The duality proof of the SUDAKOV minoration

The duality proof of the SUDAKOV minoration		0
1	The minoration as a bound on packing numbers	0
2	The geometry of the minoration	1
3	Proof of the main theorem	2
4	Facts about duality	4
5	Equivalence between the two forms of the minoration	6
6	Problems	7

S:minoration

Sudmin

1

< 1 >

The minoration as a bound on packing numbers

According to Dudley (2014, p. 131), the following result was first proved by Sudakov (1973, Prop. 7) under a mild extra condition, although credit for similar ideas should be shared with Chevet (1970). It is usually referred to as the SUDAKOV minoration. (I think the word minorant is a synonym for 'lower bound'.)

Sudakov minoration. If $Y := (Y_1, Y_2, ..., Y_n)$ has a centered MVN distribution with $\mathbb{P}|Y_j - Y_k|^2 > \delta^2$ for all distinct $j \neq$ and k, then $\mathbb{P} \max_{i \leq n} Y_i \geq C_{sud} \delta \sqrt{\log_2 n}$ with C_{sud} a universal (positive) constant.

Remark. I found it helpful to keep in mind the extreme cases: (i) $Y_j = j\epsilon Z$ for j = 1, ..., n, where $\epsilon > \delta$ and $Z \sim N(0, 1)$; (ii) $Y_1, ..., Y_n$ are iid $N(0, \sigma^2)$ with $2\sigma^2 > \delta^2$.

The inequality can be regarded as an upper bound for packing numbers or a lower bound for $\mathbb{P} \max_{i \leq n} Y_i$. It is also equivalent to an assertion involving covering numbers of convex bodies in euclidean space, the **Main theorem** in this note. Talagrand (Ledoux and Talagrand, 1991, pp.82–84,88) claimed credit for the form of the proof. Sudmin2 <2>

Main theorem. Suppose K is a compact, convex, symmetric subset of \mathbb{R}^k with $0 \in \operatorname{interior}(K)$. Then

$$\mathcal{F} := \gamma_k \sup_{t \in K} \langle t, g \rangle \ge \sup_{\epsilon > 0} c\epsilon \sqrt{\log \operatorname{COVER}(\epsilon, K, \ell^2)}$$

for some universal, positive constant c, where γ_k denotes the $N(0, I_k)$ probability measure.

Remarks.

 $<\!\!4\!\!>$

- (i) Here ℓ^2 denotes the usual euclidean metric on \mathbb{R}^k , which corresponds to the inner product $\langle x, y \rangle := \sum_{i \le k} x_i y_i$ and norm $|x|_2 := \sqrt{\langle x, x \rangle}$.
- (ii) The covering number in <3> could be replaced by a packing number by virtue of the inequalities

\E@ cover.pack

 $\mathbf{2}$

< 3 >

 $COVER_T(\delta, S, d) \le COVER_S(\delta, S, d)$ $\le PACK(\delta, S, d)$ $\le COVER_T(\delta/2, S, d) \le COVER_S(\delta/2, S, d)$

for any totally bounded subset S of any metric space (T, d). In general it matters little whether the centers of the covering balls are restricted to lie in S, as in $COVER_S(...)$, or are allowed to be outside S, as in $COVER_T(...)$. When an argument depends on having centers in S, as in Lemma <6>, it can help to use packing numbers.

(iii) If diam(K) denotes the ℓ^2 diameter of K then the supremum on the right-hand side of $\langle 3 \rangle$ need only be taken over $0 < \epsilon < \operatorname{diam}(K)$ because $B[t,r] \supset K$ if $t \in K$ and $r \geq \operatorname{diam}(K)$.

The geometry of the minoration

Let K be a compact, convex, symmetric subset of \mathbb{R}^k with $0 \in \operatorname{interior}(K)$, as in Theorem $\langle 2 \rangle$. Then the closed, convex set

 $L := \{ y \in \mathbb{R}^k : \langle y, x \rangle \le 1 \text{ for every } x \text{ in } K \} = \bigcap_{x \in K} \{ y : \langle y, x \rangle \le 1 \}$

is called the **polar** of K. It is also compact and symmetric with 0 an interior point. Schneider (1993, §1.6) denoted the polar by K^* ; Barvinok (2002, p. 143) denoted it by K^o .

The gauge function ρ_K is defined on \mathbb{R}^k by

$$\rho_K(x) := \inf\{\lambda > 0 : x/\lambda \in K\}.$$

It is actually a norm on \mathbb{R}^k for which K is the unit ball, that is, $K = \{x : \rho_K(x) \leq 1\}$. The *support function* h_K is defined on \mathbb{R}^k by

$$h_K(y) := \sup_{x \in K} \langle x, y \rangle$$

It is very convenient that polar of L equals K and $\rho_L = h_K$ and $\rho_K = h_L$. See Section 4. These facts imply

$$\langle x, y \rangle \le \rho_K(x) \rho_L(y)$$
 for all x, y in \mathbb{R}^k

If either $\rho_K(x)$ or $\rho_L(y)$ is zero the result is trivial, otherwise $x/\rho_K(x) \in K$ and $y/\rho_L(y) \in L$ so that their inner product is ≤ 1 .

1

S:geometry

E0 rho.rho <5>

\E@ cover.lower

S:ProofSudmin2

3

Proof of the main theorem

The following arguments are based on van Handel (2016, pp. 159–162) and Vershynin (2019, pp. 46–50).

We now have three different norms on $T := \mathbb{R}^k$, namely $|\cdot|_2$ and ρ_K and ρ_L . Their unit balls centered at the origin are *B* and *K* and *L*. More generally,

 $B[x,r] := \{ y \in T : |y - x|_2 \le r \},\$ $K[x,r] := \{ y \in T : \rho_K(y - x) \le r \},\$ $L[x,r] := \{ y \in T : \rho_L(y - x) \le r \}.$

The following three inequalities involving these covering numbers contain the central idea in the proof of the Theorem.

Lemma. COVER_T $(\delta, B, \rho_L) \leq 2 \exp(8\mathfrak{F}^2/\delta^2)$, where $\mathfrak{F} := \gamma_k \sup_{t \in K} \langle t, g \rangle$, for each $\delta > 0$.

Lemma. COVER_T $(\delta, K, \ell^2) \leq$ COVER_T $(\delta^2/4, K, \rho_L)$ for each $\delta > 0$.

Lemma. COVER $(\delta, K, \ell^2) \leq$ COVER $(2\delta, K, \ell^2) \times$ COVER $_T(\delta/8, B, \rho_L)$ for each $\delta > 0$.

Let me first show how these inequalities lead to inequality $\langle 3 \rangle$ and then prove the three Lemmas. To simplify notation, define $N(\delta) := \text{COVER}_T(\delta, K, \ell^2)$. We need to find a positive constant C for which

$$f(\epsilon) := \epsilon \sqrt{\log N(\epsilon)} \le C \mathcal{F}$$
 for $0 < \epsilon < D := \operatorname{diam}(K)$.

By Problem [1] we have $\sqrt{2\pi} \mathcal{F} \geq D := \operatorname{diam}(K)$. Lemma <8> gives

$$\sqrt{\log N(\epsilon)} \le \sqrt{\log N(2\epsilon)} + \sqrt{\log \operatorname{COVER}(\epsilon/8, B, \rho_L)}$$

And, for $0 < \epsilon \leq D$, Lemma < 6 > then gives

$$\epsilon \sqrt{\log \operatorname{COVER}(\epsilon/8, B, \rho_L)} \le D\sqrt{\log 2} + \epsilon \sqrt{8^3 \mathcal{F}^2/\epsilon^2} \le M,$$

where M is constant multiple of \mathcal{F} . Thus

\E@ xx < <9>

 $f(\epsilon) \le f(2\epsilon)/2 + M$ for $0 < \epsilon \le D$.

Define $R_i := D/2^i$ for $i = 0, 1, 2, \ldots$ As already noted, $f(R_0) = 0$. Monotonicity of $\epsilon \mapsto \text{COVER}(\epsilon, K, \ell^2)$ gives

$$f(\epsilon) \le R_i \sqrt{\log \operatorname{COVER}(R_{i+1}, K, \ell^2)} = 2f(R_{i+1}) \quad \text{for } R_{i+1} \le \epsilon \le R_i.$$

Thus it remains only to derive an upper bound for $f(R_i)$ from the inequality

$$f(R_{i+1}) \le f(R_i)/2 + M.$$

packKL

packBL

<6>

< 7 >

Iterate.

~

$$f(R_1) \le 0/2 + M,$$

$$f(R_2) \le f(R_1)/2 + M \le M/2 + M,$$

$$f(R_3) \le f(R_2)/2 + M \le M/4 + M/2 + M$$

and so on. We must have $f(R_i) \leq 2M$ for all *i*. Done.

The proofs for the Lemmas are quite short.

Proof (of Lemma < 6 >). The assertion is

 $\operatorname{COVER}_T(\delta, B, \rho_L) \le 2 \exp\left(8\mathcal{F}^2/\delta^2\right).$

It suffices (cf. <4>) to show that $N := \text{PACK}(\delta, B, \rho_L) \leq \mathcal{N}(\delta)$.

Let t_1, \ldots, t_N be points of B for which $\rho_L(t_i - t_j) > \delta$. Define $x_i := Rt_i$ where $R := 4\mathcal{F}/\delta$. The set $\{x_1, \ldots, x_N\}$ is a 4 \mathcal{F} -separated subset of B[0, R]. The ρ_L -balls $L[x_i, 2\mathcal{F}]$ for $i = 1, \ldots, N$ are disjoint. Thus

$$1 \ge \sum_{i} \gamma_k L[x_i, 2\mathcal{F}] \ge N \min_{i \le N} \gamma_k L[x_i, 2\mathcal{F}].$$

We need to show $\gamma_k L[x, 2\mathcal{F}] \ge \exp(-R^2/2)/2$ when $x \in B[0, R]$. Start with the case $A := L[0, 2\mathcal{F}]$. Define $W := \sup_{t \in K} \langle t, g \rangle = h_K(g) = \rho_L(g)$. Then we have

$$\gamma_k A^c = \gamma_k \{ \rho_L(g) > 2\mathfrak{F} \} = \gamma_k \{ W > 2\mathfrak{F} \} \le \gamma_k W/(2\mathfrak{F}) = 1/2.$$

Hence $\gamma_k A \ge 1/2$. Write *P* for the conditional distribution $\gamma_k (\cdot | A)$, which has density $\{y \in A\}\phi(y)/\gamma_k A$ with respect to lebesgue measure, where $\phi(y) := (2\pi)^{-k/2} \exp(-|y|_2^2/2)$. For each *x* in \mathbb{R}^k we have

$$\begin{split} \gamma_k L[x, 2\mathfrak{F}] &= \int \{y - x \in A\} \phi(y) \, dy = \int \{w \in A\} \phi(w + x) \, dw \\ &= \int \{w \in A\} \exp\left[-|x|_2^2/2 - \langle x, w \rangle\right] \phi(w) \, dw \\ &= (\gamma_k A) \exp\left(-|x|_2^2/2\right) P^w \exp\left(-\langle x, w \rangle\right) \\ &\geq \frac{1}{2} \exp\left(-|x|_2^2/2\right) \exp\left(-\langle x, Pw \rangle\right) \qquad \text{by the JENSEN inequality,} \\ &\geq \frac{1}{2} \exp\left(-|x|_2^2/2\right) \qquad \text{because } Pw = 0 \text{ by symmetry.} \end{split}$$

 $\square \quad \text{In particular, if } x \in B[0, R] \text{ then } \gamma_k L[x, 2\mathcal{F}] \ge \exp(-R^2/2)/2.$

Proof (of Lemma <7>). The assertion is

$$\operatorname{COVER}_T(\delta, K, \ell^2) \leq \operatorname{COVER}_T(\delta^2/4, K, \rho_L).$$

Define $\epsilon := \delta^2/2$. This time let $F := \{x_1, \ldots, x_N\}$, for $N = \text{PACK}(\epsilon, K, \rho_L)$, be a maximal ϵ -separated (in ρ_L distance) subset of K. Then $K \subset \bigcup_{i \leq N} L[x_i, \epsilon]$. If $y \in K \cap L[x_i, \epsilon]$ then $\rho_K(y - x_i) \leq \rho_K(y) + \rho_K(x_i) \leq 2$ and $\rho_L(y - x_i) \leq \epsilon$ so that

$$|y - x_i|_2^2 \le \rho_K(y - x_i)\rho_L(y - x_i) \le 2\epsilon$$
 by inequality $<5>$

It follows that $y \in B[x_i, \sqrt{2\epsilon}] = B[x_i, \delta]$. Hence

$$K = \bigcup_{i < N} \left(K \cap L[x_i, \epsilon] \right) \subset \bigcup_{i < N} B[x_i, \delta],$$

 $\square \quad \text{implying } \operatorname{COVER}_K(\delta, K, \ell^2) \le N \le \operatorname{COVER}(\epsilon/2, K, \ell^2).$

Proof (of Lemma < 8 >). The assertion is

 $\operatorname{COVER}_T(\delta, K, \ell^2) \leq \operatorname{COVER}_T(2\delta, K, \ell^2) \times \operatorname{COVER}_T(\delta/8, B, \rho_L).$

The argument involves two coverings: first choose x_1, \ldots, x_N with $N := \text{COVER}_T(2\delta, K, \ell^2)$ for which $K \subset \bigcup_{i \leq N} B[x_i, 2\delta]$; then choose z_1, \ldots, z_M with $M := \text{COVER}_T(r, B, \rho_L)$ for which $\min_j \rho_L(w - z_j) \leq r := \delta/8$ for each w in B. In particular, if $y \in B[x_i, 2\delta]$ there there exists a j for which

$$\rho_L\left(\frac{y-x_i}{2\delta}-z_j\right) \le r \quad \text{and thus} \quad \rho_L\left(y-x_i-2\delta z_j\right) \le 2\delta r = \delta^2/4,$$

which implies

$$K \subset \bigcup_{i \le N} B[x_i, 2\delta] \subset \bigcup_{i \le N} \bigcup_{j \le M} L[x_i + 2\delta z_j, \delta^2/4].$$

 $\operatorname{COVER}_T(\delta, K, \ell^2) < \operatorname{COVER}_T(\delta^2/4, K, \rho_L) < NM$

It follows, via Lemma <7>, that

4

Facts about duality

Sources: E = Eggleston (1958, §1.9, §3,5) and S = Schneider (1993, §1.6, §1.7).

S-p8 defined

$$\mathcal{K}^n :=$$
all nonempty, compact, convex subsets of \mathbb{R}^n
 $\mathcal{K}^n_o := \{ K \in \mathcal{K}^n : interior(K) \neq \emptyset \}.$

He called members of \mathcal{K}^n compact bodies.

The *support function* can be defined for a (nonempty) bounded subset A of \mathbb{R}^n as

$$h(u, A) := h_A(u) := \sup\{\langle x, u \rangle : x \in A\} \quad \text{for } u \in \mathbb{R}^n.$$

(S used nonempty closed convex sets, initially allowing h to take the value $+\infty$.) If A is closed (and hence compact) the supremum is achieved for some x_0 in A. In that case, the supporting hyperplane $\{x \in \mathbb{R}^n : \langle x, u \rangle = h_A(u)\}$ contains the point x_0 and the closed halfspace $\{x \in \mathbb{R}^n : \langle x, u \rangle \leq h_A(u)\}$ contains A.

The **polar** of a bounded set A, denoted by A^o or A^* , is defined as

$$A^* := \{ y \in \mathbb{R}^n : \langle x, y \rangle \le 1 \text{ for all } x \text{ in } A \}$$

= $\cap_{x \in A} \{ y \in \mathbb{R}^n : \langle x, y \rangle \le 1 \}$ so A^* is closed and convex
= $\{ y \in \mathbb{R}^n : h_A(y) \le 1 \}.$

S:polar

If $A \subseteq B[\mathbf{0}, R]$ then $|h_A(u)| \leq R|u|_2$ for every u in \mathbb{R}^n , which implies $B[0, 1/R] \subset A^*$. In particular, **0** is an interior point of A^* and $A^* \in \mathcal{K}_o^n$. Similarly, if the origin is an interior point of A then $B[\mathbf{0}, \delta] \subset A$ for some $\delta > 0$. For each y in A^* we then have $\langle x, y \rangle \leq 1$ for each x with $|x|_2 \leq \delta$, which implies $|y|_2 \leq 1/\delta$ and $A^* \subset B[0, 1/\delta]$.

Remark. E-p25 allowed A to be any subset of \mathbb{R}^n . If A is unbounded then interior (A^*) can be empty. S-p3 defined the polar only for members of \mathcal{K}^n_{α} .

The polar of the polar, $A^{**} := \{z \in \mathbb{R}^n : \langle z, y \rangle \leq 1 \text{ for all } y \text{ in } A^* \}$ also belongs to \mathcal{K}^n . Clearly $A^{**} \supset A \cup \{\mathbf{0}\}$. E-p25 claimed that A^{**} is actually the convex hull of $S := \overline{A} \cup \{\mathbf{0}\}$.

Lemma. If $K \in \mathcal{K}_o^n$ with **0** as an interior point then $K^{**} = K$.

Proof. As $\mathbf{0} \in \operatorname{interior}(K)$ the polar K^* is bounded; it also belongs to \mathcal{K}_o^n . The inequality

$$\langle x, y \rangle \leq 1$$
 for all $x \in K$ and all $y \in K^*$

implies that $K \subset K^{**}$.

To complete the proof it suffices to show that if $w \notin K$ then $w \notin K^{**}$. Such a w can be separated from K by a hyperplane: for some $u \in \mathbb{R}^n$ and some $\alpha \in \mathbb{R}$,

$$\langle w, u \rangle > \alpha > \sup_{x \in K} \langle x, u \rangle.$$

The constant α must be > 0 because $\mathbf{0} \in K$. The fact that $1 \ge \langle x, u/\alpha \rangle$ for each x in K shows that $u/\alpha \in K^*$. The fact that $\langle w, u/\alpha \rangle > 1$ then implies $w \notin (K^*)^*$.

The gauge function of a set K in \mathcal{K}_{o}^{n} is defined by S-p43 as

$$g(x,K) := \inf\{\lambda \ge 0 : x \in \lambda K\}$$

The infimum is achieved by some $\lambda > 0$ if $x \neq \mathbf{0}$, that is, g(x, K) is the smallest $\lambda > 0$ for which $x/\lambda \in K$. For K^* and $y \neq \mathbf{0}$ we have

$$g(y, K^*) = \min\{\lambda > 0 : \langle y/\lambda, x \rangle \le 1 \text{ for all } x \in K \}$$

= min{ $\lambda > 0 : \langle y, x \rangle \le \lambda$ for all $x \in K \}$ = $h(y, K)$.

Similarly,

$$g(x, K) = g(x, K^{**}) = h(x, K^{*}).$$

< 10 >polar2

5 Equivalence between the two forms of the minoration

S:equivalence

\E@ Sudmin3

<11>

Theorem $\langle 2 \rangle$ involved a set of functions $X = \{X_t : t \in K\}$ indexed by a subset K of \mathbb{R}^k . More precisely, the function X_t was defined by $X_t(g) := \langle t, g \rangle = \sum_{i \leq k} t_i g_i$ with g a generic point of \mathbb{R}^k . Under the probability measure $\gamma_k := N(0, I_k)$ on \mathbb{R}^k , the function X_t became a random variable and X became a centered gaussian process with

$$\operatorname{cov}(X_s, X_t) = \langle s, t \rangle$$
 AND $\operatorname{var}(X_t) = |t|_2^2$

Inequality $\langle 3 \rangle$ could be rewritten using packing numbers:

 $C\mathbb{P}\sup_{t\in K} X_t \ge \epsilon \sqrt{\log \operatorname{Pack}(\epsilon, K, \ell^2)}$

If, for some given $\epsilon > 0$, we have a finite subset F of K with $|s - t|_2 > \epsilon$ then

for each $\epsilon > 0$.

$$||X_s - X_t||_2 = |s - t|_2 > \epsilon \quad \text{for distinct } s, t \text{ in } F.$$

Thus <11> is a special case of Theorem <1>.

It takes a little more work to embed a random vector $Y = (Y_1, \ldots, Y_n)$ with a N(0, V) distribution into a process indexed by K.

First note that $\mathcal{F}_Y := \mathbb{P} \max_i Y_i = \mathbb{P} \max_i (Y_i - Y_1)$ and

$$||Y_i - Y_j||_2 = ||(Y_i - Y_1) - (Y_j - Y_1)||_2$$

Thus we lose no generality by assuming Y_1 is identically 0.

Remark. This little trick eliminates an annoying difficulty when a maximum over a finite set needs to be bounded by a sum of maxima over two subsets.

If we define $Z = (Z_1, \ldots, Z_n)$ by $Z_i := -Y_i$ then $Z \sim N(0, V)$, so that

$$\max\{Y_1,\ldots,Y_n,Z_1,\ldots,Z_n\} \le \max_i Y_i + \max_i Z_i.$$

It helps that both $\max_i Y_i$ and $\max_i Z_i$ are nonnegative. It follows that

$$\mathcal{F}_{Y,Z} := \mathbb{P}\max\{Y_1, \dots, Y_n, Z_1, \dots, Z_n\} \le \mathbb{P}\max_i Y_i + \mathbb{P}\max_i Z_i = 2\mathcal{F}_Y.$$

The quantity \mathcal{F}_Y depends only on the distribution of Y. It helps to work with a specific representation of that distribution. Suppose RANK(V) = k. (Necessarily k < n because I made Y_1 identically zero.) Then there exists a $k \times n$ matrix $A = [a_1, \ldots, a_n]$ with $V = A^{\mathsf{T}}A$ and RANK(A) = k.

Remark. Such an A could be constructed from a spectral representation, $V = U \operatorname{diag}(\lambda_1, \ldots, \lambda_n) U^{\intercal}$, with U an orthogonal matrix and only k of the λ_i 's nonzero.

Under γ_k , the vector $(\langle a_1, g \rangle, \dots, \langle a_n, g \rangle)$ has a N(0, V) distribution. We could take Y_i to equal $\langle a_i, g \rangle$ and Z_i equal to $\langle -a_i, g \rangle$.

Define K to be the convex hull of the set of

$$E:=\{a_1,\ldots,a_n,-a_1,\ldots,-a_n\}.$$

Then K is a compact, convex, symmetric subset of \mathbb{R}^k with $0 \in K$. The extreme points of K all belong to E. It is not too hard (Problem [2]) to deduce from RANK(A) = k that 0 is an interior point.

For each g the linear functional $t \mapsto \langle t, g \rangle$ achieves its maximum over K at extreme point in E. Thus

$$\gamma_k \sup_{t \in K} \langle t, g \rangle = \gamma_k \sup_{t \in E} \langle t, g \rangle = \mathcal{F}_{Y,Z} \le 2\mathcal{F}_Y.$$

Problems

Suppose $\{X_t : t \in T\}$ is a DOOB-separable, centered gaussian process. (i) For each pair s, t in T show that

 $2\mathbb{P}\max(X_s, X_t) = \mathbb{P}\left(|X_s - X_t| + X_s + X_t\right) = 2\|X_s - X_t\|_2 / \sqrt{2\pi}$

Hint: If $Z \sim N(0, 1)$ then $\mathbb{P}|Z| = 2/\sqrt{2\pi}$.

- (ii) Deduce that $\mathbb{P} \sup_{t \in T} X_t \ge \sup_{s,t \in T} \|X_s X_t\|_2 / \sqrt{2\pi}$.
- [2] Using the notation from Section 5, prove that 0 is an interior point of K by arguing as follows.
 - (i) The fact that A has rank equal to k implies that the set $\{a_j : j \in J\}$ is a basis for \mathbb{R}^k for some subset J of [[n]].
 - (ii) Let $\{e_{\alpha} : \alpha \in [[k]]\}$ denote the usual orthonormal basis for \mathbb{R}^{k} . For each α there are real numbers $\theta[\alpha, j]$ for which $e_{\alpha} = \sum_{j \in J} \theta[\alpha, j]a_{j}$. Define M to be the positive square root of $\max_{\alpha} \sum_{j \in J} \theta[\alpha, j]^{2}$. Suppose $x = \sum_{\alpha} r_{\alpha}e_{\alpha} \in B[0, \delta]$. Then $x = \sum_{j \in J} \lambda_{j}a_{j}$ with $|\lambda_{j}| \leq |\sum_{\alpha} r_{\alpha}\theta[\alpha, j]| \leq \delta M$. Thus $\sum_{j \in J} |\lambda_{j}| \leq 1$ if δ is small enough.
 - (iii) Thus $x = \sum_{j \in J} |\lambda_j|_{\text{SGN}}(\lambda_j) a_j \in K$.

References

Barvinok2002book

Chevet1970

- Barvinok, A. (2002). A Course in Convexity, Volume 54 of Graduate Studies in Mathematics. American Mathematical Society.
- Chevet, S. (1970). Mesures de Radon sur Rⁿ et mesures cylindriques. Annales scientifiques de l'Université de Clermont. Mathématiques 43(6), 91– 158. Available at http://eudml.org/doc/80390.

P:bdd.paths

6

[1]

P:interior

Dudley2014UCLT	Dudley, R. M. (2014). Uniform Central Limit Theorems (2nd ed.), Volume 142 of Cambridge studies in advanced mathematics. Cambridge University Press. (First edition, 1999).
Eggleston1958Convexity	Eggleston, H. G. (1958). <i>Convexity</i> . Number 47 in Cambridge Tracts in Mathematics. Cambridge University Press.
LedouxTalagrand91book	Ledoux, M. and M. Talagrand (1991). Probability in Banach Spaces: Isoperimetry and Processes. New York: Springer.
Schneider1993	Schneider, R. (1993). Convex Bodies: The Brunn-Minkowski Theory. Num- ber 44 in Encyclopedia of Mathematics and its Applications. Cambridge University Press.
Sudakov1973minoration	Sudakov, V. (1973). A remark on the criterion of continuity of Gaussian sample function. In Proceedings of the Second Japan-USSR Symposium on Probability Theory, Kyoto, August 2–9, 1972, Volume 330 of Springer Lecture Notes in Mathematics, pp. 444–454.
vanHandel2016PiHD	van Handel, R. (2016, December). Probability in high dimension. APC 550 Lecture Notes, Princeton University.
Vershynin2019GFA	Vershynin, R. (2019, May). Lectures in geometric functional analysis. Avail- able online at https://www.math.uci.edu/~rvershyn/.