
The duality proof of the
Sudakov minoration

The duality proof of the Sudakov minoration 0
1 The minoration as a a bound on packing numbers 0
2 The geometry of the minoration 1
3 Proof of the main theorem 2
4 Facts about duality 4
5 Equivalence between the two forms of the minoration 6
6 Problems 7

1 The minoration as a a bound on packing numbers
S:minoration

According to Dudley (2014, p. 131), the following result was first proved by
Sudakov (1973, Prop. 7) under a mild extra condition, although credit for
similar ideas should be shared with Chevet (1970). It is usually referred to
as the sudakov minoration. (I think the word minorant is a synonym for
‘lower bound’.)

Sudmin <1> Sudakov minoration. If Y := (Y1, Y2, . . . , Yn) has a centered MVN dis-
tribution with P|Yj−Yk|2 > δ2 for all distinct j ̸= and k, then Pmaxi≤n Yi ≥
Csudδ

√
log2 n with Csud a universal (positive) constant.

Remark. I found it helpful to keep in mind the extreme cases:
(i) Yj = jϵZ for j = 1, . . . , n, where ϵ > δ and Z ∼ N(0, 1);
(ii) Y1, . . . , Yn are iid N(0, σ2) with 2σ2 > δ2.

The inequality can be regarded as an upper bound for packing numbers
or a lower bound for Pmaxi≤n Yi. It is also equivalent to an assertion involv-
ing covering numbers of convex bodies in euclidean space, the Main the-
orem in this note. Talagrand (Ledoux and Talagrand, 1991, pp.82–84,88)
claimed credit for the form of the proof.
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Sudmin2 <2> Main theorem. Suppose K is a compact, convex, symmetric subset of Rk

with 0 ∈ interior(K). Then

\E@ cover.lower\E@ cover.lower <3> F := γk supt∈K⟨t, g⟩ ≥ supϵ>0 cϵ
√

log cover(ϵ,K, ℓ2)

for some universal, positive constant c, where γk denotes the N(0, Ik) prob-
ability measure.

Remarks.

(i) Here ℓ2 denotes the usual euclidean metric on Rk, which corresponds to
the inner product ⟨x, y⟩ :=

∑
i≤k xiyi and norm |x|2 :=

√
⟨x, x⟩ .

(ii) The covering number in <3> could be replaced by a packing number
by virtue of the inequalities

coverT (δ, S, d) ≤ coverS(δ, S, d)\E@ cover.pack\E@ cover.pack <4>

≤ pack(δ, S, d)

≤ coverT (δ/2, S, d) ≤ coverS(δ/2, S, d)

for any totally bounded subset S of any metric space (T, d). In general
it matters little whether the centers of the covering balls are restricted
to lie in S, as in coverS(. . . ), or are allowed to be outside S, as in
coverT (. . . ). When an argument depends on having centers in S, as
in Lemma <6>, it can help to use packing numbers.

(iii) If diam(K) denotes the ℓ2 diameter of K then the supremum on the
right-hand side of <3> need only be taken over 0 < ϵ < diam(K)
because B[t, r] ⊃ K if t ∈ K and r ≥ diam(K).

2 The geometry of the minoration
S:geometry

Let K be a compact, convex, symmetric subset of Rk with 0 ∈ interior(K),
as in Theorem <2>. Then the closed, convex set

L := {y ∈ Rk : ⟨y, x⟩ ≤ 1 for every x in K} = ∩x∈K{y : ⟨y, x⟩ ≤ 1}

is called the polar of K. It is also compact and symmetric with 0 an interior
point. Schneider (1993, §1.6) denoted the polar by K∗; Barvinok (2002, p.
143) denoted it by Ko.

The gauge function ρK is defined on Rk by

ρK(x) := inf{λ > 0 : x/λ ∈ K}.

It is actually a norm on Rk for which K is the unit ball, that is, K = {x :
ρK(x) ≤ 1}. The support function hK is defined on Rk by

hK(y) := supx∈K⟨x, y⟩.

It is very convenient that polar of L equalsK and ρL = hK and ρK = hL.
See Section 4. These facts imply

\E@ rho.rho\E@ rho.rho <5> ⟨x, y⟩ ≤ ρK(x)ρL(y) for all x, y in Rk.

If either ρK(x) or ρL(y) is zero the result is trivial, otherwise x/ρK(x) ∈ K
and y/ρL(y) ∈ L so that their inner product is ≤ 1.
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3 Proof of the main theorem
S:ProofSudmin2

The following arguments are based on van Handel (2016, pp. 159–162) and
Vershynin (2019, pp. 46–50).

We now have three different norms on T := Rk, namely | · |2 and ρK
and ρL. Their unit balls centered at the origin are B and K and L. More
generally,

B[x, r] := {y ∈ T : |y − x|2 ≤ r},
K[x, r] := {y ∈ T : ρK(y − x) ≤ r},
L[x, r] := {y ∈ T : ρL(y − x) ≤ r}.

The following three inequalities involving these covering numbers contain
the central idea in the proof of the Theorem.

packBL <6> Lemma. coverT (δ,B, ρL) ≤ 2 exp
(
8F2/δ2

)
, where F := γk supt∈K⟨t, g⟩,

for each δ > 0.

packKL <7> Lemma. coverT (δ,K, ℓ2) ≤ coverT (δ
2/4,K, ρL) for each δ > 0.

del.2del <8> Lemma. cover(δ,K, ℓ2) ≤ cover(2δ,K, ℓ2)× coverT (δ/8, B, ρL)
for each δ > 0.

Let me first show how these inequalities lead to inequality <3> and then
prove the three Lemmas. To simplify notation, defineN(δ) := coverT (δ,K, ℓ2).

We need to find a positive constant C for which

f(ϵ) := ϵ
√

logN(ϵ) ≤ CF for 0 < ϵ < D := diam(K).

By Problem [1] we have
√
2πF ≥ D := diam(K). Lemma <8> gives√

logN(ϵ) ≤
√

logN(2ϵ) +
√

log cover(ϵ/8, B, ρL) .

And, for 0 < ϵ ≤ D, Lemma <6> then gives

ϵ
√

log cover(ϵ/8, B, ρL) ≤ D
√
log 2 + ϵ

√
83F2/ϵ2 ≤ M,

where M is constant multiple of F. Thus

\E@ xx\E@ xx <9> f(ϵ) ≤ f(2ϵ)/2 +M for 0 < ϵ ≤ D.

Define Ri := D/2i for i = 0, 1, 2, . . . . As already noted, f(R0) = 0.
Monotonicity of ϵ 7→ cover(ϵ,K, ℓ2) gives

f(ϵ) ≤ Ri

√
log cover(Ri+1,K, ℓ2) = 2f(Ri+1) for Ri+1 ≤ ϵ ≤ Ri.

Thus it remains only to derive an upper bound for f(Ri) from the inequality

f(Ri+1) ≤ f(Ri)/2 +M.
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Iterate.

f(R1) ≤ 0/2 +M,

f(R2) ≤ f(R1)/2 +M ≤ M/2 +M,

f(R3) ≤ f(R2)/2 +M ≤ M/4 +M/2 +M,

and so on. We must have f(Ri) ≤ 2M for all i. Done.
The proofs for the Lemmas are quite short.

Proof (of Lemma <6>). The assertion is

coverT (δ,B, ρL) ≤ 2 exp
(
8F2/δ2

)
.

It suffices (cf. <4>) to show that N := pack(δ,B, ρL) ≤ N(δ).
Let t1, . . . , tN be points of B for which ρL(ti − tj) > δ. Define xi := Rti

where R := 4F/δ. The set {x1, . . . , xN} is a 4F-separated subset of B[0, R].
The ρL-balls L[xi, 2F] for i = 1, . . . , N are disjoint. Thus

1 ≥
∑

i
γkL[xi, 2F] ≥ N mini≤N γkL[xi, 2F].

We need to show γkL[x, 2F] ≥ exp(−R2/2)/2 when x ∈ B[0, R]. Start
with the case A := L[0, 2F]. Define W := supt∈K⟨t, g⟩ = hK(g) = ρL(g).
Then we have

γkA
c = γk{ρL(g) > 2F} = γk{W > 2F} ≤ γkW/(2F) = 1/2.

Hence γkA ≥ 1/2. Write P for the conditional distribution γk (· | A), which
has density {y ∈ A}ϕ(y)/γkA with respect to lebesgue measure, where
ϕ(y) := (2π)−k/2 exp(−|y|22/2). For each x in Rk we have

γkL[x, 2F] =

∫
{y − x ∈ A}ϕ(y) dy =

∫
{w ∈ A}ϕ(w + x) dw

=

∫
{w ∈ A} exp

[
−|x|22/2− ⟨x,w⟩

]
ϕ(w) dw

= (γkA) exp
(
−|x|22/2

)
Pw exp (−⟨x,w⟩)

≥ 1
2 exp

(
−|x|22/2

)
exp (−⟨x, Pw⟩) by the jensen inequality,

≥ 1
2 exp

(
−|x|22/2

)
because Pw = 0 by symmetry.

In particular, if x ∈ B[0, R] then γkL[x, 2F] ≥ exp(−R2/2)/2.□

Proof (of Lemma <7>). The assertion is

coverT (δ,K, ℓ2) ≤ coverT (δ
2/4,K, ρL).

Define ϵ := δ2/2. This time let F := {x1, . . . , xN}, for N = pack(ϵ,K, ρL),
be a maximal ϵ-separated (in ρL distance) subset ofK. ThenK ⊂ ∪i≤NL[xi, ϵ].
If y ∈ K ∩L[xi, ϵ] then ρK(y−xi) ≤ ρK(y)+ ρK(xi) ≤ 2 and ρL(y−xi) ≤ ϵ
so that

|y − xi|22 ≤ ρK(y − xi)ρL(y − xi) ≤ 2ϵ by inequality <5>.
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It follows that y ∈ B[xi,
√
2ϵ ] = B[xi, δ]. Hence

K = ∪i≤N (K ∩ L[xi, ϵ]) ⊂ ∪i≤NB[xi, δ],

implying coverK(δ,K, ℓ2) ≤ N ≤ cover(ϵ/2,K, ℓ2).□

Proof (of Lemma <8>). The assertion is

coverT (δ,K, ℓ2) ≤ coverT (2δ,K, ℓ2)× coverT (δ/8, B, ρL).

The argument involves two coverings: first choose x1, . . . , xN with N :=
coverT (2δ,K, ℓ2) for which K ⊂ ∪i≤NB[xi, 2δ]; then choose z1, . . . , zM
with M := coverT (r,B, ρL) for which minj ρL(w − zj) ≤ r := δ/8 for
each w in B. In particular, if y ∈ B[xi, 2δ] there there exists a j for which

ρL

(
y − xi
2δ

− zj

)
≤ r and thus ρL (y − xi − 2δzj) ≤ 2δr = δ2/4,

which implies

K ⊂ ∪i≤NB[xi, 2δ] ⊂ ∪i≤N ∪j≤M L[xi + 2δzj , δ
2/4].

It follows, via Lemma <7>, that

coverT (δ,K, ℓ2) ≤ coverT (δ
2/4,K, ρL) ≤ NM□

4 Facts about duality
S:polar

Sources: E = Eggleston (1958, §1.9, §3,5) and S = Schneider (1993, §1.6,
§1.7).

S-p8 defined

Kn := all nonempty, compact, convex subsets of Rn ,

Kn
o := {K ∈ Kn : interior(K) ̸= ∅}.

He called members of Kn compact bodies.
The support function can be defined for a (nonempty) bounded sub-

set A of Rn as

h(u,A) := hA(u) := sup{⟨x, u⟩ : x ∈ A} for u ∈ Rn.

(S used nonempty closed convex sets, initially allowing h to take the value +∞.)
If A is closed (and hence compact) the supremum is achieved for some x0
in A. In that case, the supporting hyperplane {x ∈ Rn : ⟨x, u⟩ = hA(u)}
contains the point x0 and the closed halfspace {x ∈ Rn : ⟨x, u⟩ ≤ hA(u)}
contains A.

The polar of a bounded set A, denoted by Ao or A∗, is defined as

A∗ := {y ∈ Rn : ⟨x, y⟩ ≤ 1 for all x in A}
= ∩x∈A{y ∈ Rn : ⟨x, y⟩ ≤ 1} so A∗ is closed and convex

= {y ∈ Rn : hA(y) ≤ 1}.
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If A ⊆ B[0, R] then |hA(u)| ≤ R|u|2 for every u in Rn, which implies
B[0, 1/R] ⊂ A∗. In particular, 0 is an interior point of A∗ and A∗ ∈ Kn

o . Sim-
ilarly, if the origin is an interior point of A then B[0, δ] ⊂ A for some δ > 0.
For each y in A∗ we then have ⟨x, y⟩ ≤ 1 for each x with |x|2 ≤ δ, which
implies |y|2 ≤ 1/δ and A∗ ⊂ B[0, 1/δ].

Remark. E-p25 allowed A to be any subset of Rn. If A is unbounded
then interior(A∗) can be empty. S-p3 defined the polar only for
members of Kn

o .

The polar of the polar, A∗∗ := {z ∈ Rn : ⟨z, y⟩ ≤ 1 for all y in A∗ } also
belongs to Kn. Clearly A∗∗ ⊃ A ∪ {0}. E-p25 claimed that A∗∗ is actually
the convex hull of S := A ∪ {0}.

polar2 <10> Lemma. If K ∈ Kn
o with 0 as an interior point then K∗∗ = K.

Proof. As 0 ∈ interior(K) the polar K∗ is bounded; it also belongs to Kn
o .

The inequality

⟨x, y⟩ ≤ 1 for all x ∈ K and all y ∈ K∗

implies that K ⊂ K∗∗.
To complete the proof it suffices to show that if w /∈ K then w /∈ K∗∗.

Such a w can be separated from K by a hyperplane: for some u ∈ Rn and
some α ∈ R,

⟨w, u⟩ > α > supx∈K⟨x, u⟩.

The constant α must be > 0 because 0 ∈ K. The fact that 1 ≥ ⟨x, u/α⟩
for each x in K shows that u/α ∈ K∗. The fact that ⟨w, u/α⟩ > 1 then
implies w /∈ (K∗)∗.□

The gauge function of a set K in Kn
o is defined by S-p43 as

g(x,K) := inf{λ ≥ 0 : x ∈ λK}

The infimum is achieved by some λ > 0 if x ̸= 0, that is, g(x,K) is the
smallest λ > 0 for which x/λ ∈ K. For K∗ and y ̸= 0 we have

g(y,K∗) = min{λ > 0 : ⟨y/λ, x⟩ ≤ 1 for all x ∈ K }
= min{λ > 0 : ⟨y, x⟩ ≤ λ for all x ∈ K } = h(y,K).

Similarly,

g(x,K) = g(x,K∗∗) = h(x,K∗).
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5 Equivalence between the two forms of the minora-
tion

S:equivalence
Theorem <2> involved a set of functions X = {Xt : t ∈ K} indexed
by a subset K of Rk. More precisely, the function Xt was defined by
Xt(g) := ⟨t, g⟩ =

∑
i≤k tigi with g a generic point of Rk. Under the probabil-

ity measure γk := N(0, Ik) on Rk, the funtion Xt became a random variable
and X became a centered gaussian process with

cov (Xs, Xt) = ⟨s, t⟩ and var(Xt) = |t|22.

Inequality <3> could be rewritten using packing numbers:

\E@ Sudmin3\E@ Sudmin3 <11> CP supt∈K Xt ≥ ϵ
√
log pack(ϵ,K, ℓ2) for each ϵ > 0.

If, for some given ϵ > 0, we have a finite subset F of K with |s − t|2 > ϵ
then

∥Xs −Xt∥2 = |s− t|2 > ϵ for distinct s, t in F .

Thus <11> is a special case of Theorem <1>.
It takes a little more work to embed a random vector Y = (Y1, . . . , Yn)

with a N(0, V ) distribution into a process indexed by K.
First note that FY := Pmaxi Yi = Pmaxi(Yi − Y1) and

∥Yi − Yj∥2 = ∥(Yi − Y1)− (Yj − Y1)∥2 .

Thus we lose no generality by assuming Y1 is identically 0.

Remark. This little trick eliminates an annoying difficulty when a
maximum over a finite set needs to be bounded by a sum of maxima
over two subsets.

If we define Z = (Z1, . . . , Zn) by Zi := −Yi then Z ∼ N(0, V ), so that

max{Y1, . . . , Yn, Z1, . . . , Zn} ≤ maxi Yi +maxi Zi.

It helps that both maxi Yi and maxi Zi are nonnegative. It follows that

FY,Z := Pmax{Y1, . . . , Yn, Z1, . . . , Zn} ≤ Pmaxi Yi + Pmaxi Zi = 2FY .

The quantity FY depends only on the distribution of Y . It helps to work
with a specific representation of that distribution. Suppose rank(V ) = k.
(Necessarily k < n because I made Y1 identically zero.) Then there exists a
k × n matrix A = [a1, . . . , an] with V = A⊺A and rank(A) = k.

Remark. Such an A could be constructed from a spectral represen-
tation, V = Udiag(λ1, . . . , λn)U

⊺, with U an orthogonal matrix and
only k of the λi’s nonzero.
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Under γk, the vector (⟨a1, g⟩, . . . , ⟨an, g⟩) has a N(0, V ) distribution. We
could take Yi to equal ⟨ai, g⟩ and Zi equal to ⟨−ai, g⟩.

Define K to be the convex hull of the set of

E := {a1, . . . , an,−a1, . . . ,−an}.

Then K is a compact, convex, symmetric subset of Rk with 0 ∈ K. The
extreme points of K all belong to E. It is not too hard (Problem [2]) to
deduce from rank(A) = k that 0 is an interior point.

For each g the linear functional t 7→ ⟨t, g⟩ achieves its maximum over K
at extreme point in E. Thus

γk supt∈K⟨t, g⟩ = γk supt∈E⟨t, g⟩ = FY,Z ≤ 2FY .

6 Problems
S:Problems

[1] Suppose {Xt : t ∈ T} is a doob-separable, centered gaussian process.P:bdd.paths

(i) For each pair s, t in T show that

2Pmax(Xs, Xt) = P (|Xs −Xt|+Xs +Xt) = 2 ∥Xs −Xt∥2 /
√
2π .

Hint: If Z ∼ N(0, 1) then P|Z| = 2/
√
2π .

(ii) Deduce that P supt∈T Xt ≥ sups,t∈T ∥Xs −Xt∥2 /
√
2π .

[2] Using the notation from Section 5, prove that 0 is an interior point of K byP:interior

arguing as follows.

(i) The fact that A has rank equal to k implies that the set {aj : j ∈ J} is a
basis for Rk for some subset J of [[n]].

(ii) Let {eα : α ∈ [[k]]} denote the usual orthonormal basis for Rk. For each α
there are real numbers θ[α, j] for which eα =

∑
j∈J θ[α, j]aj . Define M to

be the positive square root of maxα
∑

j∈J θ[α, j]
2. Suppose x =

∑
α rαeα ∈

B[0, δ]. Then x =
∑

j∈J λjaj with |λj | ≤ |
∑

α rαθ[α, j]| ≤ δM . Thus∑
j∈J |λj | ≤ 1 if δ is small enough.

(iii) Thus x =
∑

j∈J |λj |sgn(λj)aj ∈ K.
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