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The following note is based on Talagrand (2021, §2.6)

A gaussian process

Let T be the unit simplex in RM, with M > 2 to avoid total triviality. That
is, each member of T is an element of RM for which each coordinate t,, (also
written as t[a] to avoid double subscripting) is nonnegative and -2 ¢, =
1. Equivalently, T' equals the convex hull of the usual orthonomal basis,
{ea : 1 < a < M}. Those vectors constitute the extreme points of the
compact, convex set 7.

For the purposes of this note it helps to have an ordering imposed on
the coordinates. That is, each M-tuple of real numbers is explicitly thought
of as a map from the ordered set [M]| :={a € N:1<a < M} into R. To
emphasize the ordering I'll often write RIMI instead of RM.

To simplify notation slightly, I'll assume that M = 2™ for some positive
integer m. Results for general M can easily be deduced from the results for
the m defined by 2! < M < 2™,

Let g := {go : @ € [[M]]} be a vector of independent standard normal
variates. The process defined by

X; = Za taga = (t, g) forteT
is centered gaussian with

cov(Xs, Xt) = Z Sata = (8,t) for s,t € T.
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I'll write |s|2 for 4/(s,s), the usual euclidean norm.

As Talagrand noted, sup;cp X; = max, go because the supremum of a
linear function on the compact, convex set 7' is achieved at one of its extreme
points. It follows that

Psupser Xi < Cy/log M

for some constant C' that doesn’t depend on M. He then sought to construct
a lower bound using one of the majorizing measure equivalences, a task that
he noted to be non-trivial.

More precisely, Talagrand showed how to construct subsets T;, C R[J[rM]]
with

To = {0} and |T},| < N, :=2*" and
SUDier ) - 2d(t,T,) < Cr1\/logM = Co/m’  if M = 2™,
nz

for some constants C'; and C5 that also don’t depend on M.

The subset T,, could also be replaced by {7 (s) : s € T}, }, where 7 denotes
the map that takes each s in RM to its closest point in 7. For each s in T},
and t in T we have |s — t|2 > |s — m(s)|2, which implies

[t — ()l < [t — slo +|s — 7(s)]2 < 2|t — sla.

The main idea
The basic approximation method starts with a vector s in RELM]] and a pos-
itive integer p. The operation splits s into a sum A 4+ R. The coordinates
for the subset I := {a € [M]] : so > 27P} are reduced by some multiple
of 27P; the remaining coordinates are left untouched: A, = 0 and R, = sq
fora¢ I. For v in I,

Ay = Aa27P where A\, := 275, AND Ry = sq — Aq-

The method ensures that 0 < R, < 27P for all « in [[M]]. It also results
in smallish \,’s if each s, is bounded above by a small muliple of 27P. For
example, if s, < 4 x 27P for each « then A, € {0,1,2,3,4}. The size of this
set of multiples together with the size of I controls the cardinality of the set
of all possible approximating A vectors.

Remark. Talagrand actually used the largest integer multiple of 277
that is strictly smaller than s,. For example, if s, = 4 x 27P he would
use A\, = 3, whereas my definition uses A, = 4. I don’t think the
difference matters: later in the argument I get 5 where he used the
constant 4.

The desire for control over max, s, suggests a recursive argument. To
each ¢ in T" we must construct an increasing sequence of integers

po=0<pr=pl,t]<p=p2,t] < ...



S:pn

Tal2.6.2|

<2>

3 THE p|n,t| SEQUENCE 2
§ pin,

with pp < 2 4 pn_1 for n € N to ensure that 2Pt < 4 x 2-pln—1Lt]
Initially to, < 1 = 2° for every a. Using p; we split ¢ into AD) + R with
maxe R((Xl) < 27P[LI The coordinate A(al) will equal 0 for each « not in the
set I1(t) == {a : tq > 277U} and

AD = \Wo=plLi with A € {0,1,2,3,4} if a € I1(t)

Using the same {p,} sequence we then split RV into A®) + R®) with
max, R < 277128 And so on. The vector 7" (t) := 37, A®) becomes
the nth approximation to t. As t ranges over T' we will get a large collection
of approximating vectors, {7("(t) : t € T'}. Control over the size of that set
will enable us to bound the size of the approximating set T}, in <1>.

The p[n,t] sequence

The main ingredient for the argument sketched in Section 2 is the sequence
of integers p, = p[n,t] for each t in T, with the properties stated in the
following Lemma.

Lemma. For each t in the simplex T there exists an increasing integers
{p[n,t] : n € No} for which:

(1) 0 =p[0,t] < p[n,t] < 2n for each n.
(ii) pln+ 1,t] <2+ p[n,t] for each n.
(iii) The set H,(t) == {a € [M] : to > 277"} has size < 2" for each n.
(iv) 3, t2{27Pn=1t > ¢, > 272ty < on=pln=L4] for cach n.
(v) supyer S pen 27 P < Oy for some Co not depending on M.
Remark. Notice that
0 =%Ho(t) C Hi(t) C--- CHp(t) T {a € [M]:ty >0}

and {t € T :27Pn=18 > ¢ > 272ty = 3¢, (£)° N H,(2).

The rest of this Section proves the Lemma, following some general comments
about Talagrand’s approach.

The first thing to note is that the p,’s for a given t will depend only on
the M-vector s obtained by sorting the t[a] := t, coordinates into decreasing
order. To avoid minor notational complications caused by finiteness of [[M]]
it helps to embed s in an infinite sequence by defining s, := 0 for « > M. In
fact the construction depends on s only through the values s[2¥] for k € [[m]].
The underlying reason for this simplification is revealed by partitioning the
index set [[M]] into disjoint blocks By = {1}, By = {2}, B3 = {3,4}, and so
on. That is,

By={ac[M]:2"1<a<2*}  for k€ [m].



\E@ pn.def

\EQ@ beta.finite ‘

<3>

<4>

<5H>

§3 THE p[n,t| SEQUENCE 3

By monotonicity,

= = " M k-1 ok
1_Zae[[M]] Sa _81+Zk:1 ZaEBk Sa 2 81+Zk:12 s[2"].

Thus
g k:=12 s[2¥] <2 g kzlsa§2.

It will also be helpful to remember that s[2¥] < Eikzl sa/2F <27k,

Remark. Talagrand included the s; contribution in the sum, resulting
in the bound > ;" 2¥s[2%] < 3.

At this point Talgrand defined p, by a two-step method that seems
strange to me. (I note that a similar construction appears in his §2.14, which
I have not yet read carefully.) For each nonegative integer k he defined gy,
as the largest integer < 2k for which 2% > s[2¥] and then defined

Pn = ming<g<n (g +2(n — k) .
I found that his argument can be slightly simplified.

Proof (of the Lemma). Working with s, the montone rearrangement of ¢,
define

B = B[n,t] :=sup{k € N:27% > s[2"]} for k € N.

Notice that s[2!] < 1/2 because 1 > s[1] + s[2], which ensures that 3 is well
defined. Notice also that 3, = +oo iff s[2"] = 0. In particular, we must
have 3, = +o0 if n > m.

Starting from pg := p[0,¢] := 0, recursively define

Pn :=p[n,t] ;== min (2 + p[n — 1,t], B[n,t]) for n € N.
By construction, p, € N for n € N and, because  is an increasing function,

Pn+1 = min(2 +pnv/8n+1 ) > min (pnaﬂn)) = Pn-

The inclusion of the 3, in the minimum ensures that 220"t > 5[2"]. More-
over, if p[n,t] = B, then [, is finite and

2Pt > g[27] > 97Plni-1 implying 22" > 277",

The inclusion of the p,_1 + 2 ensures that p, < p,—1 + 2 for each n, as
required by Lemma <2>(i). Part (ii) is a trivial consequence of (i). And if
50 > 27P[1 > 5[27] then we must have o < 2", which gives (iii).

Inequality (iv) follows from (iii) and the trivial bound ¢2 < 272l
for each v in H,,—1(t)¢ N H,, (2).

n—1,t]
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The argument for (v) is more interesting. Let me temporarily write [n]
for n — p[n,t] and D, for 22", For n > m we have £, = 400 so that
Pn+1 = Pn + 2 for n > m, implying

dm+kl=m+k— (pm]+2k)=9dm|—k  for k €N,

whence

Zn>m Dn = 26[m] Zk‘EN 2_k = Dm.

For assertion (v) of the Lemma it therefore suffices to bound Zne[[ ) Dn-
For n in the set [M]|g := {n € [M]] : p, = Bn} we have /3, < 00, so that
inequality <5> gives D, < 2""15[2"]  implying

D, < ontlglon] < 4.
ZnenMuﬁ —ZnenMn 2=

If the set [[M]]\[[M]]g is not empty then it consists of a union of stretches
of the form k +1,....k + ¢ with either £k = 0 or k € [[M]]g. Within that
stretch we have py4; = pr + 27 and d[k + j| = d[k] — j. Thus

Zj:1 Dy j = Dy Zj:1 277 < Dy.

Summing over all such stretches we arrive at the bound

M
< <
Dy Do < Dot ZHG[[M}]B Dn =9,

the desired inequality for (v).

Construction of the approximations

Now comes the recursive construction of the sequence of approximations for
cach t in the simplex. As in Section 2, the argument starts with R()(¢) =t,
which it decomposes into a sum A™M (t)+RM (¢) with max, RV (t) < 2-pll,
Then it decomposes R (t) into A®) (t)4+R3)(t) with max, R (t) < 2774,
And so on.

In general, the R~V (t) vector (with max, R((xn_l)(t) < 27pln=Ltly g
decomposed into A™ (t) + R(™(t) in the following way. Define

I,(t) = {a € [M]] : RV (t) > 27Plnl},

For o in [[M]]\I,(t) define R (t) = R&n_l)(t) and A (t) = 0. For a in
I,,(t) define

AW (1) = 2277 where Ay = [2PIR(D (1)

(67

and RY” (t) = R((ynfl)(t) — AW (t), which is < 277l by definition of the
floor operation |... |. Because

0 < R (t) < 27Plr=tl < 9=pll+2 by Lemma <25 (ii),
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we must have A\, € {0,1,2,3,4}.

We can think of 7(*)(t) := Z§:1 AU (t) as the kth approximation to ¢
and t — 7" (k) = R(™(t) as the error of the approximation. The set of
possible approximating values is then

Up = {7®(t): t € T}

and d(t,Uy,), the euclidean distance of ¢ to Uy, is less than |[R®)(t)[o. We
also need to control the size of U, to derive the result <2>.

Claim 1: For all ¢ in T and k in N,

d(t,Uy) <y {5 2 k2P,
J

Claim 2: There is a universal constant ¢ such that |Uy| < M<2" if M > 2.
That is, log, log, |Uk| < k + logy(cm).

For approximation <1> we need log, log, |T},| < n, with no dependence
on M, which suggests we define T, +r = Ui for £ € N, where n,, =
[logy(cm)]. We then have the desired upper bound on |T,| for n > n,,. For
n < n,, we can just take T, as the singleton set {0}. With those choices
we get logy |T,,| < 2" for all n, as required by the first part of <1>. For the
second part, use Claim 1 with d(¢,7;,) < 1 for n < n,, and d(t, Ty, +x) =
d(t,Uy) for k € N to get

> M T)
n>0
e on /2 (nm+k) /2 ; 3/2-plj—1,]
S DAL D DN > el Z k12
1+nm/2 3/2-pli—1.1] ; (nm+k) /2
I Sl SN TRt

< 9m/? (2 4 ZjeN 03/2=pli=1tl9(+1)/2 /(1 /3 _ 1)) ,

The factor 2"/2 is < v/2cm’ and Lemma <2>(v) bounds the final sum by
a constant.

Proof (of Claim 1). In order to bound |[R®)(t)|, we first need to focus on

the behavior of the sequence {R&k) (t) : k € N} for a fixed a. If t, < 277Ut
then

RO ()= RUV) = =t,.
The first possible j for which RY )(t) <t is the value for which

2_p[j7t] < ta S 2_p[j_17t]_
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Thereafter, we only know that RY )( t) < 27708, Thus, by Lemma <2>
parts (iii) and (iv),

2
*) ()2 = (k)
BOOB =Y 0 (BO0)
—Qp[k,t] —p[k,t] 2 _p[jvt] —p[j—l,ﬂ
<> 2 {to > 2 }+Zj>kta{2 <to <2 }

< 2k—2p[k,t} + Z {] > k}2j_2p[j_17t]
- JEN

so that

[RO@) < \/Z.EN{j > k2wl <30 (G > kit
J J

The final inequality comes from the general result: /> a; <3, \/a; for
non-negative sequences {a;}.

Proof (of Claim 2). To bound the size of Uy, remember that AY)(t) is
non-zero only on the set I;(t) = {a € [M]] : RU=D(t) > 27PUl}  a subset

of the set J(;(t), which has size less than R := 27. There are at 2j val-
ues possible for p[j,t] and for each « in I;(t) there are at most five values

for Ag)(t). Thus
{AD (@) 1t e Ty C U{Vr,: |I| <27 and p < 25}
where Vr,, denotes the set of all u in RIMI for which

o, J€10.1,2,3,4) ifael
Uq . .
=0 ifad¢l

For given I and p the set Vr ), has size 5//l. Thus the union in <7> has size
less than

] M K i 27 029 .
292@3- (;<;)5 < 2j(5M) Z@j 1/K! < M M > 2
for some constant c¢g. Consequently,

|Ug| < H |{A teT} < Mpco2'+teo2” < M2002k’

as asserted.
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