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• Stein86 =Stein (1986)
• Stein72 = Stein (1972). This paper appears to be the first published
version of the normal approximation method.

• BR76 = Bhattacharya and Ranga Rao (1976)
• RR96 = Rinott and Rotar (1996) and RR97= Rinott and Rotar (1997)
• MT = Meckes (2006) Ph.D. thesis
• Alea = Chatterjee and Meckes (2008)
• Luminy = Meckes (2009), Luminy paper
• PTTM = Pollard (2029) and UGMTP = Pollard (2001). Timothy
and Sekhar should have read-only access to the PTTM directory on
Dropbox.

• γ = N(0, 1) with density ϕ(x) and Φ(x) = γ(−∞, x] = 1− Φ̄(x).
• m = lebesgue measure on B(R).

1 Characterization of distributions
S:characterize

The Stein method for normal approximation in one dimension is based on a
differential equation. This part of the method also works for approximation
of any probability measure P0 on B(R) with a smooth density p0(x) = e−g(x)

with respect to Lebesgue measure. Note that
•
p0 = − •

gp0.
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§2 Facts about the tails of the normal 1

In this Section I am not being very careful about the necessary regularity
assumptions. For example, I seem to need g(x) → ∞ as x→ −∞.

Suppose h is a member of L1(P0) for which there is a smooth function f
defined by the relation

\E@ Stein-d.e.\E@ Stein-d.e. <1>
•
f(x)− f(x)

•
g(x) = H(x) := h(x)− P0h.

Multiply through by g(x) to get

d

dx
(p0(x)f(x)) = p0(x)

•
f(x)− •

g(x)p0(x)f(x) = p0(x)H(x).

Integrate with respect to m over the interval (−∞, w]:

\E@ f.soln\E@ f.soln <2> p0(w)f(w) =

∫ w

−∞
p0(x)H(x) dx

This equality shows that f(x) is uniquely determined by h, at least on the
set {x : p0(x) > 0}. Thus we could think of the left-hand side of <1> as
defining a map K from a set H of functions on R back into functions on R:

\E@ kk.def\E@ kk.def <3> K(x, h) := (Kh)(x) :=
•
f(x)− f(x)

•
g(x) for each h ∈ H.

Now suppose P is another probability measure on B(R) for which

Ph− P0h = PH = P xK(x, h) = 0 for each h ∈ H.

Then we have Ph = P0h for each h in H. If H is a large enough subset
of L1(P ) to uniquely determine P0 then we deduce that P = P0, as measures
on B(R). Here I am thinking about examples like H equal to {h : ∥h∥BL ≤ 1}
or to the smaller set {h ∈ C∞(R) : ∥

•
h∥ ≤ 1}.

For the purposes of showing that P ≈ P0 we need some sort of continuity
property to translate P (Kh) ≈ 0 into PH ≈ 0, together with a way of
interpreting an approximation like Ph ≈ P0h for h in H. Some ϵ’s and δ’s
might turn this idea into a useful inequality.

Remark. These vague ideas suggest to me that the K need not be
defined by a differential equation. A family of operators came to mind
for higher dimensions:

(Krh)(x) =
mtH(t){t ∈ B(x, r)}

mB(x, r)
where H(t) = h(t)− P0h.

Or maybe it would be better to replace the indicator function of a ball
by some smooth function ψ with compact support and define

(Krh)(x) = Cr(x)
−1mtψ(x+ rt)H(t)? ≈?r(???)

where {Cr : r > 0} is a family of normalizing functions. I would hope
that Cr(x) ≈ c0(x) + c1(x)r for small r. Maybe some sort of limit
as r → 0 could be involved. The invariance of m under translations
should then play a role. For small r we would have

(Krh)(x) ? ≈?(c0(x) + c1(x)r)
−1 (r(???)) .

Something wrong there. I was hoping for something almost linear in r.
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2 Facts about the tails of the normal
S:tails

The following facts are proved in Section 7, which contains Problems from
PTTM Chapter 3.

(Ni) The function ρ(x) := ϕ(x)/Φ̄(x) is convex, strictly positive and
strictly increasing on R, with r(0) = ρ(0) =

√
2/π ≈ 0.798.

(Nii) The function r(x) := ρ(x)−x is strictly positive, convex and decreas-
ing, with and ρ(x)r(x) < 1 for all x.

(Niii) From the literature:

(3x+
√
x2 + 8)/4 < ρ(x) ≤

(
x+

√
x2 + 4

)
/2 for all x ∈ R.

I don’t think we need such exquisite detail.

The solid line in the picture shows ρ(·) and the dashed line shows r(·).
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For my purposes, the representations

Φ(t) = ϕ(t)/ρ(t) and Φ(t) = Φ̄(−t) = ϕ(t)/ρ(−t)

will be useful.

3 Facts about the normal characterizing d.e. in R1

S:de-facts
The method of exchangeable pairs seems to come down to a Taylor expansion
with good bounds on remainder terms.

Compare with Stein86 pages 22–28. In particular, his Lemma 3 on
page 25 gave a way to bound various derivatives of the f defined by <1>.

Stein.p25 <4> Lemma. Suppose f is a smooth function for which

\E@ Stein.normal\E@ Stein.normal <5>
•
f(x)− xf(x) = H(x) := h(x)− γh for each x.

where h is absolutely continuous with almost sure derivative
•
h for which

∥
•
h∥∞ is finite. Then:
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(i) ∥f∥∞ ≤
√
π/2 ∥H∥∞.

(ii) ∥
•
f∥∞ ≤ 2∥H∥∞.

(iii) ∥
••
f∥∞ ≤ 2∥

•
h∥∞.

Remarks.

(a) Absolute continuity allows for things like h being of the form max(h1, h2)

with hi ∈ C1(R). We need
•
h to be locally Lebesgue integrable with

h(b)− h(a) =

∫ b

a

•
h(r) dr for all −∞ < a < b <∞.

(b) If h is differentiable at x then the function f is twice differentiable:

••
f(x) =

d

dx
(xf(x) +H(x)) = x

•
f(x) + f(x) +

•
H(x)

= (1 + x2)f(x) + xH(x) +
•
h(x).\E@ fdotdot\E@ fdotdot <6>

(c) For h ∈ L1(γ),

ϕ(x)f(x) = γrH(r){r ≤ x} = −γrH(r){r ≥ x}.\E@ solution\E@ solution <7>

The ≥ and ≤ could be replaced by strict inequalities, because γ has no
atoms.

Proof of (i)
Write C0 for ∥H∥∞. From (c) we have

ϕ(x)|f(x)| ≤ C0γ(−∞, x] = C0Φ(x) = C0ϕ(x)/ρ(−x),
ϕ(x)|f(x)| ≤ C0γ[x,∞) = C0ϕ(x)/ρ(x).

Thus |f(x)| ≤ C0/max [ρ(x), ρ(−x)] ≤ C0/
√
2/π.

Proof of (ii)

|
•
f(x)| ≤ |xf(x)|+ |H(x)| ≤ C0|x|

max [ρ(x), ρ(−x)]
+ C0.

A sloppy proof of (iii)
Here is a sloppy transcription of Stein’s argument that gives (iii) with 2
replaced by some universal constant c.

Homogeneity of the defining equation <5> lets me assume, without loss

of generality, that ∥
•
h∥∞ = 1.

The argument is mostly a matter of expressing
••
f using integrals of

•
h

then appealing to classical tail bounds (see Section 2) for the normal.

I think it suffices to consider
••
f(x) for x ≥ 0. The bounds for negative x

should come from the analogous argument with H replaced by −H(−x).
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First get an integral representation for H:

H(r) = γs (h(r)− h(s))

= γsmt
•
h(t) ({s < t < r} − {r < t < s})

= mt
•
h(t)

[
{t < r}Φ(t)− {r < t}Φ̄(t)

]
by Fubini

=

∫ r

−∞

•
h(t)Φ(t) dt−

∫ ∞

r

•
h(t)Φ̄(t) dt.\E@ H.rep\E@ H.rep <8>

With r = x, this agrees with Stein86 page 27, equation (56).
Then get a representation for f :

ϕ(x)f(x) = γrH(r){r < x}

= mt
•
h(t)γr{r < x}

[
{t < r}Φ(t)− {r < t}Φ̄(t)

]
= mt

•
h(t)

[
{t < x} (Φ(x)− Φ(t)) Φ(t)− Φ(t ∧ x)Φ̄(t)

]
Rewrite Φ(x)−Φ(t) as Φ̄(t)−Φ̄(x) and Φ(t∧x) as {t < x}Φ(t)+{t ≥ x}Φ(x),
then cancel out as {t < x}Φ̄(t)Φ(t) to conclude that

\E@ f.rep\E@ f.rep <9> ϕ(x)f(x) = −mt
•
h(t)

[
{t < x}Φ̄(x)Φ(t) + {t > x}Φ(x)Φ̄(t)

]
From <6> and the representations of H and f we get

••
f(x)−

•
h(x) = (1 + x2)f(x) + xH(x)

= g1(x)

∫ x

−∞

•
h(t)Φ(t) dt+ g2(x)

∫ ∞

x

•
h(t)Φ̄(t) dt\E@ fdotdot.rep\E@ fdotdot.rep <10>

where g1(x) := x− (1 + x2)Φ̄(x)/ϕ(x)

g2(x) := −x− (1 + x2)Φ(x)/ϕ(x).

Stein86 page 28:∫ x

−∞
Φ(t) dt = xΦ(x) + ϕ(x)∫ ∞

x
Φ̄(t) dt = −xΦ̄(x) + ϕ(x)

[Proof: In both cases, check equality of derivatives then note equality of
limits as x→ −∞ or x→ ∞.]

Here is a way to bound the g1 contribution.

|g1(x)
∫ x

−∞

•
h(t)Φ(t) dt| ≤ |x− (1 + x2)/ρ(x)|

∫ ∞

x
Φ̄(t) dt|

=
|x(x+ r(x))− (1 + x2)|

ρ(x)
ϕ(x)|1− xΦ̄(x)/ϕ(x)|

≤ 1

ρ(x)

e−x2/2

√
2π

r(x)

ρ(x)
≤ c.

I hope the g2 contribution can be handled similarly.
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4 Exchangeable pairs (IMS Lect.1)
S:exch

Suppose (X,Y ) is an exchangeable pair of real random variables with joint
distribution Qx,y = P xKy

x . (That is, Kx is the conditional distribution of Y
given X = x.)

Assume the setting of Lemma <4>: h is an absolutely continuous func-

tion with almost sure derivative
•
h for which ∥

•
h∥∞ is finite and f is a

smooth function (actually twice differentiable, Lebesgue almost everywhere)
for which

•
f(x)− xf(x) = H(x) := h(x)− γh for each x.

That is,

ϕ(x)f(x) = γrH(r){r ≤ x} = −γrH(r){r ≥ x}.

By Taylor, for each real δ,

f(x+ δ)− f(x)− δ
•
f(x)

= δ

∫ 1

0

•
f(x+ tδ)−

•
f(x) dt

= δ2
∫ 1

0

∫ 1

0
{0 < s < t < 1}

••
f(x+ sδ) ds dt

= δ2
∫ 1

0
(1− s)

••
f(x+ sδ) ds.\E@ Taylor.f\E@ Taylor.f <11>

Remark. I should check carefully that this version of Taylor holds if
•
f

is only absolutely continuous with almost sure derivative
••
f .

If h is only piecewise continuous then
•
f is only piecewise continuous. If h

is smoother then f inherits higher derivatives. If we want to bound Wasser-
stein distances then we might get away with something like h differentiable

with ∥
•
h∥∞ ≤ 1, as a way to approximate functions with ∥h∥lip ≤ 1. For the

case where h(x) = {x ≤ w} − Φ(w), we only get one-times differentiabilty
with a piecewise continuous derivative for f . That makes the approximation
argument more delicate (Ho and Chen 1978, IMS Lect II).

I am suspicious of MT Lemma 1.3, page 4, where the analog of Lemma<4>
was cited for g only bounded and continuous, even though the third assertion
involved ∥ •

g∥∞.

Stein.hdot <12> Lemma. (cf. Stein86 pages 13–15 and 33–36)
Suppose (X,Y ) is an exchangeable pair with joint distribution Qx,y = P xKy

x

and PX = PY = 0 and PX2 = PY 2 = 1. (That is, Px = 0 and Px2 = 1.)
Define D(x, y) := y − x.

(i) KxD = m(x) = −λx+ r1(x) and KxD
2 = τ2(x) = 2λ+ r2(x).cf.P(Y − X | X = x)
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(ii)
•
f(x)−xf(x) = H(x) := h(x)− γh with h having a bounded, piecewise

continuous derivative
•
h (or h absolutely continuous?).

Then

2λ|Ph− γh| ≤ 2∥f∥∞P |r1(x)|+ ∥
•
f∥∞P |r2(x)|+ ∥

••
f ∥∞Q|D|3.

Proof. The function F (x, y) := (y − x) (f(x) + f(y)) is antisymmetric and

F (x, y) := (y − x) (f(x) + f(y))

= 2Df(x) +D2
•
f(x) +D

(
f(x+D)− f(x)−D

•
f(x)

)
= 2Df(x) +D2

•
f(x) +D3

∫ 1

0
(1− s)

••
f(x+ sD) ds

Antisymmetry gives

0 = QF (x, y)

= P xf(x)Ky
xD + P x

•
f(x)Ky

xD
2 +R3 with |R3| ≤ Q|D|3∥

••
f∥∞

= 2Pm(x)f(x) + Pτ2(x)
•
f(x) +R3

= P
(
−2λxf(x) + 2λ

•
f(x)

)
+ P

(
2r1(x)f(x) + r2(x)

•
f(x)

)
+R3

= 2λ(Ph− γh) + remainder,

where

remainder = P
(
2r1(x)f(x) + r2(x)

•
f(x)

)
+R3

so that

|remainder| ≤ 2∥f∥∞P |r1(x)|+ ∥
•
f∥∞P |r2(x)|+ ∥

••
f ∥∞Q|∆|3.

Lemma <4> bounds ∥f∥∞ and ∥
•
f∥∞ by multiples of ∥H∥∞ and and ∥

••
f ∥∞

by a multiple of ∥
•
h∥∞.□

MT-Thm2.1 <13> Corollary. (MT page 19) For each ϵ > 0 let (X,Yϵ) be an exchangeable pair
with PX = 0 and PX2 = 1 for which there are functions α(X) and β(X)
and E(X) in L1(P) such that

(i) PX(Yϵ −X) = −λϵ2X + α(X)o(ϵ2)

(ii) PX (Yϵ −X)2 = ϵ2 (2λ+ E(X)) + β(X)o(ϵ2)Why not replace E by λE?

(iii) P|Yϵ −X|3 = o(ϵ2)

Then dTV (P, γ) ≤ P |E(x)|/λ (?) where P denotes the distribution of X.
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Remark. I have doubts about the total variation distance in the
assertion. It is true that dTV (P, γ) = sup{|PK − γK| : K compact }.
Each compact K can be approximated by a sequence of continuous
functions hn with compact support: 1 ≥ hn ≥ K and hn ↓ K. We
have ∥hn∥∞ ≤ 1 but, even if hn is smooth, we don’t have control over

∥
•
hn∥∞. However,

∥P − γ∥BL := sup{|Ph− γh| : ∥h∥BL ≤ 1}

where, by the definition in UGMTP page 170, ∥h∥BL = ∥h∥lip+2 ∥h∥∞.
(Why did I bother with the 2?) It is true that an h for which ∥h∥BL ≤ 1

can be well approximated by smooth functions hn with ∥
•
hn∥2 ≤ ∥hn∥lip

(See PTTM Problem 1 in Chapter 6. In R1 the ℓ2 and ℓ∞ norms of a
function are the same, I think. Check.))

Proof. I’ll interpret the assertion of the Corollary as an assertion about

functions h with both ∥h∥∞ ≤ 1 and ∥
•
h∥∞ ≤ 1. Also I could assume h is

infinitely differentiable and has compact support, if it helps.
I think Lemma <12>, with λ replaced by λϵ2 and r1(x) = α(x)o(ϵ2) and

r2(x) = ϵ2E(x) + β(x)o(ϵ2) gives

0 = 2λϵ2 (Ph− γh) + remainder +R3,

where |R3| ≤ P|Yϵ −X|3∥
••
f∥∞ and

remainder = P
(
f(x)2r1(x) + r2(x)

•
f(x)

)
= P

(
2f(x)α(x)o(ϵ2) + ϵ2E(x) + β(x)o(ϵ2)

•
f(x)

)
Divide through by ϵ2. so that

|2λ(Ph− γh) + PE(x)|

≤ 2∥f∥∞o(1)P |α(x)|+ ∥
•
f∥∞o(1)P |β(x)|+ ∥

••
f ∥∞o(1) = o(1).

That is close to what MT asserted, but with dTV replaced by dBL.□

Remark. (Probably wrong) For such a result to be useful we would
need P |E|/λ to be small. Also, it appears to me that MT wanted the
X and Yϵ to be random vectors, even though condition (ii) on page 19
was written with (Wϵ −W )2. That suggests we should start from the
vector analog of the expansion <11>.

Perhaps I should abandon MT and look for analogous results in
Alea or Luminy.
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5 Smoothing
S:smoothing

BR §11 derived a bunch of smoothing inequalities, which were used by RR96
Lemma 4.1 RR97 Lemma 4.1 with little in the way of proof.

BR stated results for µ − ν, for a bounded measure µ and a bounded
signed measure ν on B(Rk). The signed measure ν has a unique represen-
tation (the Jordan decomposition) as ν⊕ − ν⊖, with ν⊕ and ν⊖ nonnegative
measures with disjoint supports. The inequalities involved integrals with
respect to ν⊕.

I never did discover what µ and ν would be in specific cases. Instead I
write λ for the signed measure µ−ν = µ+ν⊖−ν⊕. By general results about
the Jordan decomposition, we have λ⊕ ≤ µ+ ν⊖ and λ⊖ ≤ ν⊕. I think the
BR bounds involving ν⊕ are larger than my bounds involving λ⊖.

Even better, why not just assume that µ and ν are finite measures with
disjoint supports right from the start? If we are interested in λ = P − Q
for probability measures P and Q then we could take µ = (P − Q)+ and
ν = (P −Q)− = (Q− P )+. The special case where Q = N(0, Ik), or maybe
Q = N(0, V ) for some covariance matrix, seems relevant for the Stein’s
theory.

My notation, based on BR

As usual, I write B(x, r) for {y ∈ RK : |x− y|2 < r} and B[x, r] for the
corresponding closed ball.

For a given locally bounded, B(Rk)-measurable function h on Rk and
δ > 0, define

Mδ(x, h) = sup{h(y) : |x− y|2 < δ}.

The map x 7→Mδ(x, h) is lower semi-continuous and thus is borel-measurable.

Remark. Notice that − inf{h(y) : |x− y|2 < δ} =Mδ(x,−h).

The BR results involve smoothing by convolution with a probability
measure ρ on B(Rk):

ρ ⋆ λ(h) = ρxλyh(x+ y) for ‘reasonable’ h.

Equivalently, by courtesy of Fubini,

ρ ⋆ λ(h) = λxhρ(x) where hρ(x) := ρyh(x+ y).

For example, under suitable integrability assumptions on Mϵ(·, h) we
have ρ ⋆ λ(Mϵ) = ρxλyMϵ(x+ y, h). The main trick in the proof of the first
Lemma consists of two inequalities involving Mϵ(x+ y, h) := sup{h(x+ y+
w) : |w|2 < ϵ}, which hold whenever |x|2 < ϵ:

Mϵ(x+ y, h) ≥ h(x+ y − x) = h(y);\E@ Meps.lower\E@ Meps.lower <14>

Mϵ(x+ y, h) ≤ sup{h(y + w) : |w|2 < 2ϵ} =M2ϵ(y, h).\E@ Meps.upper\E@ Meps.upper <15>
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For each probability measure ρ (Kϵ in BR notation), define

gδ(f, ρ) := (ρ ⋆ λ)wMδ(w, f); and τδ(f) := νy (Mδ(y, f)− f(y)) .

BR11.1 <16> Lemma. (≈ BR Lemma 11.1) Let ρ be a probability measure that concen-
trates on B(0, ϵ), for some ϵ > 0, and λ = µ − ν, a difference of two finite
measures. Assume some sort of integrability regarding h and M and m.
Then

λh ≤ ρ ⋆ λ(Mϵ) + νy
(
M2ϵ(y, h)− h(y)

)
= gϵ(h, ρ) + τ2ϵ(h).

Proof. As ρ{x : |x|2 < ϵ} = 1, inequality <15> implies ρxMϵ(x + y) ≤
M2ϵ(y). For the asserted inequality, start with the ρ ⋆ λ(Mϵ) term:

ρxλyMϵ(x+ y) ≥ ρx (µyh(y)− νMϵ(x+ y)) by <14>

= µh− νyρxMϵ(x+ y)

≥ µh− νh− νy
(
M2ϵ(y)− h(y)

)
.

as asserted.□

two-sided <17> Corollary.

|λh| = max (λh, λ(−h)) ≤ max (gϵ(h, ρ), gϵ(−h, ρ))+max (τ2ϵ(h), τ2ϵ(−h))□

BR11.4 <18> Lemma. (≈ BR Lemma 11.4 and RR97 Lemma 4.1) Suppose P is a proba-
bility measure on B(Rk) for which α := PB(0, ϵ) > 1/2 for some ϵ > 0. Let
λ be as in Lemma <16> and H be a uniformly bounded set of measurable
functions on Rk for which

(a) if h ∈ H then hθ ∈ H, where hθ(y) := h(θ + y),

(b) if h ∈ H then −h ∈ H.

Then

(2α− 1) suph∈H |λh| ≤ supH gϵ(h, P ) + ατ2ϵ(H) + (1− α)τϵ(H),

where τδ(H) := suph∈H τδ(h).□

Proof. Define ∆ := supH |λh|. By assumption (b),

supH λh = ∆ and infh∈H λh = −∆.

The main idea is to decompose P as αρ+ αρ where ρ := P (· | B(0, ϵ))
and ρ := P (· | B(0, ϵ)c) and α := 1−α. The argument for the ρ contribution
will be essentially the same as for Lemma <16>: for each h in H,

ρxλyMϵ(x+ y, h) ≥ λh− τ2ϵ(h) ≥ λh− τ2ϵ(H).
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For ρ use

Mϵ(x+ y, h) ≥ h(x+ y) = hx(y),

Mϵ(x+ y, h) = sup|w|<ϵ h(x+ y + w) =Mϵ(y, hx),

and the trivial fact that infx F (x) ≤ ρxF (x) ≤ supx F (x) to get

ρxλyMϵ(x+ y, h) ≥ ρx (µyhx(y)− νyMϵ(x+ y, h))

= ρx [λyhx(y)− νy (Mϵ(y, hx)− hx(y))]

≥ infx λ
yhx(y)− supx ν

y (Mϵ(y, hx)− hx(y))

≥ −∆− τϵ(H).

Take a weighted average:

(P ⋆ λ)wMϵ(w, h) = P xλyMϵ(x+ y, h)

= αλh− ατ2ϵ(H)− α (∆ + τϵ(H)) .

Then take a supremum over h in H:

suph∈H gϵ(h, P ) ≥ α∆− ατ2ϵ(h)− α (∆ + τϵ(H)) ,

which rearrange to give the asserted upper bound for (2α− 1)∆.□
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6 OLD version of Exchangeable pairs (IMS Lect.1)
S:OLDep

I had a hard time deciphering Stein’s explanations related to the diagram
labeled (28) on Stein86 page 12.

Remark. I was very confused. Maybe better to skip the mess.

I think the idea is that we have a probability measure P on B(R) that
we want to show is close, in some sense, to some other P0. In the cases that
seem of most interest P0 = γ := N(0, 1).

The construction involves an exchangeable pair of random variables
W,W ′, each with distribution P . If Q denotes the joint distribution of
the pair then we can take the variables as the coordinate maps on R2:
W (x, y) = x and W ′(x, y) = y. (Maybe it would be better to use (w,w′)
instead of (x, y), but then I would have a lot of pesky superscript w′’s.)
Both the marginals of Q are equal to P . Exchangeability means that

\E@ exch\E@ exch <19> QF (x, y) = QF (y, x) for all F in L1(Q).

In particular, if F (y, x) = −F (x, y) (antisymmetry) then QF = 0. Stein’s F
corresponds to the subspace of all antisymmetric members of L1(Q).

The conditional distribution of W ′ given W corresponds to a markov
kernel {Kw : w ∈ R} for which

QF (x, y) = PwKw′
w F (w,w′).

The kernel also defines a linear map F 7→ Kw′
w F (w,w′) from L1(Q) into L1(P ).

Stein wrote T for the restriction of this linear map to the set

\E@ antisymm\E@ antisymm <20> F := {F ∈ L1(P) : F (x, y) = −F (y, x)}

of antisymmetric, Q-integrable functions on R2. Consequently, PTF =
QF = 0 for F in F. That is, if F ∈ F then TF is an element of L1(P )
with zero P -expectation: PTF = 0 for F ∈ F.

The hope appears to be (IMS p 10, Lemma 2) that for each f in (some
subspace of) L1(P ) with Pf = 0 there should exist an antisymmetric F
in L1(Q) for which f(x) = TF .

Stein also assumed existence of another vector space F0 and a linear map
T0 : F0 → X0, with X0 a subspace of L1(P ) and a linear(?) map A : F0 → F.
(My A is Stein’s α.) For normal approximation I think F0 can be taken as a
subspace of L1(P ) consisting of suitably smooth (piecewise continuous first
derivatives and . . . ?) functions and

(T0f)(x) =
•
f(x)− xf(x).

Compare with the definition of Stein’s TN on IMS page 19. The map A in
this case is (I think) given by

\E@ A.def\E@ A.def <21> (Af)(x, y) = (y − x) (f(x) + f(y)) .
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He mentioned that T (Af) should be thought of as an approximation to TF
if F = Af .

The range of T0 is a subspace X0 of L
1(P )∩L1(P0). He assumed existence

of a sort of inverse U0 : X0 → F0, a linear map such that

\E@ U0\E@ U0 <22> T0f = h(w)− P0h if f = U0h with h ∈ X0.

In the normal case, f = U0h is the solution to the differential equation
•
f(x)− xf(x) = h− γh:

(U0h)(w) = exp(w2/2)

∫ w

−∞
(h(r)− γh) exp(−y2/2) dy

= − exp(w2/2)

∫ ∞

w
(h(r)− γh) exp(−y2/2) dy\E@ U_0.normal\E@ U_0.normal <23>

The second form comes from the fact that γ (h− γh) = 0. Stein (IMS
page 14, Lemma 4) needed to assume that h is piecewise continuous with
h(w) = O(w2) as |w| → ∞.

7 Problems
S:Problems

The function ϕ(x) denotes the N(0, 1) density and Φ̄(x) =
∫∞
x ϕ(t) dt; the

functions R(x)(·) and ρ(·) and r(·) are defined on R by 1/ρ(x) = R(x) =
Φ̄(x)/ϕ(x) and r(x) = ρ(x)− x.

[1] The following bounds are apparently due to Laplace. Each bound is of theP:Laplace

form p(1/x) with p a polynomial.

(i) Show that p(1/x) > R(x) for all x > 0 if

\E@ Mill.upper\E@ Mill.upper <24> − d

dt
(p(1/t)ϕ(t)) > ϕ(t) for all t > 0

and p(1/x) < R for all x > 0 if

\E@ Mill.lower\E@ Mill.lower <25> − d

dt
(p(1/t)ϕ(t)) < ϕ(t) for all t > 0

Hint:
∫∞
x .

(ii) Show that<24> holds if and only if p(t) + t3p′(t) > t for all t > 0. Charac-
terize <25> by the reverse inequality.

(iii) Define a sequence of monomials by ∆0(t) = t and ∆k(t) = −t3∆′
k−1(t)

for k ≥ 1. Show that

∆k(t) = (−1)kakt
2k+1 where ak = 1× 3× · · · × (2k − 1).

(iv) Define pk(t) =
∑k

i=0∆i(t). Show that pk(t) + t3p′k(t) = t+∆k+1(t).
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(v) Conclude that pk(1/x) > R(x) > pk+1(1/x) for each even k. For example,
for k = 1 and k = 2 we have, for all x > 0,

x−1 > R(x) > x−1 − x−3

x−1 − x−3 + 3x−5 > R(x) > x−1 − x−3 + 3x−5 − 15x−7

(vi) From the inequality for k = 2 deduce that xr(x) → 1 as x→ ∞.

[2] Here are the basic facts about ρ(·) and r(·).P:rho.facts

(i) Suppose Z ∼ N(0, 1). Show that

R(x) =

∫ ∞

0
ϕ(x+ t)/ϕ(x) dt =

∫ ∞

0
e−xt−t2/2dt =

√
π/2 Pe−x|Z|.

(ii) Show that L(x) := logR(x) = − log ρ(x) is a strictly decreasing, convex
function. Deduce that ρ(x) = e−L(x) is strictly increasing with ρ(x) → 0
as x→ −∞ and ρ(x) → ∞ as x→ ∞. Also log ρ(x) = −x2/2− log

√
2π −

log Φ̄(x) is concave.

(iii) Using the bounds from Problem [1], show that ρ(x) > x and r(x) > 0 for
all x. (Note that ρ(x) > x is trivially true for x ≤ 0.) Also show that
xr(x) → 1 as x→ ∞.

(iv) Show that log(Φ̄) has derivative −ρ so that ρ′(x)/ρ(x) = d log ρ(x)/dx =
ρ(x) − x. That is, ρ′(x) = ρ(x)r(x) for all x. From the concavity of log ρ
deduce that r is a decreasing function.

(v) (Sampford, 1953) Show that γ(x) := ρ′′(x)/ρ(x) = 2r(x)2+xr(x)−1. Show
that

γ′(x) = (4r(x) + x) r′(x) + r(x) = 2r(x)r′(x) + ρ(x)γ(x) < ρ(x)γ(x).

Argue as follows to show that γ(x) > 0 for all x ∈ R, which implies
that ρ is strictly convex. Suppose there were an x0 for which γ(x0) ≤ 0.
By the preceding argument, γ′(x0) would be < 0. There would therefore
be some δ > 0 and x1 > x0 at which γ(x1) < −δ. By part (iii), γ(x) → 0
as x → ∞. For some finite K there would exist some K > x1 for which
|γ(x)| < δ for x > K. The difefrentiable function γ would achieve its
minimum value on [x0,∞) at some point x2 in [x0,K] at which 0 > −δ ≥
γ(x2) and γ

′(x2) = 0, a contradiction.

[3] Show that Φ̄(x) ≤ 1
2e

−x2/2 for x ≥ 0. Hint: From Problem [2](i) we haveP:half
R(0) > R(x).

[4] For each x show (by means of integration-by-parts) that
∫∞
x tϕ(t) dt = ϕ(x)P:Px

and
∫∞
x t2ϕ(t) dt = xϕ(x) + Φ̄(x). Let Px be the probability measure

with density px(t) = ϕ(t){t ≥ x}/Φ̄(x) with respect to Lebesgure mea-
sure on the real line. Show that the variance of Px is 1− ρ(x)r(x). Deduce
that ρ(x)r(x) < 1 for all x.
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[5] (Birnbaum, 1942). Use Cauchy-Schwarz and facts from Problem [4] to showP:Birnbaum

that

ϕ(x)2 =

(∫ ∞

x
t
√
ϕ(t)

√
ϕ(t) dt

)2

≤
(
xϕ(x) + Φ̄(x)

)
Φ̄(x).

Deduce that 1 ≤ (x+ R(x))R(x) =
(
R(x) + 1

2x
)2 − x2/4, which implies

ρ(x) ≤
(
x+

√
x2 + 4

)
/2.

[6] (Sampford, 1953) Let γ(x) = 2r(x)2 + xr(x) − 1, as in Problem [2](v).P:Sampford

Remember that γ(x) > 0 for all x ∈ R. Argue that r(x) cannot be-
long to the closed interval Ix := {t ∈ R : 2t2 + xt − 1 ≤ 0}, which has

endpoints
(
−x±

√
x2 + 8

)
/4. Deduce that r(x) > (−x +

√
x2 + 8)/4 =

2/(x+
√
x2 + 8 ) and ρ(x) > (3x+

√
x2 + 8)/4. Note: r(x) > 0.
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