Normal approximation by Stein's method

Normal approximation by Stein's method		0
1	Characterization of distributions	0
2	Facts about the tails of the normal	2
3	Facts about the normal characterizing d.e. in \mathbb{R}^1	2
4	Exchangeable pairs (IMS Lect.1)	5
5	Smoothing	8
6	OLD version of Exchangeable pairs (IMS Lect.1)	11
7	Problems	12

- Stein86 = Stein (1986)
- Stein 72 =Stein (1972). This paper appears to be the first published version of the normal approximation method.
- BR76 = Bhattacharya and Ranga Rao (1976)
- RR96 = Rinott and Rotar (1996) and RR97 = Rinott and Rotar (1997)
- MT = Meckes (2006) Ph.D. thesis
- Alea = Chatterjee and Meckes (2008)
- Luminy = Meckes (2009), Luminy paper
- PTTM = Pollard (2029) and UGMTP = Pollard (2001). Timothy and Sekhar should have read-only access to the PTTM directory on Dropbox.
- $\gamma = N(0,1)$ with density $\phi(x)$ and $\Phi(x) = \gamma(-\infty, x] = 1 \overline{\Phi}(x)$.
- $\mathfrak{m} = \text{lebesgue measure on } \mathcal{B}(\mathbb{R}).$

1

S:characterize

Characterization of distributions

The Stein method for normal approximation in one dimension is based on a differential equation. This part of the method also works for approximation of any probability measure P_0 on $\mathcal{B}(\mathbb{R})$ with a smooth density $p_0(x) = e^{-g(x)}$ with respect to Lebesgue measure. Note that $\dot{p}_0 = -\dot{g}p_0$.

In this Section I am not being very careful about the necessary regularity assumptions. For example, I seem to need $q(x) \to \infty$ as $x \to -\infty$.

Suppose h is a member of $\mathcal{L}^1(P_0)$ for which there is a smooth function f defined by the relation

$$\dot{f}(x) - f(x)\dot{g}(x) = H(x) := h(x) - P_0h.$$

Multiply through by g(x) to get

$$\frac{d}{dx}(p_0(x)f(x)) = p_0(x)\dot{f}(x) - \dot{g}(x)p_0(x)f(x) = p_0(x)H(x).$$

Integrate with respect to \mathfrak{m} over the interval $(-\infty, w]$:

| EQ f.soln <2>

< 1 >

\E@ Stein-d.e.

$$p_0(w)f(w) = \int_{-\infty}^w p_0(x)H(x) \, dx$$

This equality shows that f(x) is uniquely determined by h, at least on the set $\{x : p_0(x) > 0\}$. Thus we could think of the left-hand side of $\langle 1 \rangle$ as defining a map \mathcal{K} from a set \mathbb{H} of functions on \mathbb{R} back into functions on \mathbb{R} :

\EQ kk.def <3>

$$\mathcal{K}(x,h) := (\mathcal{K}h)(x) := \tilde{f}(x) - f(x)\tilde{g}(x) \quad \text{for each } h \in \mathbb{H}$$

Now suppose P is another probability measure on $\mathcal{B}(\mathbb{R})$ for which

$$Ph - P_0h = PH = P^x \mathcal{K}(x, h) = 0$$
 for each $h \in \mathbb{H}$.

Then we have $Ph = P_0h$ for each h in \mathbb{H} . If \mathbb{H} is a large enough subset of $\mathcal{L}^1(P)$ to uniquely determine P_0 then we deduce that $P = P_0$, as measures on $\mathcal{B}(\mathbb{R})$. Here I am thinking about examples like \mathbb{H} equal to $\{h : ||h||_{\mathrm{BL}} \leq 1\}$ or to the smaller set $\{h \in \mathbb{C}^{\infty}(\mathbb{R}) : ||\dot{h}|| \leq 1\}$.

For the purposes of showing that $P \approx P_0$ we need some sort of continuity property to translate $P(\mathcal{K}h) \approx 0$ into $PH \approx 0$, together with a way of interpreting an approximation like $Ph \approx P_0h$ for h in \mathbb{H} . Some ϵ 's and δ 's might turn this idea into a useful inequality.

Remark. These vague ideas suggest to me that the \mathcal{K} need not be defined by a differential equation. A family of operators came to mind for higher dimensions:

$$(\mathcal{K}_r h)(x) = \frac{\mathfrak{m}^t H(t)\{t \in B(x, r)\}}{\mathfrak{m}B(x, r)} \quad \text{where } H(t) = h(t) - P_0 h.$$

Or maybe it would be better to replace the indicator function of a ball by some smooth function ψ with compact support and define

$$(\mathcal{K}_r h)(x) = C_r(x)^{-1} \mathfrak{m}^t \psi(x+rt) H(t)? \approx ?r(???)$$

where $\{C_r : r > 0\}$ is a family of normalizing functions. I would hope that $C_r(x) \approx c_0(x) + c_1(x)r$ for small r. Maybe some sort of limit as $r \to 0$ could be involved. The invariance of \mathfrak{m} under translations should then play a role. For small r we would have

$$(\mathcal{K}_r h)(x)? \approx ?(c_0(x) + c_1(x)r)^{-1}(r(???))$$

Something wrong there. I was hoping for something almost linear in r.

Facts about the tails of the normal

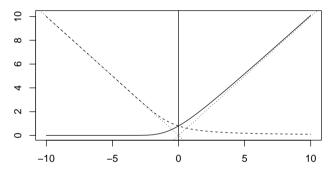
The following facts are proved in Section 7, which contains Problems from PTTM Chapter 3.

- (Ni) The function $\rho(x) := \phi(x)/\bar{\Phi}(x)$ is convex, strictly positive and strictly increasing on \mathbb{R} , with $r(0) = \rho(0) = \sqrt{2/\pi} \approx 0.798$.
- (Nii) The function $r(x) := \rho(x) x$ is strictly positive, convex and decreasing, with and $\rho(x)r(x) < 1$ for all x.
- (Niii) From the literature:

$$(3x + \sqrt{x^2 + 8})/4 < \rho(x) \le (x + \sqrt{x^2 + 4})/2$$
 for all $x \in \mathbb{R}$.

I don't think we need such exquisite detail.

The solid line in the picture shows $\rho(\cdot)$ and the dashed line shows $r(\cdot)$.



For my purposes, the representations

 $\Phi(t) = \phi(t)/\rho(t) \quad \text{and} \quad \Phi(t) = \bar{\Phi}(-t) = \phi(t)/\rho(-t)$

will be useful.

S:de-facts

Stein.p25

\E@ Stein.normal

3

 $<\!\!5\!\!>$

Facts about the normal characterizing d.e. in \mathbb{R}^1

The method of exchangeable pairs seems to come down to a Taylor expansion with good bounds on remainder terms.

Compare with Stein86 pages 22–28. In particular, his Lemma 3 on page 25 gave a way to bound various derivatives of the f defined by <1>.

<4> Lemma. Suppose f is a smooth function for which

 $\dot{f}(x) - xf(x) = H(x) := h(x) - \gamma h$ for each x.

where h is absolutely continuous with almost sure derivative $\overset{\bullet}{h}$ for which $\|\overset{\bullet}{h}\|_{\infty}$ is finite. Then:

S:tails

 $\mathbf{2}$

(i)
$$||f||_{\infty} \leq \sqrt{\pi/2} ||H||_{\infty}$$

(*ii*) $\|f\|_{\infty} \le 2\|H\|_{\infty}$.

(iii) $\| \mathbf{f} \|_{\infty} \leq 2 \| \mathbf{h} \|_{\infty}$.

Remarks.

(a) Absolute continuity allows for things like h being of the form $\max(h_1, h_2)$ with $h_i \in \mathcal{C}^1(\mathbb{R})$. We need $\overset{\bullet}{h}$ to be locally Lebesgue integrable with

$$h(b) - h(a) = \int_{a}^{b} \dot{h}(r) dr$$
 for all $-\infty < a < b < \infty$

(b) If h is differentiable at x then the function f is twice differentiable:

$$\dot{f}(x) = \frac{d}{dx} \left(xf(x) + H(x) \right) = x\dot{f}(x) + f(x) + \dot{H}(x)$$
$$= (1 + x^2)f(x) + xH(x) + \dot{h}(x).$$

\E@ fdotdot

(c) For $h \in \mathcal{L}^1(\gamma)$,

\E@ solution

$$\phi(x)f(x) = \gamma^r H(r)\{r \le x\} = -\gamma^r H(r)\{r \ge x\}.$$

The \geq and \leq could be replaced by strict inequalities, because γ has no atoms.

Proof of (i)

 $<\!\!6\!\!>$

< 7 >

Write C_0 for $||H||_{\infty}$. From (c) we have

$$\begin{aligned} \phi(x)|f(x)| &\le C_0 \gamma(-\infty, x] = C_0 \Phi(x) = C_0 \phi(x) / \rho(-x), \\ \phi(x)|f(x)| &\le C_0 \gamma[x, \infty) = C_0 \phi(x) / \rho(x). \end{aligned}$$

Thus $|f(x)| \le C_0 / \max[\rho(x), \rho(-x)] \le C_0 / \sqrt{2/\pi}$.

Proof of (ii)

$$|\dot{f}(x)| \le |xf(x)| + |H(x)| \le \frac{C_0|x|}{\max\left[\rho(x), \rho(-x)\right]} + C_0.$$

A sloppy proof of (iii)

Here is a sloppy transcription of Stein's argument that gives (iii) with 2 replaced by some universal constant c.

Homogeneity of the defining equation $\langle 5 \rangle$ lets me assume, without loss of generality, that $\|\dot{h}\|_{\infty} = 1$.

The argument is mostly a matter of expressing f using integrals of h then appealing to classical tail bounds (see Section 2) for the normal.

I think it suffices to consider f(x) for $x \ge 0$. The bounds for negative x should come from the analogous argument with H replaced by -H(-x).

3

First get an integral representation for H:

$$H(r) = \gamma^{s} (h(r) - h(s))$$

= $\gamma^{s} \mathfrak{m}^{t} \dot{h}(t) (\{s < t < r\} - \{r < t < s\})$
= $\mathfrak{m}^{t} \dot{h}(t) [\{t < r\} \Phi(t) - \{r < t\} \bar{\Phi}(t)]$ by Fubin
= $\int_{-\infty}^{r} \dot{h}(t) \Phi(t) dt - \int_{r}^{\infty} \dot{h}(t) \bar{\Phi}(t) dt.$

ni

With r = x, this agrees with Stein86 page 27, equation (56). Then get a representation for f:

$$\begin{split} \phi(x)f(x) &= \gamma^r H(r)\{r < x\} \\ &= \mathfrak{m}^t \mathbf{\hat{h}}(t)\gamma^r \{r < x\} \left[\{t < r\} \Phi(t) - \{r < t\} \bar{\Phi}(t) \right] \\ &= \mathfrak{m}^t \mathbf{\hat{h}}(t) \left[\{t < x\} \left(\Phi(x) - \Phi(t) \right) \Phi(t) - \Phi(t \land x) \bar{\Phi}(t) \right] \end{split}$$

Rewrite $\Phi(x) - \Phi(t)$ as $\overline{\Phi}(t) - \overline{\Phi}(x)$ and $\Phi(t \wedge x)$ as $\{t < x\} \Phi(t) + \{t \ge x\} \Phi(x)$, then cancel out as $\{t < x\}\bar{\Phi}(t)\Phi(t)$ to conclude that

$$\phi(x)f(x) = -\mathfrak{m}^t \dot{h}(t) \left[\{t < x\}\bar{\Phi}(x)\Phi(t) + \{t > x\}\Phi(x)\bar{\Phi}(t) \right]$$

From <6> and the representations of H and f we get

$$\begin{aligned} \mathbf{\dot{f}}(x) - \mathbf{\dot{h}}(x) &= (1+x^2)f(x) + xH(x) \\ &= g_1(x) \int_{-\infty}^x \mathbf{\dot{h}}(t)\Phi(t) \, dt + g_2(x) \int_x^\infty \mathbf{\dot{h}}(t)\bar{\Phi}(t) \, dt \\ \text{where} \qquad g_1(x) &:= x - (1+x^2)\bar{\Phi}(x)/\phi(x) \\ &\quad g_2(x) &:= -x - (1+x^2)\Phi(x)/\phi(x). \end{aligned}$$

\E@ H.rep

<8>

\E@ f.rep $<\!\!9\!\!>$

\E@ fdotdot.rep < 10 >

Stein86 page 28:

$$\int_{-\infty}^{x} \Phi(t) dt = x \Phi(x) + \phi(x)$$
$$\int_{x}^{\infty} \bar{\Phi}(t) dt = -x \bar{\Phi}(x) + \phi(x)$$

[Proof: In both cases, check equality of derivatives then note equality of limits as $x \to -\infty$ or $x \to \infty$.]

Here is a way to bound the g_1 contribution.

$$\begin{aligned} |g_1(x) \int_{-\infty}^x \hat{h}(t) \Phi(t) \, dt| &\leq |x - (1 + x^2) / \rho(x)| \int_x^\infty \bar{\Phi}(t) \, dt| \\ &= \frac{|x(x + r(x)) - (1 + x^2)|}{\rho(x)} \phi(x) |1 - x \bar{\Phi}(x) / \phi(x)| \\ &\leq \frac{1}{\rho(x)} \frac{e^{-x^2/2}}{\sqrt{2\pi}} \frac{r(x)}{\rho(x)} \leq c. \end{aligned}$$

I hope the g_2 contribution can be handled similarly.

S:exch

Exchangeable pairs (IMS Lect.1)

Suppose (X, Y) is an exchangeable pair of real random variables with joint distribution $\mathbb{Q}^{x,y} = P^x K_x^y$. (That is, K_x is the conditional distribution of Y given X = x.)

Assume the setting of Lemma $\langle 4 \rangle$: h is an absolutely continuous function with almost sure derivative h for which $\|h\|_{\infty}$ is finite and f is a smooth function (actually twice differentiable, Lebesgue almost everywhere) for which

$$\dot{f}(x) - xf(x) = H(x) := h(x) - \gamma h$$
 for each x .

That is,

$$\phi(x)f(x) = \gamma^r H(r)\{r \le x\} = -\gamma^r H(r)\{r \ge x\}.$$

By Taylor, for each real δ ,

$$\begin{split} f(x+\delta) &- f(x) - \delta \dot{f}(x) \\ &= \delta \int_0^1 \dot{f}(x+t\delta) - \dot{f}(x) \, dt \\ &= \delta^2 \int_0^1 \int_0^1 \{0 < s < t < 1\} \dot{f}(x+s\delta) \, ds \, dt \\ &= \delta^2 \int_0^1 (1-s) \dot{f}(x+s\delta) \, ds. \end{split}$$

Remark. I should check carefully that this version of Taylor holds if f is only absolutely continuous with almost sure derivative f.

If h is only piecewise continuous then f is only piecewise continuous. If h is smoother then f inherits higher derivatives. If we want to bound Wasserstein distances then we might get away with something like h differentiable with $\|\hat{h}\|_{\infty} \leq 1$, as a way to approximate functions with $\|h\|_{\text{lip}} \leq 1$. For the case where $h(x) = \{x \leq w\} - \Phi(w)$, we only get one-times differentiability with a piecewise continuous derivative for f. That makes the approximation argument more delicate (Ho and Chen 1978, IMS Lect II).

I am suspicious of MT Lemma 1.3, page 4, where the analog of Lemma $\langle 4 \rangle$ was cited for g only bounded and continuous, even though the third assertion involved $\|g^{\bullet}\|_{\infty}$.

Stein.hdot <12> Lemma. (cf. Stein86 pages 13-15 and 33-36)

Suppose (X, Y) is an exchangeable pair with joint distribution $\mathbb{Q}^{x,y} = P^x K_x^y$ and $\mathbb{P}X = \mathbb{P}Y = 0$ and $\mathbb{P}X^2 = \mathbb{P}Y^2 = 1$. (That is, Px = 0 and $Px^2 = 1$.) Define D(x, y) := y - x.

(i)
$$K_x D = m(x) = -\lambda x + r_1(x)$$
 and $K_x D^2 = \tau^2(x) = 2\lambda + r_2(x)$.

\E@ Taylor.f <11>

 $\mathrm{cf.}\mathbb{P}(Y - X \mid X = x)$

4

(ii) $\dot{f}(x) - xf(x) = H(x) := h(x) - \gamma h$ with h having a bounded, piecewise continuous derivative \dot{h} (or h absolutely continuous?).

Then

$$2\lambda |Ph - \gamma h| \le 2||f||_{\infty} P|r_1(x)| + ||f||_{\infty} P|r_2(x)| + ||f||_{\infty} \mathbb{Q}|D|^3.$$

Proof. The function F(x,y) := (y-x)(f(x) + f(y)) is antisymmetric and

$$\begin{split} F(x,y) &:= (y-x) \left(f(x) + f(y) \right) \\ &= 2Df(x) + D^2 \mathring{f}(x) + D \left(f(x+D) - f(x) - D \mathring{f}(x) \right) \\ &= 2Df(x) + D^2 \mathring{f}(x) + D^3 \int_0^1 (1-s) \mathring{f}(x+sD) \, ds \end{split}$$

Antisymmetry gives

$$0 = \mathbb{Q}F(x,y)$$

= $P^x f(x)K_x^y D + P^x \dot{f}(x)K_x^y D^2 + R_3$ with $|R_3| \le \mathbb{Q}|D|^3 \|\dot{f}\|_{\infty}$
= $2Pm(x)f(x) + P\tau^2(x)\dot{f}(x) + R_3$
= $P\left(-2\lambda x f(x) + 2\lambda \dot{f}(x)\right) + P\left(2r_1(x)f(x) + r_2(x)\dot{f}(x)\right) + R_3$
= $2\lambda(Ph - \gamma h)$ + remainder,

where

remainder =
$$P\left(2r_1(x)f(x) + r_2(x)\dot{f}(x)\right) + R_3$$

so that

<13>

$$|\text{remainder}| \le 2||f||_{\infty} P|r_1(x)| + ||f||_{\infty} P|r_2(x)| + ||f||_{\infty} \mathbb{Q}|\Delta|^3.$$

Lemma <4> bounds $||f||_{\infty}$ and $||f||_{\infty}$ by multiples of $||H||_{\infty}$ and and $||f'||_{\infty}$ by a multiple of $||h||_{\infty}$.

Corollary. (MT page 19) For each $\epsilon > 0$ let (X, Y_{ϵ}) be an exchangeable pair with $\mathbb{P}X = 0$ and $\mathbb{P}X^2 = 1$ for which there are functions $\alpha(X)$ and $\beta(X)$ and $\mathcal{E}(X)$ in $\mathcal{L}^1(\mathbb{P})$ such that

(i)
$$\mathbb{P}_X(Y_{\epsilon} - X) = -\lambda \epsilon^2 X + \alpha(X)o(\epsilon^2)$$

(*ii*)
$$\mathbb{P}_X (Y_{\epsilon} - X)^2 = \epsilon^2 (2\lambda + \mathcal{E}(X)) + \beta(X)o(\epsilon^2)$$

(*iii*) $\mathbb{P}|Y_{\epsilon} - X|^3 = o(\epsilon^2)$

Then $d_{TV}(P,\gamma) \leq P|\mathcal{E}(x)|/\lambda$ (?) where P denotes the distribution of X.

Why not replace \mathcal{E} by $\lambda \mathcal{E}$?

MT-Thm2.1

Remark. I have doubts about the total variation distance in the assertion. It is true that $d_{TV}(P,\gamma) = \sup\{|PK - \gamma K| : K \text{ compact }\}$. Each compact K can be approximated by a sequence of continuous functions h_n with compact support: $1 \ge h_n \ge K$ and $h_n \downarrow K$. We have $||h_n||_{\infty} \le 1$ but, even if h_n is smooth, we don't have control over $||\dot{h}_n||_{\infty}$. However,

$$||P - \gamma||_{BL} := \sup\{|Ph - \gamma h| : ||h||_{BL} \le 1\}$$

where, by the definition in UGMTP page 170, $\|h\|_{\text{BL}} = \|h\|_{\text{lip}} + 2 \|h\|_{\infty}$. (Why did I bother with the 2?) It is true that an h for which $\|h\|_{\text{BL}} \leq 1$ can be well approximated by smooth functions h_n with $\|\dot{h}_n\|_2 \leq \|h_n\|_{\text{lip}}$ (See PTTM Problem 1 in Chapter 6. In \mathbb{R}^1 the ℓ^2 and ℓ^{∞} norms of a function are the same, I think. Check.))

Proof. I'll interpret the assertion of the Corollary as an assertion about functions h with both $||h||_{\infty} \leq 1$ and $||\hat{h}||_{\infty} \leq 1$. Also I could assume h is infinitely differentiable and has compact support, if it helps.

I think Lemma <12>, with λ replaced by $\lambda \epsilon^2$ and $r_1(x) = \alpha(x)o(\epsilon^2)$ and $r_2(x) = \epsilon^2 \mathcal{E}(x) + \beta(x)o(\epsilon^2)$ gives

$$0 = 2\lambda\epsilon^2 \left(Ph - \gamma h\right) + \text{remainder} + R_3,$$

where $|R_3| \leq \mathbb{P}|Y_{\epsilon} - X|^3 \| \widehat{f} \|_{\infty}$ and

remainder =
$$P\left(f(x)2r_1(x) + r_2(x)\dot{f}(x)\right)$$

= $P\left(2f(x)\alpha(x)o(\epsilon^2) + \epsilon^2\mathcal{E}(x) + \beta(x)o(\epsilon^2)\dot{f}(x)\right)$

Divide through by ϵ^2 . so that

$$|2\lambda(Ph - \gamma h) + P\mathcal{E}(x)| \le 2||f||_{\infty}o(1)P|\alpha(x)| + ||f||_{\infty}o(1)P|\beta(x)| + ||f||_{\infty}o(1) = o(1).$$

 \Box That is close to what MT asserted, but with d_{TV} replaced by d_{BL} .

Remark. (Probably wrong) For such a result to be useful we would need $P|\mathcal{E}|/\lambda$ to be small. Also, it appears to me that MT wanted the X and Y_{ϵ} to be random vectors, even though condition (ii) on page 19 was written with $(W_{\epsilon} - W)^2$. That suggests we should start from the vector analog of the expansion <11>.

Perhaps I should abandon MT and look for analogous results in Alea or Luminy.

S:smoothing

 $\mathbf{5}$

Smoothing

BR §11 derived a bunch of smoothing inequalities, which were used by RR96 Lemma 4.1 RR97 Lemma 4.1 with little in the way of proof.

BR stated results for $\mu - \nu$, for a bounded measure μ and a bounded signed measure ν on $\mathcal{B}(\mathbb{R}^k)$. The signed measure ν has a unique representation (the Jordan decomposition) as $\nu_{\oplus} - \nu_{\ominus}$, with ν_{\oplus} and ν_{\ominus} nonnegative measures with disjoint supports. The inequalities involved integrals with respect to ν_{\oplus} .

I never did discover what μ and ν would be in specific cases. Instead I write λ for the signed measure $\mu - \nu = \mu + \nu_{\ominus} - \nu_{\oplus}$. By general results about the Jordan decomposition, we have $\lambda_{\oplus} \leq \mu + \nu_{\ominus}$ and $\lambda_{\ominus} \leq \nu_{\oplus}$. I think the BR bounds involving ν_{\oplus} are larger than my bounds involving λ_{\ominus} .

Even better, why not just assume that μ and ν are finite measures with disjoint supports right from the start? If we are interested in $\lambda = P - Q$ for probability measures P and Q then we could take $\mu = (P - Q)^+$ and $\nu = (P - Q)^- = (Q - P)^+$. The special case where $Q = N(0, I_k)$, or maybe Q = N(0, V) for some covariance matrix, seems relevant for the Stein's theory.

My notation, based on BR

As usual, I write B(x,r) for $\{y \in \mathbb{R}^K : |x-y|_2 < r\}$ and B[x,r] for the corresponding closed ball.

For a given locally bounded, $\mathcal{B}(\mathbb{R}^k)$ -measurable function h on \mathbb{R}^k and $\delta > 0$, define

$$M_{\delta}(x,h) = \sup\{h(y) : |x-y|_2 < \delta\}$$

The map $x \mapsto M_{\delta}(x, h)$ is lower semi-continuous and thus is borel-measurable.

Remark. Notice that $-\inf\{h(y) : |x - y|_2 < \delta\} = M_{\delta}(x, -h).$

The BR results involve smoothing by convolution with a probability measure ρ on $\mathcal{B}(\mathbb{R}^k)$:

 $\rho \star \lambda(h) = \rho^x \lambda^y h(x+y)$ for 'reasonable' h.

Equivalently, by courtesy of Fubini,

$$\rho \star \lambda(h) = \lambda^x h_\rho(x) \quad \text{where } h_\rho(x) := \rho^y h(x+y).$$

For example, under suitable integrability assumptions on $M_{\epsilon}(\cdot, h)$ we have $\rho \star \lambda(M_{\epsilon}) = \rho^x \lambda^y M_{\epsilon}(x+y,h)$. The main trick in the proof of the first Lemma consists of two inequalities involving $M_{\epsilon}(x+y,h) := \sup\{h(x+y+w): |w|_2 < \epsilon\}$, which hold whenever $|x|_2 < \epsilon$:

$$M_{\epsilon}(x+y,h) \ge h(x+y-x) = h(y); M_{\epsilon}(x+y,h) \le \sup\{h(y+w) : |w|_2 < 2\epsilon\} = M_{2\epsilon}(y,h).$$

\E@ Meps.lower <14>\E@ Meps.upper <15> For each probability measure ρ (K_{ϵ} in BR notation), define

$$g_{\delta}(f,\rho) := (\rho \star \lambda)^{w} M_{\delta}(w,f); \quad \text{AND} \quad \tau_{\delta}(f) := \nu^{y} \left(M_{\delta}(y,f) - f(y) \right).$$

BR11.1 <16> **Lemma.** (\approx BR Lemma 11.1) Let ρ be a probability measure that concentrates on $B(0, \epsilon)$, for some $\epsilon > 0$, and $\lambda = \mu - \nu$, a difference of two finite measures. Assume some sort of integrability regarding h and M and m. Then

$$\lambda h \le \rho \star \lambda(M_{\epsilon}) + \nu^{y} (M_{2\epsilon}(y,h) - h(y)) = g_{\epsilon}(h,\rho) + \tau_{2\epsilon}(h).$$

Proof. As $\rho\{x : |x|_2 < \epsilon\} = 1$, inequality <15> implies $\rho^x M_{\epsilon}(x+y) \le M_{2\epsilon}(y)$. For the asserted inequality, start with the $\rho \star \lambda(M_{\epsilon})$ term:

$$\rho^{x}\lambda^{y}M_{\epsilon}(x+y) \geq \rho^{x}\left(\mu^{y}h(y) - \nu M_{\epsilon}(x+y)\right) \qquad \text{by } <14>$$
$$= \mu h - \nu^{y}\rho^{x}M_{\epsilon}(x+y)$$
$$\geq \mu h - \nu h - \nu^{y}\left(M_{2\epsilon}(y) - h(y)\right).$$

 \Box as asserted.

$$\square \qquad |\lambda h| = \max\left(\lambda h, \lambda(-h)\right) \le \max\left(g_{\epsilon}(h, \rho), g_{\epsilon}(-h, \rho)\right) + \max\left(\tau_{2\epsilon}(h), \tau_{2\epsilon}(-h)\right)$$

BR11.4 <18> **Lemma.** (\approx BR Lemma 11.4 and RR97 Lemma 4.1) Suppose P is a probability measure on $\mathcal{B}(\mathbb{R}^k)$ for which $\alpha := PB(0, \epsilon) > 1/2$ for some $\epsilon > 0$. Let λ be as in Lemma <16> and \mathcal{H} be a uniformly bounded set of measurable functions on \mathbb{R}^k for which

- (a) if $h \in \mathcal{H}$ then $h_{\theta} \in \mathcal{H}$, where $h_{\theta}(y) := h(\theta + y)$,
- (b) if $h \in \mathcal{H}$ then $-h \in \mathcal{H}$.

Then

$$(2\alpha - 1)\sup_{h \in \mathcal{H}} |\lambda h| \le \sup_{\mathcal{H}} g_{\epsilon}(h, P) + \alpha \tau_{2\epsilon}(\mathcal{H}) + (1 - \alpha)\tau_{\epsilon}(\mathcal{H}),$$

 $\square \quad where \ \tau_{\delta}(\mathcal{H}) := \sup_{h \in \mathcal{H}} \tau_{\delta}(h).$

Proof. Define $\Delta := \sup_{\mathcal{H}} |\lambda h|$. By assumption (b),

 $\sup_{\mathcal{H}} \lambda h = \Delta \qquad \text{AND} \qquad \inf_{h \in \mathcal{H}} \lambda h = -\Delta.$

The main idea is to decompose P as $\alpha \rho + \overline{\alpha} \overline{\rho}$ where $\rho := P(\cdot | B(0, \epsilon))$ and $\overline{\rho} := P(\cdot | B(0, \epsilon)^c)$ and $\overline{\alpha} := 1 - \alpha$. The argument for the ρ contribution will be essentially the same as for Lemma <16>: for each h in \mathcal{H} ,

$$\rho^x \lambda^y M_{\epsilon}(x+y,h) \ge \lambda h - \tau_{2\epsilon}(h) \ge \lambda h - \tau_{2\epsilon}(\mathcal{H}).$$

For $\overline{\rho}$ use

$$M_{\epsilon}(x+y,h) \ge h(x+y) = h_x(y),$$

$$M_{\epsilon}(x+y,h) = \sup_{|w| < \epsilon} h(x+y+w) = M_{\epsilon}(y,h_x),$$

and the trivial fact that $\inf_x F(x) \leq \overline{\rho}^x F(x) \leq \sup_x F(x)$ to get

$$\overline{\rho}^{x}\lambda^{y}M_{\epsilon}(x+y,h) \geq \overline{\rho}^{x}\left(\mu^{y}h_{x}(y) - \nu^{y}M_{\epsilon}(x+y,h)\right)$$

$$= \overline{\rho}^{x}\left[\lambda^{y}h_{x}(y) - \nu^{y}\left(M_{\epsilon}(y,h_{x}) - h_{x}(y)\right)\right]$$

$$\geq \inf_{x}\lambda^{y}h_{x}(y) - \sup_{x}\nu^{y}\left(M_{\epsilon}(y,h_{x}) - h_{x}(y)\right)$$

$$\geq -\Delta - \tau_{\epsilon}(\mathcal{H}).$$

Take a weighted average:

$$(P \star \lambda)^{w} M_{\epsilon}(w, h) = P^{x} \lambda^{y} M_{\epsilon}(x + y, h)$$

= $\alpha \lambda h - \alpha \tau_{2\epsilon}(\mathcal{H}) - \overline{\alpha} \left(\Delta + \tau_{\epsilon}(\mathcal{H})\right).$

Then take a supremum over h in \mathcal{H} :

$$\sup_{h \in \mathcal{H}} g_{\epsilon}(h, P) \ge \alpha \Delta - \alpha \tau_{2\epsilon}(h) - \overline{\alpha} \left(\Delta + \tau_{\epsilon}(\mathcal{H}) \right),$$

 \Box which rearrange to give the asserted upper bound for $(2\alpha - 1)\Delta$.

6

OLD version of Exchangeable pairs (IMS Lect.1)

I had a hard time deciphering Stein's explanations related to the diagram labeled (28) on Stein 86 page 12.

Remark. I was very confused. Maybe better to skip the mess.

I think the idea is that we have a probability measure P on $\mathcal{B}(\mathbb{R})$ that we want to show is close, in some sense, to some other P_0 . In the cases that seem of most interest $P_0 = \gamma := N(0, 1)$.

The construction involves an exchangeable pair of random variables W, W', each with distribution P. If Q denotes the joint distribution of the pair then we can take the variables as the coordinate maps on \mathbb{R}^2 : W(x,y) = x and W'(x,y) = y. (Maybe it would be better to use (w,w')) instead of (x, y), but then I would have a lot of pesky superscript w''s.) Both the marginals of \mathbb{Q} are equal to P. Exchangeability means that

 $\mathbb{Q}F(x,y) = \mathbb{Q}F(y,x)$ for all F in $\mathcal{L}^1(\mathbb{Q})$.

In particular, if F(y, x) = -F(x, y) (antisymmetry) then $\mathbb{Q}F = 0$. Stein's \mathcal{F} corresponds to the subspace of all antisymmetric members of $\mathcal{L}^1(\mathbb{Q})$.

The conditional distribution of W' given W corresponds to a markov kernel $\{K_w : w \in \mathbb{R}\}$ for which

$$\mathbb{Q}F(x,y) = P^w K_w^{w'} F(w,w').$$

The kernel also defines a linear map $F \mapsto K_w^{w'}F(w, w')$ from $\mathcal{L}^1(\mathbb{Q})$ into $\mathcal{L}^1(P)$. Stein wrote T for the restriction of this linear map to the set

 $<\!20\!>$ \E@ antisymm

\E@ A.def

E0 exch < 19>

$$\mathcal{F} := \{ F \in \mathcal{L}^1(\mathbb{P}) : F(x, y) = -F(y, x) \}$$

of antisymmetric, \mathbb{Q} -integrable functions on \mathbb{R}^2 . Consequently, PTF = $\mathbb{Q}F = 0$ for F in \mathcal{F} . That is, if $F \in \mathcal{F}$ then TF is an element of $\mathcal{L}^1(P)$ with zero *P*-expectation: PTF = 0 for $F \in \mathcal{F}$.

The hope appears to be (IMS p 10, Lemma 2) that for each f in (some subspace of) $\mathcal{L}^1(P)$ with Pf = 0 there should exist an antisymmetric F in $\mathcal{L}^1(\mathbb{Q})$ for which f(x) = TF.

Stein also assumed existence of another vector space \mathcal{F}_0 and a linear map $T_0: \mathfrak{F}_0 \to \mathfrak{X}_0$, with \mathfrak{X}_0 a subspace of $\mathcal{L}^1(P)$ and a linear(?) map $A: \mathfrak{F}_0 \to \mathfrak{F}$. (My A is Stein's α .) For normal approximation I think \mathcal{F}_0 can be taken as a subspace of $\mathcal{L}^1(P)$ consisting of suitably smooth (piecewise continuous first derivatives and \ldots ?) functions and

$$(T_0f)(x) = \dot{f}(x) - xf(x).$$

Compare with the definition of Stein's T_N on IMS page 19. The map A in this case is (I think) given by

$$<21>$$
 $(Af)(x,y) = (y-x)(f(x) + f(y)).$

S:OLDep

He mentioned that T(Af) should be thought of as an approximation to TF if F = Af.

The range of T_0 is a subspace \mathfrak{X}_0 of $\mathcal{L}^1(P) \cap \mathcal{L}^1(P_0)$. He assumed existence of a sort of inverse $U_0 : \mathfrak{X}_0 \to \mathfrak{F}_0$, a linear map such that

7

$$T_0 f = h(w) - P_0 h$$
 if $f = U_0 h$ with $h \in \mathfrak{X}_0$

In the normal case, $f = U_0 h$ is the solution to the differential equation $\hat{f}(x) - xf(x) = h - \gamma h$:

$$(U_0h)(w) = \exp(w^2/2) \int_{-\infty}^{w} (h(r) - \gamma h) \exp(-y^2/2) \, dy$$
$$= -\exp(w^2/2) \int_{w}^{\infty} (h(r) - \gamma h) \exp(-y^2/2) \, dy$$

The second form comes from the fact that $\gamma(h - \gamma h) = 0$. Stein (IMS page 14, Lemma 4) needed to assume that h is piecewise continuous with $h(w) = O(w^2)$ as $|w| \to \infty$.

Problems

The function $\phi(x)$ denotes the N(0,1) density and $\overline{\Phi}(x) = \int_x^\infty \phi(t) dt$; the functions $\Re(x)(\cdot)$ and $\rho(\cdot)$ and $r(\cdot)$ are defined on \mathbb{R} by $1/\rho(x) = \Re(x) = \overline{\Phi}(x)/\phi(x)$ and $r(x) = \rho(x) - x$.

- [1] The following bounds are apparently due to Laplace. Each bound is of the form p(1/x) with p a polynomial.
 - (i) Show that $p(1/x) > \Re(x)$ for all x > 0 if

$$-\frac{d}{dt}\left(p(1/t)\phi(t)\right) > \phi(t) \qquad \text{for all } t > 0$$

and $p(1/x) < \mathcal{R}$ for all x > 0 if

$$-\frac{d}{dt}\left(p(1/t)\phi(t)\right) < \phi(t) \qquad \text{for all } t > 0$$

Hint: \int_x^∞ .

- (ii) Show that <24> holds if and only if $p(t) + t^3 p'(t) > t$ for all t > 0. Characterize <25> by the reverse inequality.
- (iii) Define a sequence of monomials by $\Delta_0(t) = t$ and $\Delta_k(t) = -t^3 \Delta'_{k-1}(t)$ for $k \ge 1$. Show that

$$\Delta_k(t) = (-1)^k a_k t^{2k+1} \qquad \text{where } a_k = 1 \times 3 \times \dots \times (2k-1).$$

(iv) Define $p_k(t) = \sum_{i=0}^k \Delta_i(t)$. Show that $p_k(t) + t^3 p'_k(t) = t + \Delta_{k+1}(t)$.

S:Problems

P:Laplace

\E@ Mill.upper | <24>

```
\EQ Mill.lower <\!\!25\!\!>
```

(v) Conclude that $p_k(1/x) > \Re(x) > p_{k+1}(1/x)$ for each even k. For example, for k = 1 and k = 2 we have, for all x > 0,

$$\begin{aligned} x^{-1} &> \mathcal{R}(x) > x^{-1} - x^{-3} \\ x^{-1} - x^{-3} + 3x^{-5} > \mathcal{R}(x) > x^{-1} - x^{-3} + 3x^{-5} - 15x^{-7} \end{aligned}$$

(vi) From the inequality for k = 2 deduce that $xr(x) \to 1$ as $x \to \infty$.

P:rho.facts

P:half

P:Px

[2]

- Here are the basic facts about $\rho(\cdot)$ and $r(\cdot)$.
- (i) Suppose $Z \sim N(0, 1)$. Show that

$$\Re(x) = \int_0^\infty \phi(x+t)/\phi(x) \, dt = \int_0^\infty e^{-xt - t^2/2} dt = \sqrt{\pi/2} \, \mathbb{P}e^{-x|Z|}.$$

- (ii) Show that $L(x) := \log \Re(x) = -\log \rho(x)$ is a strictly decreasing, convex function. Deduce that $\rho(x) = e^{-L(x)}$ is strictly increasing with $\rho(x) \to 0$ as $x \to -\infty$ and $\rho(x) \to \infty$ as $x \to \infty$. Also $\log \rho(x) = -x^2/2 \log \sqrt{2\pi} \log \overline{\Phi}(x)$ is concave.
- (iii) Using the bounds from Problem [1], show that $\rho(x) > x$ and r(x) > 0 for all x. (Note that $\rho(x) > x$ is trivially true for $x \leq 0$.) Also show that $xr(x) \to 1$ as $x \to \infty$.
- (iv) Show that $\log(\bar{\Phi})$ has derivative $-\rho$ so that $\rho'(x)/\rho(x) = d \log \rho(x)/dx = \rho(x) x$. That is, $\rho'(x) = \rho(x)r(x)$ for all x. From the concavity of $\log \rho$ deduce that r is a decreasing function.
- (v) (Sampford, 1953) Show that $\gamma(x) := \rho''(x)/\rho(x) = 2r(x)^2 + xr(x) 1$. Show that

$$\gamma'(x) = (4r(x) + x)r'(x) + r(x) = 2r(x)r'(x) + \rho(x)\gamma(x) < \rho(x)\gamma(x).$$

Argue as follows to show that $\gamma(x) > 0$ for all $x \in \mathbb{R}$, which implies that ρ is strictly convex. Suppose there were an x_0 for which $\gamma(x_0) \leq 0$. By the preceding argument, $\gamma'(x_0)$ would be < 0. There would therefore be some $\delta > 0$ and $x_1 > x_0$ at which $\gamma(x_1) < -\delta$. By part (iii), $\gamma(x) \to 0$ as $x \to \infty$. For some finite K there would exist some $K > x_1$ for which $|\gamma(x)| < \delta$ for x > K. The differentiable function γ would achieve its minimum value on $[x_0, \infty)$ at some point x_2 in $[x_0, K]$ at which $0 > -\delta \ge$ $\gamma(x_2)$ and $\gamma'(x_2) = 0$, a contradiction.

- [3] Show that $\overline{\Phi}(x) \leq \frac{1}{2}e^{-x^2/2}$ for $x \geq 0$. Hint: From Problem [2](i) we have $\mathcal{R}(0) > \mathcal{R}(x)$.
- [4] For each x show (by means of integration-by-parts) that $\int_x^{\infty} t\phi(t) dt = \phi(x)$ and $\int_x^{\infty} t^2 \phi(t) dt = x\phi(x) + \overline{\Phi}(x)$. Let P_x be the probability measure with density $p_x(t) = \phi(t) \{t \ge x\} / \overline{\Phi}(x)$ with respect to Lebesgure measure on the real line. Show that the variance of P_x is $1 - \rho(x)r(x)$. Deduce that $\rho(x)r(x) < 1$ for all x.

P:Birnbaum

[5]

[6]

(Birnbaum, 1942). Use Cauchy-Schwarz and facts from Problem [4] to show that

$$\phi(x)^2 = \left(\int_x^\infty t\sqrt{\phi(t)}\sqrt{\phi(t)}\,dt\right)^2 \le \left(x\phi(x) + \bar{\Phi}(x)\right)\bar{\Phi}(x).$$

Deduce that $1 \leq (x + \Re(x)) \Re(x) = \left(\Re(x) + \frac{1}{2}x\right)^2 - \frac{x^2}{4}$, which implies $\rho(x) \leq \left(x + \sqrt{x^2 + 4}\right)/2$.

P:Sampford

BhattacharyaRao76

Birnbaum1942AMS

HoChen1978AnnProb

Meckes-thesis

Meckes2009Luminy

PollardUGMTP

RinottRotar1996JMultivA

Pttm

ChatterjeeMeckes2008Alea

(Sampford, 1953) Let $\gamma(x) = 2r(x)^2 + xr(x) - 1$, as in Problem [2](v). Remember that $\gamma(x) > 0$ for all $x \in \mathbb{R}$. Argue that r(x) cannot belong to the closed interval $I_x := \{t \in \mathbb{R} : 2t^2 + xt - 1 \leq 0\}$, which has endpoints $\left(-x \pm \sqrt{x^2 + 8}\right)/4$. Deduce that $r(x) > (-x + \sqrt{x^2 + 8})/4 = 2/(x + \sqrt{x^2 + 8})$ and $\rho(x) > (3x + \sqrt{x^2 + 8})/4$. Note: r(x) > 0.

References

- Bhattacharya, R. N. and R. Ranga Rao (1976). Normal Approximation and Asymptotic Expansions. New York: Wiley.
- Birnbaum, Z. W. (1942). An inequality for Mills' ratio. Ann. Math. Statist. 13, 245–246.
 - Chatterjee, S. and E. Meckes (2008). Multivariate normal approximation using exchangeable pairs. *Alea* 4, 257–283.
- Ho, S.-T. and L. H. Y. Chen (1978). An L_p bound for the remainder in a combinatorial central limit theorem. Annals of Probability 6(2), 231 249.
- Meckes, E. (2006). An infinitesimal version of Stein's method of exchangeable pairs. Ph. D. thesis, Stanford University (Mathematics). Documents available at https://case.edu/artsci/math/mwmeckes/elizabeth/.
- Meckes, E. (2009). On Stein's method for multivariate normal approximation. In *High Dimensional Probability V: The Luminy Volume*, Volume 5 of *Institute of Mathematical Statistics COLLECTIONS*, pp. 153–178.
- Pollard, D. (2001). A User's Guide to Measure Theoretic Probability. Cambridge University Press.
- Pollard, D. (2029). *Probability Tools, Tricks, and Miracles*. Cambridge University Press. (Under construction).
- Rinott, Y. and V. Rotar (1996). A multivariate CLT for local dependence with $n^{-1/2} \log n$ rate and applications to multivariate graph related statistics. Journal of Multivariate Analysis 56(2), 333–350.

inottRotar1997AnnApplProb	Rinott, Y. and V. Rotar (1997). On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted U-statistics. <i>The Annals of Applied Probability</i> 7(4), 1080– 1105.
Sampford1953AMS	Sampford, M. R. (1953). Some inequalities on Mill's ratio and related func- tions. The Annals of Mathematical Statistics 24(1), 130–132.
Stein1972Berk6	Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. Sixth Berkeley Symp. Math. Stat. Prob., Volume 2, pp. 583–602.
Stein86ims	Stein, C. (1986). Approximate Computation of Expectations, Volume 7 of Lecture Notes-Monograph series. Institute of Mathematical Statistics.