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The minoration as a a bound on packing numbers

According to Dudley (2014, p. 131), the following result was first proved by
Sudakov (1973, Prop. 7) under a mild extra condition, although credit for
similar ideas should be shared with Chevet (1970). It is usually referred to
as the supakov minoration. (I think the word minorant is a synonym for
‘lower bound’.)

Sudakov minoration. IfY := (Y1,Ys,...,Y),) has a centered MVN dis-
tribution with P|Y; —Yy|*> > 62 for all distinct j # and k, then P max;<, Y; >
C.uid+/1ogyn with C.,, a universal (positive) constant.

Remark. I found it helpful to keep in mind the extreme cases:
(1) Y; = jeZ for j = 1,...,n, where ¢ > § and Z ~ N(0,1);
(ii) Y1,...,Y, are iid N(0,0?) with 202 > §2.

The inequality can be regarded as an upper bound for packing numbers
or a lower bound for P max;<,, Y;. It is also equivalent to an assertion involv-
ing covering numbers of convex bodies in euclidean space, the Main the-
orem in this note. Talagrand (Ledoux and Talagrand, 1991, pp.82-84,88)
claimed credit for the form of the proof.

version: 9may24 Sudkov
printed: May 9, 2024 @©David Pollard



Sudmin? |

’\E@ cover.lower‘

<2>

<3>

\E@ cover.pack‘

S:geometry‘

\E@ rho.rho

<H>

§2 THE GEOMETRY OF THE MINORATION 1

Main theorem. Suppose K is a compact, convex, symmetric subset of RF
with 0 € interior(K). Then

F i= g supyeg (t, g) > Supesg cey/log COVER(e, K, 2)

for some universal, positive constant ¢, where vy, denotes the N(0, Iy,) prob-
ability measure.

Remarks.

(i) Here £? denotes the usual euclidean metric on R*, which corresponds to
the inner product (z,y) :=>_,) @;y; and norm |z|z := \/(z, ) .
(ii) The covering number in <3> could be replaced by a packing number
by virtue of the inequalities
<4> COVER7 (9, S,d) < COVERg(9, S, d)
< PACK(S, S, d)
< COVER7r(d/2,5,d) < COVERg(4/2,5,d)
for any totally bounded subset S of any metric space (T, d). In general
it matters little whether the centers of the covering balls are restricted
to lie in S, as in COVERg(...), or are allowed to be outside S, as in

COVER7(...). When an argument depends on having centers in S, as
in Lemma <6>, it can help to use packing numbers.

(iii) If diam(K) denotes the ¢? diameter of K then the supremum on the
right-hand side of <3> need only be taken over 0 < ¢ < diam(K)
because Blt,r] D K if t € K and r > diam(K).

The geometry of the minoration

Let K be a compact, convex, symmetric subset of R¥ with 0 € interior(K),
as in Theorem <2>. Then the closed, convex set

L:={yeRF: (y,z) <1forevery zin K} =Muex{y: (y,z) <1}

is called the polar of K. It is also compact and symmetric with 0 an interior
point. Schneider (1993, §1.6) denoted the polar by K*; Barvinok (2002, p.
143) denoted it by K°.

The gauge function px is defined on R* by

pr(z) :=inf{A >0:2/\ € K}.

It is actually a norm on R* for which K is the unit ball, that is, K = {z :
pr(x) < 1}. The support function hx is defined on RF by

hi(y) = sup,c g (T, y)-

It is very convenient that polar of L equals K and p;, = hx and pxg = hp.
See Section 4. These facts imply

(z,y) < pr(z)pL(y) for all 2,y in R,

If either pg (z) or pr(y) is zero the result is trivial, otherwise x/pk (z) € K
and y/pr(y) € L so that their inner product is < 1.
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3 Proof of the main theorem
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The following arguments are based on van Handel (2016, pp. 159-162) and
Vershynin (2019, pp. 46-50).

We now have three different norms on 7' := R¥ namely | - |2 and px
and pr. Their unit balls centered at the origin are B and K and L. More
generally,

Blz,r]:={y €T : |y —zla <r},
Klz,r]:=={y €T :px(y—=z) <r},
Llz,r]:={y €T : prly —x) <r}.

The following three inequalities involving these covering numbers contain
the central idea in the proof of the Theorem.

packBL‘ <6> Lemma. COVERy(d, B, pr) < 2exp (83"2/62), where F := ~sup;e(t, 9),
for each § > 0.

packkL| <7>  Lemma. COVERy (6, K, (?) < COVERy(62/4, K, pr) for each § > 0.

del.2del| <8>  Lemma. COVER(J, K, ¢?) < COVER(24, K, (?) x COVERT(6/8, B, pr.)
for each § > 0.

Let me first show how these inequalities lead to inequality <3> and then
prove the three Lemmas. To simplify notation, define N () := COVER7(, K, £2).
We need to find a positive constant C for which

f(e) :=e/logN(e) <CF for 0 < e < D := diam(K).
By Problem [1] we have v27F > D := diam(K'). Lemma <8> gives

V1og N(€) < v/log N(2¢) + /log COVER(¢/8, B, pr) -
And, for 0 < ¢ < D, Lemma <6> then gives

ev/1og COVER(¢/8, B, pr,) < D+/log?2 + e/83F2/e2" < M,
where M is constant multiple of F. Thus

<9> fle) < f(2¢)/2+ M for 0 <e < D.

Define R; := D/2" for i = 0,1,2,.... As already noted, f(Rg) = 0.
Monotonicity of € — COVER(e, K, ) gives

f(e) < Ri\/log COVER(RZ'_H, K, 52)' = 2f(RZ'+1) for Ri-i—l <e< Ri.
Thus it remains only to derive an upper bound for f(R;) from the inequality

f(Rix1) < f(Ri)/2+ M.
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Iterate.

f(R1) <0/2+ M,
f(R2) < f(R1)/2+ M < M/2+ M,
f(R3) < f(R2)/2+ M < M/4+ M/2+ M,

and so on. We must have f(R;) < 2M for all i. Done.
The proofs for the Lemmas are quite short.

Proof (of Lemma <6>). The assertion is
COVER7 (4, B, pr) < 2exp (83’“2/52) .

It suffices (cf. <4>) to show that N := PACK(J, B, pr,) < N(9).

Let t1,...,tn be points of B for which pr(t; —t;) > 0. Define z; := Rt;
where R :=45F /6. The set {x1,...,xn} is a 4F-separated subset of B|0, R].
The pr-balls L{z;,2F] for i = 1,..., N are disjoint. Thus

1> ZZ Ve L[zi, 2F] > N min;<n v Llz;, 2F].

We need to show L[z, 2F] > exp(—R?/2)/2 when x € B[0, R]. Start
with the case A := L[0,2F]. Define W := sup;c(t,g9) = hx(9) = pr(9).
Then we have

WwA® = e{pr(g) > 2T} = W > 2T} <4, W/(25) = 1/2.

Hence v, A > 1/2. Write P for the conditional distribution ~ (- | A), which
has density {y € A}o(y)/7xA with respect to lebesgue measure, where
d(y) == (2m) %2 exp(—|y|3/2). For each x in R¥ we have

wLle25] = [{y—2 € A3oto)dy = [fw € Aot + ) du
= /{w € A}exp [—\93@/2 — <937w>] o(w) dw

(WA) exp (—|z[3/2) P* exp (—(z, w))
Lexp (—|2[3/2) exp (—(z, Pw)) by the sensen inequality,

AVARIY

exp (—]:n|%/2) because Pw = 0 by symmetry.
In particular, if z € B[0, R] then v, L[z, 2F] > exp(—R?/2)/2.
Proof (of Lemma <7>). The assertion is

COVER7 (6, K, /?) < COVERT(6?/4, K, pr).

Define € := 62/2. This time let F := {x1,...,2x}, for N = PACK(e, K, pr.),
be a maximal e-separated (in py, distance) subset of K. Then K C U;<nL[x;, €].
If y € KN L[w;, €] then px(y — i) < pr(y) + px(2:) < 2 and pr(y — ;) <€
so that

ly — ZL‘Z|% < pr(y—zi)pr(y — x;) < 2e by inequality <5>.
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It follows that y € Blz;, v/2¢] = Blx;, 6]. Hence
K = U<y (KN L[xi, €]) C Uicn Bz, 4],
O  implying COVERE (6, K, ¢?) < N < COVER(¢/2, K, 2).
Proof (of Lemma <8>). The assertion is
COVER7(6, K, %) < COVERT(26, K, (*) X COVERT(8/8, B, pr).

The argument involves two coverings: first choose z1,...,xy with N :=
COVERT (29, K, (?) for which K C U;<nB[z;,20]; then choose z1,..., 2y
with M := COVERy(r, B, pr) for which min;pr(w — 2z;) < r := §/8 for
each w in B. In particular, if y € B[z;, 20] there there exists a j for which

pL <y ;6% - za') <r andthus  pp(y—z; — 20z;) < 26r = 6%/4,

which implies
K C UigNB[$i7 25] C Ui<n Uj<mr L[mi + 252]', 52/4].
It follows, via Lemma <7>, that

O COVER7T(6, K, %) < COVERT(0%/4, K, pr) < NM

4 Facts about duality

S:pol
@ Sources: E = Eggleston (1958, §1.9, §3,5) and S = Schneider (1993, §1.6,
§1.7).
S-p8 defined
K™ := all nonempty, compact, convex subsets of R™ ,

Kl :={K € X" : interior(K) # 0}.

He called members of X" compact bodies.
The support function can be defined for a (nonempty) bounded sub-
set A of R as

h(u, A) := ha(u) := sup{(z,u) : x € A} for u € R™.

(S used nonempty closed convex sets, initially allowing h to take the value +0c.)
If A is closed (and hence compact) the supremum is achieved for some xg
in A. In that case, the supporting hyperplane {z € R™ : (z,u) = ha(u)}
contains the point z¢ and the closed halfspace {x € R™ : (z,u) < ha(u)}
contains A.

The polar of a bounded set A, denoted by A° or A*, is defined as

A" :={yeR": (z,y) <1forall x in A}
=MNgea{y € R": (z,y) < 1} so A* is closed and convex
={y €R": ha(y) < 1}.
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If A C B[0,R] then |ha(u)] < R|u|z for every w in R", which implies
B[0,1/R] C A*. In particular, 0 is an interior point of A* and A* € X?. Sim-
ilarly, if the origin is an interior point of A then B[0, ] C A for some § > 0.
For each y in A* we then have (z,y) < 1 for each x with |z|s < §, which
implies |y|2 < 1/6 and A* C BJ[0,1/4].

Remark. E-p25 allowed A to be any subset of R™. If A is unbounded

then interior(A*) can be empty. S-p3 defined the polar only for
members of X7.

The polar of the polar, A** := {z € R" : (z,y) <1 for all y in A* } also
belongs to X". Clearly A** D AU {0}. E-p25 claimed that A** is actually
the convex hull of S := AU {0}.

Lemma. If K € K] with 0 as an interior point then K** = K.

Proof. As 0 € interior(K) the polar K* is bounded; it also belongs to X7.
The inequality

(x,y)y <1 for all z € K and all y € K*

implies that K C K**.

To complete the proof it suffices to show that if w ¢ K then w ¢ K**.
Such a w can be separated from K by a hyperplane: for some u € R™ and
some o € R,

(w,u) > a > sup,cg(x,u).

The constant a must be > 0 because 0 € K. The fact that 1 > (z,u/«)
for each x in K shows that u/a € K*. The fact that (w,u/a) > 1 then
implies w ¢ (K*)*.

The gauge function of a set K in K7 is defined by S-p43 as
gz, K) :=inf{\ > 0: 2z € AK}

The infimum is achieved by some A > 0 if  # 0, that is, g(x, K) is the
smallest A > 0 for which z/X € K. For K* and y # 0 we have

g(y, K*) =min{A > 0: (y/A\,z) <1lforallz € K }
=min{\ > 0: (y,z) < Aforallz € K } = h(y, K).

Similarly,

g(z,K) = g(x, K*) = h(z, K*).
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Equivalence between the two forms of the minora-
tion

Theorem <2> involved a set of functions X = {X; : t € K} indexed
by a subset K of R¥. More precisely, the function X; was defined by
Xi(g) = (t,9) = >_;<p tigi with g a generic point of RF. Under the probabil-

ity measure v, := N(0, I) on RF, the funtion X; became a random variable
and X became a centered gaussian process with

cov (Xs, X¢) = (s,t) AND var(Xy) = |t]3.

Inequality <3> could be rewritten using packing numbers:

CPsup,c i X; > ey/log PACK (e, K, £2) for each € > 0.

If, for some given € > 0, we have a finite subset F' of K with |s — ]y > €
then

| Xs — Xellg = |s —tla > € for distinct s,¢ in F'.

Thus <11> is a special case of Theorem <1>.

It takes a little more work to embed a random vector Y = (Y1,...,Y,)
with a N(0,V) distribution into a process indexed by K.

First note that Fy := Pmax; Y; = Pmax;(Y; — Y1) and

1Y: = Yill, = (Vi = Y1) — (Y; = Y1),
Thus we lose no generality by assuming Y7 is identically 0.
Remark. This little trick eliminates an annoying difficulty when a

maximum over a finite set needs to be bounded by a sum of maxima
over two subsets.

If we define Z = (Zy,...,2,) by Z; := =Y, then Z ~ N(0,V), so that
max{Y1,...,Y,, Z1,..., Z,} < max; Y; + max; Z;.
It helps that both max; Y; and max; Z; are nonnegative. It follows that
Fy.z :=Pmax{Y1,....Y,, Z1,..., Z,} <Pmax; V; + Pmax; Z; = 2Fy.

The quantity Fy depends only on the distribution of Y. It helps to work
with a specific representation of that distribution. Suppose RANK(V) = k.
(Necessarily k < n because I made Y] identically zero.) Then there exists a
kE x n matrix A = [a1,...,a,] with V = ATA and RANK(A) = k.

Remark. Such an A could be constructed from a spectral represen-
tation, V' = Udiag(A1, ..., \,)UT, with U an orthogonal matrix and
only k of the \;’s nonzero.
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Under 7, the vector ((a1,9),...,{an,g)) has a N(0,V) distribution. We
could take Y; to equal (a;, g) and Z; equal to (—ay, g).
Define K to be the convex hull of the set of

E = {a17...,a/n7_a1a"'7_an}'

Then K is a compact, convex, symmetric subset of R¥ with 0 € K. The
extreme points of K all belong to E. It is not too hard (Problem [2]) to
deduce from RANK(A) = k that 0 is an interior point.

For each g the linear functional ¢ — (¢, g) achieves its maximum over K
at extreme point in £. Thus

Vi SUPse e (t, 9) = Vi supyep(t, 9) = Fy,z < 2Fy.

Problems

Suppose {X; : t € T} is a poos-separable, centered gaussian process.

(i) For each pair s,t in T show that

2P max(Xs, Xi) = P (| Xs — Xy + Xs + X)) = 2| X5 — Xy, / V2.

Hint: If Z ~ N(0,1) then P|Z| =2/v27.

(ii) Deduce that Psup;er X; > supg er (| Xs — Xillo /v 27

Using the notation from Section 5, prove that 0 is an interior point of K by
arguing as follows.

(i) The fact that A has rank equal to k implies that the set {a; : j € J} is a

basis for R¥ for some subset J of [[n]].

(ii) Let {eq : a € [[k]]} denote the usual orthonormal basis for R¥. For each a

there are real numbers 6[a, j] for which eq = >, ; 0[c, jlaj. Define M to
be the positive square root of max, Zje] Olc, j]?. Suppose T =Y., Taeq €
B[0,6]. Then z = >, ;Aja; with [Aj] < [0, raf[a,jl] < 6M. Thus

> jes |Ajl £ 1if ¢ is small enough.

(iif) Thus z = 3", ; [Aj[sen(Aj)a; € K.
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