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The following note is based on Talagrand (2021, §2.6)

1 A gaussian process
S:gaussian

Let T be the unit simplex in RM , with M ≥ 2 to avoid total triviality. That
is, each member of T is an element of RM for which each coordinate tα (also
written as t[α] to avoid double subscripting) is nonnegative and

∑M
α=1 tα =

1. Equivalently, T equals the convex hull of the usual orthonomal basis,
{eα : 1 ≤ α ≤ M}. Those vectors constitute the extreme points of the
compact, convex set T .

For the purposes of this note it helps to have an ordering imposed on
the coordinates. That is, each M -tuple of real numbers is explicitly thought
of as a map from the ordered set [[M ]] := {α ∈ N : 1 ≤ α ≤ M} into R. To
emphasize the ordering I’ll often write R[[M ]] instead of RM .

To simplify notation slightly, I’ll assume that M = 2m for some positive
integer m. Results for general M can easily be deduced from the results for
the m defined by 2m−1 < M ≤ 2m.

Let g := {gα : α ∈ [[M ]]} be a vector of independent standard normal
variates. The process defined by

Xt :=
∑

α
tαgα = ⟨t, g⟩ for t ∈ T

is centered gaussian with

cov(Xs, Xt) =
∑

α
sαtα = ⟨s, t⟩ for s, t ∈ T .
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I’ll write |s|2 for
√
⟨s, s⟩ , the usual euclidean norm.

As Talagrand noted, supt∈T Xt = maxα gα because the supremum of a
linear function on the compact, convex set T is achieved at one of its extreme
points. It follows that

P supt∈T Xt ≤ C
√
logM

for some constant C that doesn’t depend on M . He then sought to construct
a lower bound using one of the majorizing measure equivalences, a task that
he noted to be non-trivial.

More precisely, Talagrand showed how to construct subsets Tn ⊂ R[[M ]]
+

with

T0 = {0} and |Tn| ≤ Nn := 22
n
and

supt∈T
∑

n≥0
2n/2d(t, Tn) ≤ C1

√
logM = C2

√
m if M = 2m,\E@ Tal2.6.1\E@ Tal2.6.1 <1>

for some constants C1 and C2 that also don’t depend on M .
The subset Tn could also be replaced by {π(s) : s ∈ Tn}, where π denotes

the map that takes each s in RM to its closest point in T . For each s in Tn

and t in T we have |s− t|2 ≥ |s− π(s)|2, which implies

|t− π(s)|2 ≤ |t− s|2 + |s− π(s)|2 ≤ 2|t− s|2.

2 The main idea
S:idea

The basic approximation method starts with a vector s in R[[M ]]
+ and a pos-

itive integer p. The operation splits s into a sum A + R. The coordinates
for the subset I := {α ∈ [[M ]] : sα > 2−p} are reduced by some multiple
of 2−p; the remaining coordinates are left untouched: Aα = 0 and Rα = sα
for α /∈ I. For α in I,

Aα = λα2
−p where λα := ⌊2psα⌋ and Rα = sα −Aα.

The method ensures that 0 ≤ Rα ≤ 2−p for all α in [[M ]]. It also results
in smallish λα’s if each sα is bounded above by a small muliple of 2−p. For
example, if sα ≤ 4× 2−p for each α then λα ∈ {0, 1, 2, 3, 4}. The size of this
set of multiples together with the size of I controls the cardinality of the set
of all possible approximating A vectors.

Remark. Talagrand actually used the largest integer multiple of 2−p

that is strictly smaller than sα. For example, if sα = 4× 2−p he would
use λα = 3, whereas my definition uses λα = 4. I don’t think the
difference matters: later in the argument I get 5 where he used the
constant 4.

The desire for control over maxα sα suggests a recursive argument. To
each t in T we must construct an increasing sequence of integers

p0 = 0 ≤ p1 = p[1, t] ≤ p2 = p[2, t] ≤ . . .
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with pn ≤ 2 + pn−1 for n ∈ N to ensure that 2−p[n,t] ≤ 4 × 2−p[n−1,t].
Initially tα ≤ 1 = 20 for every α. Using p1 we split t into A(1) + R(1) with

maxαR
(1)
α ≤ 2−p[1,t]. The coordinate A

(1)
α will equal 0 for each α not in the

set I1(t) := {α : tα > 2−p[1,t]} and

A(1)
α = λ(1)

α 2−p[1,t] with λ
(1)
α ∈ {0, 1, 2, 3, 4} if α ∈ I1(t)

Using the same {pn} sequence we then split R(1) into A(2) + R(2) with
maxαR

(2) ≤ 2−p[2,t]. And so on. The vector τ (n)(t) :=
∑n

k=1A
(k) becomes

the nth approximation to t. As t ranges over T we will get a large collection
of approximating vectors, {τ (n)(t) : t ∈ T}. Control over the size of that set
will enable us to bound the size of the approximating set Tn in <1>.

3 The p[n, t] sequence
S:pn

The main ingredient for the argument sketched in Section 2 is the sequence
of integers pn = p[n, t] for each t in T , with the properties stated in the
following Lemma.

Tal2.6.2 <2> Lemma. For each t in the simplex T there exists an increasing integers
{p[n, t] : n ∈ N0} for which:

(i) 0 = p[0, t] ≤ p[n, t] ≤ 2n for each n.

(ii) p[n+ 1, t] ≤ 2 + p[n, t] for each n.

(iii) The set Hn(t) := {α ∈ [[M ]] : tα > 2−p[n,t]} has size < 2n for each n.

(iv)
∑

α t
2
α{2−p[n−1,t] ≥ tα > 2−2p[n,t]} ≤ 2n−p[n−1,t] for each n.

(v) supt∈T
∑

n∈N 2n−p[n,t] ≤ C2 for some C2 not depending on M .□

Remark. Notice that

∅ = H0(t) ⊂ H1(t) ⊂ · · · ⊂ Hn(t) ↑ {α ∈ [[M ]] : tα > 0}

and {t ∈ T : 2−p[n−1,t] ≥ tα > 2−2p[n,t]} = Hn−1(t)
c ∩Hn(t).

The rest of this Section proves the Lemma, following some general comments
about Talagrand’s approach.

The first thing to note is that the pn’s for a given t will depend only on
theM -vector s obtained by sorting the t[α] := tα coordinates into decreasing
order. To avoid minor notational complications caused by finiteness of [[M ]]
it helps to embed s in an infinite sequence by defining sα := 0 for α > M . In
fact the construction depends on s only through the values s[2k] for k ∈ [[m]].
The underlying reason for this simplification is revealed by partitioning the
index set [[M ]] into disjoint blocks B0 = {1}, B1 = {2}, B3 = {3, 4}, and so
on. That is,

Bk = {α ∈ [[M ]] : 2k−1 < a ≤ 2k} for k ∈ [[m]].
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By monotonicity,

1 =
∑

α∈[[M ]]
sα = s1 +

∑m

k=1

∑
α∈Bk

sα ≥ s1 +
∑m

k=1
2k−1s[2k].

Thus

\E@ 2^ks\E@ 2^ks <3>
∑m

k=1
2ks[2k] ≤ 2

∑m

k=1
sα ≤ 2.

It will also be helpful to remember that s[2k] ≤
∑2k

α=1 sα/2
k ≤ 2−k.

Remark. Talagrand included the s1 contribution in the sum, resulting
in the bound

∑m
k=0 2

ks[2k] ≤ 3.

At this point Talgrand defined pn by a two-step method that seems
strange to me. (I note that a similar construction appears in his §2.14, which
I have not yet read carefully.) For each nonegative integer k he defined qk
as the largest integer ≤ 2k for which 2−k > s[2k] and then defined

pn := min0≤k≤n (qk + 2(n− k)) .

I found that his argument can be slightly simplified.

Proof (of the Lemma). Working with s, the montone rearrangement of t,
define

βn := β[n, t] := sup{k ∈ N : 2−k ≥ s[2n]} for k ∈ N.

Notice that s[21] ≤ 1/2 because 1 ≥ s[1]+ s[2], which ensures that β1 is well
defined. Notice also that βn = +∞ iff s[2n] = 0. In particular, we must
have βn = +∞ if n > m.

Starting from p0 := p[0, t] := 0, recursively define

\E@ pn.def\E@ pn.def <4> pn := p[n, t] := min ( 2 + p[n− 1, t] , β[n, t] ) for n ∈ N.

By construction, pn ∈ N for n ∈ N and, because β is an increasing function,

pn+1 = min ( 2 + pn, βn+1 ) ≥ min (pn, βn)) = pn.

The inclusion of the βn in the minimum ensures that 2−p[n,t] ≥ s[2n]. More-
over, if p[n, t] = βn then βn is finite and

\E@ beta.finite\E@ beta.finite <5> 2−p[n,t] ≥ s[2n] > 2−p[n,t]−1 implying 2s[2n] > 2−p[n,t].

The inclusion of the pn−1 + 2 ensures that pn ≤ pn−1 + 2 for each n, as
required by Lemma <2>(i). Part (ii) is a trivial consequence of (i). And if
sα > 2−p[n,t] ≥ s[2n] then we must have α < 2n, which gives (iii).

Inequality (iv) follows from (iii) and the trivial bound t2α ≤ 2−2p[n−1,t]

for each α in Hn−1(t)
c ∩Hn(t).
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The argument for (v) is more interesting. Let me temporarily write δ[n]
for n − p[n, t] and Dn for 2δ[n]. For n > m we have βn = +∞ so that
pn+1 = pn + 2 for n ≥ m, implying

δ[m+ k] = m+ k − (p[m] + 2k) = δ[m]− k for k ∈ N,

whence∑
n>m

Dn = 2δ[m]
∑

k∈N
2−k = Dm.

For assertion (v) of the Lemma it therefore suffices to bound
∑

n∈[[M ]]Dn.
For n in the set [[M ]]β := {n ∈ [[M ]] : pn = βn} we have βn < ∞, so that

inequality <5> gives Dn ≤ 2n+1s[2n], implying∑
n∈[[M ]]β

Dn ≤
∑

n∈[[M ]]
2n+1s[2n] ≤ 4.

If the set [[M ]]\[[M ]]β is not empty then it consists of a union of stretches
of the form k + 1, . . . .k + ℓ with either k = 0 or k ∈ [[M ]]β. Within that
stretch we have pk+j = pk + 2j and δ[k + j] = δ[k]− j. Thus∑ℓ

j=1
Dk+j = Dk

∑ℓ

j=1
2−j ≤ Dk.

Summing over all such stretches we arrive at the bound∑M

n=1
Dn ≤ D0 + 2

∑
n∈[[M ]]β

Dn ≤ 9,

the desired inequality for (v).□

4 Construction of the approximations
S:construction

Now comes the recursive construction of the sequence of approximations for
each t in the simplex. As in Section 2, the argument starts with R(0)(t) = t,

which it decomposes into a sum A(1)(t)+R(1)(t) with maxαR
(1)
α (t) ≤ 2−p[1,t].

Then it decomposes R(1)(t) into A(2)(t)+R(2)(t) with maxαR
(2)
α (t) ≤ 2−p[2,t].

And so on.
In general, the R(n−1)(t) vector (with maxαR

(n−1)
α (t) ≤ 2−p[n−1,t]) is

decomposed into A(n)(t) +R(n)(t) in the following way. Define

In(t) = {α ∈ [[M ]] : R(n−1)
α (t) > 2−p[n,t]}.

For α in [[M ]]\In(t) define R
(n)
α (t) = R

(n−1)
α (t) and A

(n)
α (t) = 0. For α in

In(t) define

A(n)
α (t) = λα2

−p[n,t] where λα = ⌊2p[n,t]R(n−1)
α (t)⌋

and R
(n)
α (t) = R

(n−1)
α (t) − A

(n)
α (t), which is ≤ 2−p[n,t] by definition of the

floor operation ⌊. . . ⌋. Because

0 ≤ R(n−1)
α (t) ≤ 2−p[n−1,t] ≤ 2−p[n,t]+2 by Lemma <2>(ii),
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we must have λα ∈ {0, 1, 2, 3, 4}.
We can think of τ (k)(t) :=

∑k
j=1A

(j)(t) as the kth approximation to t

and t − τ (n)(k) = R(n)(t) as the error of the approximation. The set of
possible approximating values is then

Uk := {τ (k)(t) : t ∈ T}

and d(t, Uk), the euclidean distance of t to Uk, is less than |R(k)(t)|2. We
also need to control the size of Uk to derive the result <2>.

Claim 1: For all t in T and k in N,

d(t, Uk) ≤
∑

j∈N
{j ≥ k}2j/2−p[j−1,t].

Claim 2: There is a universal constant c such that |Uk| ≤ M c2k if M ≥ 2.
That is, log2 log2 |Uk| ≤ k + log2(cm).

For approximation <1> we need log2 log2 |Tn| ≤ n, with no dependence
on M , which suggests we define Tnm+k = Uk for k ∈ N, where nm :=
⌈log2(cm)⌉. We then have the desired upper bound on |Tn| for n > nm. For
n ≤ nm we can just take Tn as the singleton set {0}. With those choices
we get log2 |Tn| ≤ 2n for all n, as required by the first part of <1>. For the
second part, use Claim 1 with d(t, Tn) ≤ 1 for n ≤ nm and d(t, Tnm+k) =
d(t, Uk) for k ∈ N to get∑

n≥0
2n/2d(t, Tn)

≤
∑nm

n=0
2n/2 +

∑
k∈N

2(nm+k)/2
∑

j∈N
{j ≥ k}2j/2−p[j−1,t]

≤ 21+nm/2 +
∑

j∈N
2j/2−p[j−1,t]

∑
k∈N

{j ≥ k}2(nm+k)/2

≤ 2nm/2
(
2 +

∑
j∈N

2j/2−p[j−1,t]2(j+1)/2/(
√
2− 1)

)
.

The factor 2nm/2 is ≤
√
2cm and Lemma <2>(v) bounds the final sum by

a constant.

Proof (of Claim 1). In order to bound |R(k)(t)|2 we first need to focus on

the behavior of the sequence {R(k)
α (t) : k ∈ N} for a fixed α. If tα ≤ 2−p[j,t]

then

R(j)
α (t) = R(j−1)

α (t) = · · · = tα.

The first possible j for which R
(j)
α (t) < tα is the value for which

2−p[j,t] < tα ≤ 2−p[j−1,t].
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Thereafter, we only know that R
(j)
α (t) ≤ 2−p[j,t]. Thus, by Lemma <2>

parts (iii) and (iv),

|R(k)(t)|22 =
∑

α∈[[M ]]

(
R(k)

α (t)
)2

≤
∑

α
2−2p[k,t]{tα > 2−p[k,t]}+

∑
j>k

t2α{2−p[j,t] < tα ≤ 2−p[j−1,t]}

≤ 2k−2p[k,t] +
∑

j∈N
{j > k}2j−2p[j−1,t]

so that

\E@ Rk.norm\E@ Rk.norm <6> |R(k)(t)|2 ≤
√∑

j∈N
{j ≥ k}2j−2p[j−1,t] ≤

∑
j∈N

{j ≥ k}2j/2−p[j−1,t].

The final inequality comes from the general result:
√∑

j aj ≤
∑

k
√
aj for

non-negative sequences {aj}.□

Proof (of Claim 2). To bound the size of Uk, remember that A(j)(t) is
non-zero only on the set Ij(t) = {α ∈ [[M ]] : R(j−1)(t) > 2−p[j,t]}, a subset
of the set Hj(t), which has size less than R := 2j . There are at 2j val-
ues possible for p[j, t] and for each α in Ij(t) there are at most five values

for A
(j)
α (t). Thus

\E@ Aj.vv\E@ Aj.vv <7> {A(j)(t) : t ∈ T} ⊂ ∪{VI,p : |I| ≤ 2j and p ≤ 2j}

where VI,p denotes the set of all u in R[[M ]] for which

2puα

{
∈ {0, 1, 2, 3, 4} if α ∈ I
= 0 if α /∈ I

.

For given I and p the set VI,p has size 5|I|. Thus the union in <7> has size
less than

2j
∑

κ≤2j

(
M

κ

)
5κ ≤ 2j(5M)2

j
∑

κ≤2j
1/κ! ≤ M c02j if M ≥ 2

for some constant c0. Consequently,

|Uk| ≤
∏k

j=1
|{A(j)(t) : t ∈ T}| ≤ M c021+···+c02k ≤ M2c02k ,

as asserted.□
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