

it does not imply finiteness of
∑

n∈N 2n/2 (An −An+1), as shown by the

example ai :=
(√

i log2(2i)
)−1

where An/2 = 2−n/2n−1.
For such an a the packing bound gives Pt∈E[a]Xt ≤ ∞.
Suppose F is an ϵ-packing set for T := E[a] with |F | = N . Define

Bk := {s ∈ REk : |s|2 ≤ Ak}. Consider the vector t = s̃ = (0, . . . , 0, s, 0, . . . ).
By definition of a packing set, there exists an f in F for which

|s− f [Ek]|2 ≤ ∥t− f∥2 ≤ ϵ.

Consequently, the set of vectors {f [Ek] : f ∈ F} is an ϵ-covering set for Bk.

Inequality <11> gives N ≥ (Ak/ϵ)
|Ek|.

N ≥ (Ak/ϵ)
|Ek| .

In particular, it follows that

log2 pack(ϵ, T ) ≥ |Ek| = 2k−1 if ϵ ≤ Ak/2

and hence∫ Ak/2

Ak+1//2

√
log pack(r, T ) dr ≥ const.2k/2 (Ak −Ak+1) ≥ const./k.

Sum over k to deduce that∫ diam(T )

0

√
log pack(r, T ) dr = +∞

Remark. Check §10.4 to see if pack vs. cover makes a difference.

5 Problems
S:Problems

[1] Suppose t ∈ E[a] with ti = 0 for i /∈ Ek. Assume 0 ∈ V (J, p) for all (J, p),P:special.t

which ensures that ΨJ,p0 = 0. Find the sequences p[n, t] and the vectors Rn

generated by procedure approx. (Note the dependence on k.)
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