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SIMULATION AND THE ASYMPTOTICS OF
OPTIMIZATION ESTIMATORS

BY ARIEL PAKES AND DAVID POLLARD!

A general central limit theorem is proved for estimators defined by minimization of the
length of a vector-valued, random criterion function. No smoothness assumptions are
imposed on the criterion function, in order that the results might apply to a broad class of
simulation estimators. Complete analyses of two simulation estimators, one introduced by
Pakes and the other by McFadden, illustrate the application of the general theorems.

Keyworps: Computationally intractable probabilities, discrete choice, aggregation,
simulation estimators, discontinuous objective functions, Vapnik Cervonenkis classes,
empirical processes.

1. INTRODUCTION

CONSIDER A MODEL in which the true value, 6,, of a parameter vector is implicitly
defined as the unique solution to an equation G(8) = 0, for a suitable vector-value
function, G. A natural way to estimate §, is to construct a sequence {G,} of
random functions that converges to G in some sense, then find the 0 that makes
G (0 ) as close to zero as possible. This paper presents conditions under which
such a 0 converges to 6, and Vn (0 0,) satisfies a central limit theorem. We
avoid smoothness assumptions on G, so that G, can be a discontinuous function
of 6.

Our analysis is motivated by a desire to obtain the asymptotic properties of a
broad class of simulation estimators: estimators that arise in cases where simula-
tion experiments are used to provide estimates of complicated functions that
otherwise could not (or could not easily) be evaluated. As our examples will
illustrate, the simulation process often generates a discontinuous G,(-).

To illustrate the usefulness of simulation estimators, consider a simple econo-
metric model which specifies a set of conditions on population moments

G(o)=jh(x,a)P(dx),

and assumes they equal zero at the true 6,. Characteristically, estimators of 6,
would be obtained by drawing a random sample of size n from the population of
interest, and then finding that value of # that makes the sample moment,

n
— 5,1
8.(0) =n~1 Y h(x;,0),
i=1
as close as possible to zero.
! We are grateful to Daniel McFadden for discussions of his preprint on simulated moment
estimators, which persuaded us to make several revisions in our original working paper. We are also
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1028 ARIEL PAKES AND DAVID POLLARD

This can only be done if it is easy, or at least practicable, to evaluate g,(8).
For many models of current interest, particularly those whose restrictions involve
multi-dimensional integrals, this computational problem is extremely burden-
some, or impossible, even with the most sophisticated of computing equipment.
Simulation can often be used to circumvent this problem. If simulation experi-
ments can be used to produce a good estimate, G,(8), of g,(8), then one feasible
estimator of 6, is the value of # that makes G,(6) as close as possible to zero.

In the moment example, if h(x, 8) were difficult to calculate but it had an
interpretation as a conditional expectation of a tractable function,

h(x,o)=fH(x,§,o)p(d§|x),

with P(-|x) a known family of distributions, then a simulation estimator would
be easy to construct. One could generate observations {,...,§; from the
distribution P(-|x;), form the average

s
fl(xi’ 0) =57 Z H(xivg'ij’a)
j=1
for each 8, then estimate 6, by making

G,(8) =n~' ¥, h(x,,6)

i=1

as close as possible to zero.

Section 4 provides a detailed analysis of two examples, one introduced by
Pakes (1986), and the other by McFadden (1989), where this method of simula-
tion can be used. The examples illustrate how one can verify the conditions of the
general limit theorems that are presented in Section 3. They also show how
simulation can be used to circumvent two familiar types of computational
problems: evaluating intractable aggregation formulae, and evaluating discrete
response probabilities.

In Pakes (1986), the function H(-, #) determined an individual’s responses to a
stimulus conditional on a vector of parameters (f) from a microeconomic
behavioral model, and P provided the distribution of the stimulus in the
population of interest. The problem was to estimate the true value of the micro
parameters, 6,, by explicitly aggregating the micro responses into the totals (or
economy-wide aggregates) predicted by different values of 8, and then fitting the
aggregate predictions to aggregate data. For each different value of the stimulus
the individual responses were easy to evaluate. However, the integral required to
derive the aggregate implications of @, that is (-, #), proved intractable. To
circumvent this problem, Pakes drew a random sample from P, calculated
H(-, 0) for each draw, and then estimated 6, by minimizing a distance between
the simulated aggregates and the aggregate data. In Pakes’s model H(-, #) was a
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discontinuous function of 8, and, since the function minimized was a sum of
these functions, it was also discontinuous. Pakes’s problem is our Example 4.1.

In the discrete response problem studied by McFadden (1989), individual
choices were a function of an only partially observed vector of deviates, and a
vector of parameters to be estimated. In principle, for any given value of the
parameter vector, 6, the probabilities of alternative choices could be evaluated by
determining the choice made for every possible realization of the unobserved
deviates, and then taking the conditional expectation of the indicator functions
for the different choices. In practice, the desired integral is often too complicated
to evaluate. Earlier, Lerman and Manski (1981) had proposed simulating the
response probabilities for the discrete choice problem, and then finding that value
of 8 that maximized a likelihood function in which the simulated frequencies
replaced the intractable true choice probabilities. Lerman and Manski’s (1981)
heuristic argument for the limit properties of their estimators required s, the
number of simulation draws per observation, to grow large as well as n. However,
examples in which both s and n were kept large required an impractical amount
of computer time. McFadden (1989) noted that by combining moment conditions
in which the theoretical choice probabilities enter linearly with a simulation
estimator for those probabilities, one could obtain a simulation estimator for the
parameters of the discrete response model that could be expected to have
desirable asymptotic properties when the number of simulation draws per sample
observation is held fixed, and sample size tends to infinity. This works because
linearity allows the errors in the simulation to be averaged out over the sample.
McFadden’s problem will be our Example 4.2.

Given the insights provided by these articles, it is easy to generate numerous
other examples where simulation can be used to solve an otherwise intractable
computational problem. Most seem to fit in the moment framework outlined
above, or something very similar.

Section 3 of this paper provides conditions under which 0:,, the estimator of 6,
obtained from a random criterion function G,(), is consistent and asymptoti-
cally normal. The theorems of this section are general enough to cover a broad
class of simulation estimators. All but one of the conditions underlying each
theorem are standard and require little explanation. The difficult (yet critical)
condition insures that G,(6)— G(8) is small uniformly in 6. For consistency
arguments something like a uniform law of large numbers is needed. For the finer
asymptotics of the central limit theorem a more stringent bound is needed, but
uniform only in small neighborhoods of 6.

Section 2 summarizes one method for checking the uniformity conditions of
the theorems in Section 3. The method is particularly useful for applications such
as the study of simulation estimators, where the criterion function can have
discontinuities. It is heavily dependent upon independence assumptions, which
makes it unsuitable for many time series applications. In the presence of
dependence, methods based on smoothness assumptions are more successful.
These methods correspond roughly to the empirical process technique of bracket-
ing (see Section 6 of Pollard (1985), or Pollard (1989b)).
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A reader who prefers to get an overview of the limit theorems before plunging
into the details of their uniformity conditions could read Section 3 before Sec-
tion 2.

Notation

Throughout the paper we use the O,(-), 0,(-) notation of Mann and Wald
(1944), as exposited by Chernoff (1956). When applied to vectors and matrices,
the symbols should be interpreted entry by entry.

The symbol || - || denotes not only the usual Euclidean norm but also a matrix
norm: ||(b, )|l = (T, ;b})'/% It has the useful property that || BX| <| B| ||x|| for
each vector x and each conformable matrix B.

If x is a k X 1 vector, we will write diag(x) for the k X k diagonal matrix with
the elements of x along its principal diagonal.

The symbol ~ denotes convergence in distribution.

2. EMPIRICAL PROCESS METHODS

This section describes a specialized technique that is particularly useful for
deriving limit theorems for estimators obtained by minimizing random criterion
functions with discontinuities.

Let £, &,,... be independent observations sampled from a distribution P on a
set 2. The empirical measure P, is defined as the probability measure that places
mass 1/n at each of £,,..., £,. For each measurable subset D of Z, the strong
law of large numbers implies that P,D converges almost surely to PD, and the
central limit theorem implies that vn (P,D — PD) has an asymptotic normal
distribution. There is now a large literature devoted to uniform extensions of
these results for classes of sets and classes of functions. Some of these extensions
provide ready-made ways of checking the uniformity conditions that will underlie
the theorems in Section 3.

_ The simplest uniformity problem was solved most elegantly by Vapnik and
Cervonenkis (1971). They gave conditions for a class 2 of measurable subsets of
Z to satisfy a uniform strong law of large numbers:

(2.1) sup|P,D — PD| -0 almost surely.
2

Amongst their results was a very simple combinatorial condition on £ that
guarantees (2.1) for every distribution P. An exposition of their approach,
modified to take advantage of recent refinements, appears in Section II.4 of
Pollard (1984).

Classes of sets that satisfy the combinatorial condition of Vapnik and
Cervonenkis are called VC classes (or polynomial classes by Pollard (1984)). In
the next definition #(-) denotes cardinality.
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(2.2) DEFINITION: A class of sets & is called a VC class if there exist
constants 4 and V such that: if S is a finite subset of & then

#{SND:De9} <A(#S)".

The VC property requires that the number of distinct subsets picked out by 2
from an S of size n grows much more slowly than 2", the maximum number of
distinct subsets of S. Thus the class of all finite subsets of %#? containing 3 or
fewer points is a VC class, because the number of subsets of S that it can pick
out grows like n3. A less obvious example is the VC class of all closed balls in
2%; the number of subsets it picks out also grows like n>. Notice that subclasses
of a VC class are VC classes.

The VC property guarantees a very strong form of (2.1). The proof of the next
lemma, and the proofs of other results about VC classes in this section, may be
found in Pollard (1984).

(2.3) LemMA: If D is a VC class, then the uniform strong law of large numbers
(2.1) holds for every P.

Strictly speaking, the statement of this lemma is incomplete because it omits
the necessary measurability qualifications. It would be sufficient to add the
assumption that & be permissible in the sense of Appendix C of Pollard (1984).
In practice one checks permissibility by showing that the set of indicator
functions of sets in & can be represented as { f(-,¢):¢€ T}, where f(x,t)is a
function jointly measurable in its arguments and T is a Borel subset of a compact
metric space. Other assertions in this section could be modified similarly to
ensure complete measure theoretic veracity.

There are several very simple methods for constructing VC classes. The most
basic of these shows that the VC property is closely related to finite dimensional-
ity. Recall that a class of functions ¥, is said to be finite dimensional if each g in
@ can be expressed as a linear combination of a fixed, finite set of basis functions
81> ---» 8 in 9. For example, the class of all polynomials of degree 3 on the real
line is finite dimensional; every such polynomial is a linear combination of the
basis functions 1, x, x2, and x°.

(2.4) LeMMA: If 9 is a finite dimensional vector space of real-valued functions
on Z, then the class of all sets of the form {g>1t} or {g>1t}, with g€ Y and
teR, is a VC class.

Typically one constructs VC classes by first generating a basic class using the
last lemma, and then combining the basic sets using a fixed finite number of
Boolean operations. The second step is justified by the next lemma. (In the fourth
assertion the superscript ¢ denotes a complement.)
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(2.5) LemMA: If € and 2 are VC classes, then so are
(1) €U 9,
(it) {CuD:Ce¥%,De%},
(iid) {CND:Ce¥,De2},
(iv) {Ccc:Cce¥}.

Our final lemma for classes of sets proves that the VC property is preserved by
the operation of taking inverse images. It gives us a way to prove limit theorems
for sequences {7(£;)} obtained by applying a fixed transformation to each §,. It
also shows why the sets in a VC class need not have smooth boundaries nor have
simple connectedness properties: such regularity can be destroyed by a highly
irregular map 7.

(2.6) LeMMA: If T is a map from a set Z into a set ¥, and if D is a VC class of
subsets of ¥, then {T™'D: D€} is a VC class of subsets of .

PrROOF: Let S be a finite subset of . Suppose D, and D, are sets in £ whose
inverse images pick out different subsets from S:

(T7'D,) NS+ (T7'D,) N S.
Then D, and D, pick out different subsets from the image of S under T:
(TS)N D, +(TS)N D,.
Thus
#{SN(T"'D): D€}
<#{(TS)nD:De9}
<A(#71S8)"
<A(#S)".

The results for VC classes of sets admit several generalizations to classes of
functions. Nolan and Pollard (1987) have introduced the concept of a Euclidean
class as one possibility; Dudley (1987) has studied a multitude of other plausible
generalizations. We consider only Euclidean classes in this paper.

Let &% be a class of real-valued functions on Z. An envelope for & is any
function F such that |f] < F for all f in %. If p is a measure on £ for which F
is integrable, it is natural to think of % as a subset of #'(u), the space of all
p-integrable functions. This space comes equipped with a distance defined by the
&Y(u) norm. The closed ball with center f, and radius R consists of all f in
&LY(p) for which [|f—f,|du<R.

(2.7) DEeFINITION: Call # Euclidean for the envelope F if there exist positive
constants 4 and V' with the following property: if 0 <& < 1 and if p is a measure
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for which [Fdp < oo, then there are functions f,,..., f, in % such that
(1) k<Ae™ ",

(i) & is covered by the union of the closed balls with radius efFdp and
centers f,..., f,. That is, for each f in %, there is an f; with
J1f~ il du<efFdp.

The constants A and ¥V must not depend on p.

Implicit in this definition is the assumption that the functions in % and the
envelope F are measurable with respect to a fixed o-field on £, and that the
measure p lives on this o-field.

If a class of functions is Euclidean it is necessarily manageable in the sense of
Pollard (1989a), which provides the necessary proofs for this section. A class F#
that consists of the indicator functions of sets in a class & is Euclidean (for the
envelope F=1) if and only if 2 is a VC class. Thus theorems for Euclidean
classes will always include results for VC classes as special cases. For example,
the next lemma generalizes Lemma 2.3.

(2.8) LemMa: If # is Euclidean for the envelope F and if (FdP < co, then

sup f fdP,— f fdP‘ — 0 almost surely.
F

Here are some examples of Euclidean classes. They all involve some sort of
smoothness or finite dimensionality, but not necessarily in the way required by
traditional proofs of uniform limit theorems.

(2.9) ExaMPLE: Let {g,..., 8, } be a finite set of functions on Z. For each
positive, finite M write %,, for the class of all linear combinations ¥;a,g;(+)
with ¥.|a;| < M. It is Euclidean for the envelope F = M max;|g;|. Without the
bound on the coefficients the class would still be Euclidean, but only for the
trivial reason that an infinite envelope excludes all but trivial p measures from
Definition 2.7. Of course such classes are amenable to traditional techniques.

(2.10) ExamMpPLE: Let K(-) be a function of bounded variation (but not neces-
sarily continuous) on the real line. Let % consist of all rescaled translates of K:
that is, functions of the form

oy (0) = K[ =),

o

where y ranges over £ and ¢ > 0. It is Euclidean for the constant envelope
F=sup|K|. Such classes are useful in the study of nonparametric smoothing
procedures. See Nolan and Pollard (1987).
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(2.11) ExampLE: Let %, denote the class of all real functions on £ that are
bounded in absolute value by a fixed function F and satisfy: for each f in %,
there is a partition of # into k intervals on each of which f is linear. The class
%, is Euclidean for the envelope F. The possibility that f might have discontinu-
ities at the partitioning points makes this class difficult to analyze by traditional
methods.

In each of the last three examples the Euclidean property could be verified by
application of the lemmas that follow. As with VC classes, the best strategy for
identifying Euclidean classes is to combine simpler classes according to the rules
that preserve the Euclidean property. The starting point is usually one of the next
two lemmas.

To each real valued function on a set £ there corresponds a subset of the
higher dimensional set Z® £, its subgraph:

subgraph(f) = {(x,1) €Z®@R:0<t<f(x)or0>1>f(x)}.

For example, the subgraph of any of the piecewise linear functions in Example
2.11 is made up of a union of k subsets of %2, each of which is a quadrilateral or
a union of two triangular regions. The next lemma shows that all polynomial
classes of functions, in the sense of Pollard (1984), are Euclidean.

(2.12) LemMA: If {subgraph(f): f€ZF } is a VC class of sets, then F is
Euclidean for every envelope.

The second basic method deduces the Euclidean property from an analogous
property of bounded subsets of the ordinary Euclidean space 27.

(2.13) LeMMA: Let F={f(-,t):t €T} be a class of functions on & indexed
by a bounded subset T of R°. If there exists an a >0 and a nonnegative function
() such that

|[f(x,0) = f(x,t)|<p(x)t—t||* forxeX and t,t'€T,

then F is Euclidean for the envelope |f(-,1,)| + M¢(-), where t, is an arbitrary
point of T and M = (2/d supy ||t — 1,]))*

Proor: For simplicity we consider the case d =2. Write D for supy ||t — £,]|.
Enclose T in a square S of side 2D. Given & with 0 <& <1, choose an integer k
with 1 < ke'/* < 2. Partition S into k2 subsquares of side 2D/k. From each
subsquare that intersects 7' choose, arbitrarily, a point in the intersection. Let
{t3,-.., ty} be the set of all such points. Of course N < k% < 4e~%/% which is the
right rate of growth for a Euclidean class.

Each ¢ in T belongs to at least one of the subsquares. The corresponding ¢, lies
a distance no greater than A4 = y22D/k from 1. Write F for the given envelope.
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Then, for all x,
|f(x, 1) = f(x, 1) | < $(x) A" < eF(x).

When both sides are integrated with respect to a measure p this gives the bound
required by Definition 2.7.

The closure properties for Euclidean classes are determined by pointwise
algebraic operations analogous to the Boolean operations that preserve the VC

property.

(2.14) LemMa: If F is Euclidean for an envelope F, and 9 is Euclidean for an
envelope G, then

(1) (f+g:feF, g€ ¥} is Euclidean for the envelope F + G
(ii) {fg: feF, g€ 9} is Euclidean for the envelope FG;

(iii) both {max(f,g):f€F, g€ G} and {min(f,g): fEF, g€ G} are
Euclidean for the envelope max(F, G);

(iv) for each positive M the class {af: fEF, a €R, |a| < M} is Euclidean
for the envelope MF.,

(2.15) LeMMA: If T is a measurable map from % into ¥, and if  is a class of
functions on ¥ that is Euclidean for an envelope F, then the class of composed
functions { feT: fe %} is Euclidean for the envelope FoT.

PrROOF: Given a measure p. on &, write p, for its image measure on % under
the map T. If f,,..., f, are the functions for which

min [|/~ | dpr<e [Fdpr,

then f,oT,..., f, o T are appropriate for y, because

fgdﬂr=fg°Tdu
for every nonnegative, measurable g on %.

As an illustration of how these lemmas may be applied, we will prove that the
class %, from Example 2.11 is Euclidean for its envelope F. From Lemma 2.12,
it is good enough to prove that the subgraphs form a VC class. Each subgraph is
a union of at most 2k triangular regions in %2 Each triangular region is the
intersection of three open or closed halfspaces in #2. So, with 2k application of
Lemma 2.5(ii) followed by three applications of Lemma 2.5(iii), the problem is
reduced to proving that the class of all halfspaces is a VC class. Every halfspace
can be represented as {g, s>t} or {g, s>t} for some real numbers a, B, 1,
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where g, 5(x, y) = ax + By. The class of all g, , functions is a two dimensional
vector space. Lemma 2.4 completes the argument.

Lemma 2.8 is a uniform analogue of the strong law of large numbers. The
empirical process literature also contains uniform analogues of the central limit
theorem. These are expressed in terms of the standardized empirical process
v, = Vn(P,— P). This process acts linearly to produce a standardized sum for
each f in Z%(P),

n(1) =2 % | fe) - [rap],

i=1

which converges in distribution to a normal with variance [f2dP — [ [fdP]* and
zero mean. The empirical central limit theorems give conditions under which the
convergence is locally uniform in £, in the sense that small % %( P) perturbations
of f have only a small effect on »,(f). We do not need a precise statement of the
limit theorem (Section VIL5 of Pollard (1984)) in this paper, because it is only
the perturbation property that we need in order to check the uniformity condi-
tions of the theorems in Section 3.

(2.16) LEMMA: Let F be a Euclidean class with envelope F for which [F?dP <
0. For each >0 and € > 0 there exists a § > 0 such that

timsupP{ suply, () = 5 (£)] > 1) <o,
(8]

where [8] denotes the set of all pairs of functions in F with [(f,— f,)* dP < §2.

The assertion of the lemma translates into a smoothness property for a class
{f(-,0): 6 € ®)} if the parameterization is continuous at 6, in the #?(P) sense,
that is, if

JUC0)=f(.8)) aP—>0 as 96,

If the envelope F is square-integrable with respect to P, a simple sufficient
condition for #?(P) continuity at 6, is continuity of the function f(x, -) at 6,
for P almost all x. This follows by the Dominated Convergence Theorem
because [ f(x, ) — f(x, 6,)]* converges almost-surely to zero and it is bounded by
the integrable function 4F2. When f(-, 8) is the indicator function of a set D(6)
the almost-sure convergence is usually verified by showing: (i) each x in the
interior of D(6,) belongs to D(8) for all 8 close enough to 6,; (ii) each x in the
interior of the complement of D(,) belongs to the complement of D(8) for all 8
close enough to 6,; (iii) the boundary of D(6,) has zero P measure. Conditions
(i) and (ii) merely restate the definition of continuity of indicator functions at
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each x not on the boundary of D(6,). Condition (iii) anticipates that it is only
the boundary points where the convergence of the indicator functions might fail.

The combination of almost sure continuity and domination will be familiar to
those readers who have studied uniform laws of large numbers, such as the one
proved by Hansen (1982). For us the combination plays a completely different
role; it is a sufficient condition for translating a uniform central limit theorem,
which is a more powerful local result than a law of large numbers, into a
parametric form. To get uniform central limit theorems directly from the domina-
tion condition one needs more detailed information about rates of convergence of
local oscillations of the functions. In empirical process theory, this is made
precise by the bracketing method described in Section 6 of Pollard (1985), or in
Pollard (1989b).

(2.17) LemMa: If {f(-,0):0€ O} is a Euclidean class with envelope F for
which [F*dP < oo, and if the parameterization is &*(P) continuous at 8,, then,
for each sequence of positive numbers {8,} converging to zero,

sup |an("0)_an("00)|=0p(1)'

116 —l1 <8,
Proor: Fix &> 0 and n > 0. We need to prove that

limsuplP{ sup |v,,f(-,0)—v,,f(-,00)|>n}<e.
10 —65l|<8,

Choose § according to Lemma 2.16. When n is large enough,

sup  [/(-.8) = f(-,8)]*dP < 82,
16—l <8,
by virtue of the £2(P) continuity of the parameterization. That is, the class [8]
eventually contains all the pairs f(-,8), f(-,6,) for which ||§ — 6, <§,. The
assertion of Lemma 2.16 is then stronger than the requirement of the present
lemma.

3. GENERAL LIMIT THEOREMS

In this section we state and prove a consistency theorem and a central limit
theorem for an estimator 6, that comes close enough to minimizing the length
|G, (-)|| of a random, vector-valued function. This function is defined on a subset
® of some 2% It should be thought of as an estimate of a deterministic,
vector-valued function G(-) that is also defined on @. The true value 6, is defined
implicitly as the unique point in @ for which G(6,) = 0.

The requirements for the theorems usually include a uniformity condition for
G,: a condition that prescribes the rate at which G, — G must converge to zero
uniformly over particular neighborhoods of 6,. These uniformity conditions are
in a form well suited to the application of the uniform limit theorems from
Section 2.
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The section concludes with two lemmas that state conditions under which the
Euclidean norm || - || can be replaced by random norms that depend on 6, without
disturbing the main limit theorems.

Consistency is a global property. It makes an assertion about an estimator that
potentially could be anywhere in the parameter space. The conditions needed to
establish consistency are, therefore, necessarily global. Theorem 3.1 spells out one
possible set of conditions. The estimator §, is taken as any value that comes close
enough (condition (i)) to providing a global minimum for ||G,(-)|. Since 6, is
included in the set over which the minimum is taken, ||G,,(67,,)|| cannot be much
bigger than ||G,(6,)]. If G,(,) is eventually (condition (ii)) close to zero, the
assumed value of G(6,), it follows that G,(6,) must also get close to zero. If
small values of ||G,(8)|| can occur only near 6, (condition (iii)), this forces 4,
close to 6,. No direct use is made of the assumption that G(6,) is zero; the
theorem applies to any 6, in O satisfying (ii) and (iii).

(3.1) THEOREM: Under the following conditions é\,, converges in probability to 6.

@ [G(6) <o)+ it G,(8)],

(ll) Gn(ao) = op(]‘)’

(iii) sup |G, (8)] "= 0,(1) foreach §>0.
116 — 611>

PrOOF: Fix &£ > 0 and 8 > 0. Condition (iii) means that there exists a finite M
for which

limsuplP{ sup ||G,,(0)||—1>M}<s.
16 —6,11> 8

As the range of the infimum on the right-hand side of (i) includes 8,

1G.(8,) ] < 0,(1) +11G,(8) | = 0,(1),

and hence

P{l.(4.)

It follows that, with probability of at least 1 — 2¢ for all »n large enough,

IG.(6)] " >M> swp [G,(8)] "
16— 6l|>8

|—1>M}—>1.

These inequalities force §, to lie within a distance 8 of 6,. That is,
limsupP{”én— 00" > 8} < 2e.

As ¢ and 8 can be chosen arbitrarily close to zero, the asserted convergence in
probability is established.
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Conditions for the strong consistency of 0:, would be obtained by replacing the
0,(+) and O,(-) quantities in (i), (i), and (iii) by their almost sure analogues.
Since our main goal is a distributional result for 6,, we omit the proof of the
stronger theorem.

Condition (iii) says roughly that, outside a neighborhood of 6,, there is
probability close to one that ||G,(8)]| stays bounded away from zero. A sufficient
condition for this is that the deterministic ||G(8)|| has a similar property and that
G, is everywhere relatively close to G, as shown by the next corollary.

(3.2) COROLLARY: Under the following conditions é:, converges in probability to
the unique 8, in © for which G(6,)=0:

(i) 1G.(8,) [ < 0,(1) + i |G, (8)],
il inf G(0)||>0 foreach &6>0,
G it 16O)>0 £

16.(8) —G(9)]

G s G @ o] ~ 2D

PrOOF: The result could be deduced from the previous theorem, but it is just
as easy to prove it directly by an argument similar in spirit to Huber’s (1967) case
B consistency proof.

Fix & > 0. Write ¢ for the corresponding infimum on the left-hand side of (ii).
Then

P{11d,— 8ll>8} <P{||G(4,)] >},
so it will suffice to show that ||G(0A,,)|| =0,(1). To do this, invoke the triangle
inequality and (iii) to get
6)+lc(4,) -G ( )I

la(6.)] <G,
<llG( )

which rearranges to
[6(8) 111 = 0,(D] < 0,() +[[G,(8,) |[1 + 0,(1)].

The right-hand side is of order o,(1) because, from (i) and (iii) and the require-
ment G(6,) =0,

1G.(8,) | < 0,(1) +11G,(8) || = 0,(1).

The assertion of the theorem follows.

AR

For the purposes of direct verification, the slightly more stringent requirements
of Corollary 3.2 are often more convenient than the general condition in
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Theorem 3.1. The assumptions of Hansen’s (1982) Theorem 2.2 imply the (almost
sure analogues of the) conditions assumed for our corollary; but Huber’s (1967)
case B assumptions correspond to a generality somewhere between our theorem
and its corollary. As the discussion that will follow our Lemma 3.4 will show, we
sometimes do need the greater generality of Theorem 3.1.

Once é,, is known to converge to 6,, further limiting properties of the estimator
require only local assumptions on the behavior of G, and G in small neighbor-
hoods of 6,. Not only does this relieve local limit theorems of the burden of the
global conditions in the preceding theorem and corollary, but it also leaves open
the possibility that consistency might be established by some other ad hoc
argument.

The next theorem gives conditions under which ,, which is now assumed to
converge in probability to ,, satisfies a central limit theorem. The argument
breaks naturally into two steps. First we establish Vn -consistency by means of a
comparison between ||G, (0 )|l and ||G,(6,)||. Informally stated, the new equicon-
tinuity condition (iii) implies that

16(8) < 0,(IG.(8) 1)) + 0, (G, (8) ) + 0, (n™*%)

uniformly near 6,. Since 0 comes close to minimizing ||G,(-)|, the quantity
IG,(8,)| cannot be much larger than ||G,(6,)|l, which is of order O,(n~'/?).
Approximate linearity of G near §, transfers the same rate of convergence to
0,— 6,. The argument for the second step need concern only values of # in a
O,(n~ 172y neighborhood of 6,. There conditions (ii) and (iii) combine to show G,
is uniformly well approximated by a linear function L,. The 6* that minimizes
IL,(-)|| has an explicit form, from which asymptotic normallty of Vn (8 —6,)i is
easily established. A comparison between ||G, (0 )|l and ||G,(6.*)|| shows that 0
must lie within o,(n~'/?) of 6%, which implies the desired central limit theorem.

(3.3) THEOREM: Let 6'?\,, be a consistent estimator of 6,,, the unique point of © for
which G(6,) = 0. If:

@ GG <o (n72) + inf[|G,(8) |

(ii) G(-) is differentiable at 8, with a derivative matrix T of full rank;

(iii) for every sequence {8,} of positive numbers that converges to zero,
1G.(8) — G(68) — G,.(60) ||

sup - =o0(1);
o—an<s n 2+|G,(0) | +llG(O)]

(v)  VnG,(6)~N(O,V);
(v) 0, is an interior point of ©;
then

Vn (6, 8,) ~N(0,('T)~'rvI(rr) ™).
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PrOOF: First we prove yn -consistency. The assumed consistency allows us to
choose a sequence {§,} that converges to zero slowly enough to ensure

P{1I6,—6,l1>8,} -0

With probability tending to one for this sequence, the supremum in condition
(iii) runs over a range that includes the random value 6,. Thus

”Gn(é:l) - G(é:t) - Gn(oo) ”
<o (n) + 0,(|G,(8)]) + 0,(IG(4)])-
By the triangle inequality, the left-hand side is larger than

[6(8)1-lG.(6.) ] -16.(6) -

Thus

16() 11 - 0,(1)] <0,(n-
From conditions (i) and (iv)

1G.(8.) | <1G.(6) | + 0,(n V%) = O, (n~V2).
It follows that

16(6,)] = 0,(n~272).

The differentiability condition (ii) implies the existence of a positive constant C
for which (remember that G(6,) = 0)

1G(8)|>Cllo -]l near 6.

In particular, ||, — 6,]| = O (HG(H )W) = 0,(n"1/?).
Next we establish asymptotlc normahty of Vn (é 6,), by arguing that G,(-)
is very well approximated by the linear function

L,(0)=T(6-6,)+G,(6,)

within a O,(n~'/?) neighborhood of 6,. More precisely, we need the approxima-
tion error to be of order o,(n~'/?) at f, and at the 6* that minimizes ||L,(-)|
globally. For 0 this follows directly from (ii) and (iii) together with the
Vn -consistency results already established:

IG.(8,) - .(8,) | <]|G.(4,) - (5) G,(6)
+|c(6,) - 1(6,- )|
A0

\)

Gu(6,)[[1+0,(1)] +11G.(6) |-

< op(n‘l/z) + op(|
+0,(116, — 6oll)

=0,(n"17?).

) +o,(l6(@)1)
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To correspond to a minimum of ||L,(-)]|, the vector I'( 0;* — 6,) must be equal
to the projection of —G,(6,) onto the column space I". Hence

Vn (8% —6,) = —Vn (I'T)'I"G,(6,).
From (iv), the right-hand side has the asymptotic normal distribution specified in
the statement of the theorem. Consequently 6% =6, + O,(n~'/?), and the {8, }
sequence can be assumed to satisfy

P{]16* —6,)|=9,} =0.

Because 8, is an interior point of § this implies that 8* lies in ® with probability
tending to one. To simplify the argument slightly we shall act as if ||6* — 6,|| <34,
and 6* belongs to ©® always. A more precise treatment would show that the
contributions from those values of 6* not satisfying these two requirements are
eventually absorbed into an o,(1) error term.

From the differentiability condition (ii) we get

1G(8X) I <IT (8% = 66) |+ o(116,* — boll) = O, (n="72).
From (iii) we get
<0,(n77?) +0,(11G,(6:2) 1) + o, (IG(6) 1),

which rearranges to give ||G,(6,*)|| = O,(n~'/?). Then we can argue as for d, to
deduce that

1G.(6) = L,(8,*) ]| = 0,(n~17%).

We now know that G, and L, are close at both 0 which almost minimizes
|G, |, and 6%, which minimizes ||Ln|| This forces 0 to come close to minimizing
1 LlI:

|2.(8) ] -0, (n72) <G,(4,) |
<[G.(6) |+ 0,(n~/?)
<|IL,(8%) [+ 0,(n7172).
That is,
|2, (6) =1 L.(82) 1+ 0, (n7272).
Squaring both sides we get
1L (B =1L,(82) P+ 0, (n7Y),

the cross product term being absorbed into the op(n*l) because || L, (6,*)|| is of
order O,(n~1/?). The quadratic form ||L,(8)||> has the simple expansion

12, (0) I =L, () | +I (8- ) I,

about its global minimum. (The cross-product term vanishes because the residual
vector, L,(6*), must be orthogonal to the columns of I'.) Put § equal to 0 , then
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equate the two expressions for ||L,,(0A,,)|]2 to deduce that
7(6,-62)] = o, (n"2).
As I has full rank, this is equivalent to
(6, 86) = Vi (82 = 8) + o,(1),
from which the asserted central limit theorem follows.
Notice that the equicontinuity condition (iii) is in a form to which Huber’s
(1967) Lemma 3 (or Lemma 4 of Pollard (1985)) can be applied if G,(-) happens

to be an average of the form P,h(-,8). For if ||G,(0)| +||G(8)]| is reduced to
C||@ — 6,]|, the quantity within the supremum in condition (iii) increases to

|Vn (B, = P)[A(-,0) —h(-, 0o)ll|
1+vVn C||6 -6

The limiting normal distribution involves the matrices I" and V, which depend
implicitly upon the unknown 6,. In practice one would need consistent estimators
of these matrices before the limit distribution could be used as an approximation.
For T, its interpretation as a derivative of G suggests an estimator

L= e[G,(0,+ eu)) - G,(6,)]

n

for the ith column of I', where u; is the unit vector with 1 in its ith place and
{e,} is a sequence that converges in probability to zero. The uniformity condi-
tion (iii) of Theorem 3.3 implies that this equals

E;I[G(én-i-enui) - G(én)] + s;l[op(n_l/z) +o, en)],

which converges in probability to I'u; provided n~'/%¢,* = 0,(1). For example,

e, =n"% would lead to a consistent estimator for I' prowded 8 1/2.

The statement of the theorem gives little explicit information about the
dependence of V on 6, For the moment example in the introduction there is,
however, a natural estimator for V. For notational 51mp1101ty consider the case
where s =1, so that

Gn(o) =PnH(" ',0),
where P, is the empirical measure for the vectors (x,, {; ;). Lemma 2.17, which we

use to establish the uniformity condition (iii) of the asymptotic normality
argument (Theorem 3.3), requires the class

#={H(-,-,0):0€0)

to be Euclidean with square integrable envelope and H(-,-,0) to be ZL*(P)
continuous at § = 6,. This makes

¥={H(-,-,0)H(-,-,0):0€0)
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Euclidean with an integrable envelope (Lemma 2.14), and
v(0)=PH(-,-,0)H(-,-,0)

continuous at § = §, with V' = V(6,). Consequently, if we define
V,(0)=PH(-,-,0)H(,-,0),

Lemma 2.8 insures that

1v.(6,)-v|< sup 1v,(8) = v(8) ||+ V(6,) - V(65) || = 0,(2).

That is, V,(6,) is a consistent estimator of V.

The asymptotic distribution in Theorem 3.3 is determined by both the behavior
of Vn G,(6,) and the solution of a minimization problem for the Euclidean norm
|- |- If a different norm is used the asymptotic variance matrix is changed. With
the proper choice of norm the asymptotic efficiency of é,, can be improved —the
discussion for the multinomial problem of Example 4.1 will elaborate. The next
two lemmas specify appropriate constraints on the choice of the norm.

For each nonsingular matrix 4 a new norm ||-||, is defined by setting
lx]] 4 =] 4x||. The choice of A for the limit theorems in this section could depend
on both § and the data from which the random G,(-) is constructed. That is, the
norms could be defined by matrices {A4,(8)} whose elements are random
variables that depend on #. A typical example is the method of minimum
chi-square for the classical multinomial model, where the difference between
observed and expected cell counts is weighted using a diagonal matrix with
elements inversely proportional to the square root of estimated cell counts.

The first lemma gives conditions on the random matrices that preserve the
consistency conditions of Theorem 3.1. If 4,(#) became too nearly singular for
values of 6 not near §,, the norms ||4,(0)G,(8)]| could be close to zero outside
neighborhoods of §,. Condition (b) of the lemma prevents this degeneracy by
placing a bound on the matrix norm of the inverse of 4,(f). Condition (a)
ensures that A4,(6,)G,(6,) converges in probability to zero.

(3.4) LEMMA: Let {A,(0):0€ O} be a family of sequences of nonsingular,
random matrices for which

(a) I4,(60) | = 0,(1),
(b) sup [ 4,(6) || = 0,(1).
[Z=]C]

If G,(-) satisfies conditions (ii) and (iil) of Theorem 3.1 then these conditions also
hold with G,(0) replaced by A,(0)G,(8).

PrOOF: From (a) and condition (ii) of the theorem:

14,,(60) G, (65) I| < | 4., (86) || |G, (66) || = 0, (1) 0, (1) = 0, (1).
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For the analogue of (iii), first notice that, from the definition of the matrix norm,
| 4,(8) x| <[ 4,(8) |l for all x.
Put x equal to 4,(6)G,(8), then rearrange to get

14,(6)6,(0) | " <||4.(8) | IG.(6) | .

Thus, for each § > 0,

-1 - -
sup  [|4,(8)G,(8) | < sup [ 4,(6)7" sup [G,(6,)] 7"
16— 651> & 0€6 10 —6,]|> &

On the right-hand side, both factors are of the order O,(1).

Notice that the lemma imposes no uniform upper bound on ||4,(8)|. If G,
were replaced by 4,G, in condition (iii) of Corollary 3.2 the ratio on the left-hand
side could get close to 1 if ||4,(8)|| were unbounded. Corollary 3.2 would suffice
if we were to restrict ourselves to bounded A4,, but in some cases that would be
an unnatural restriction. For example, with the method of minimum chi-square in
the multinomial problem, it would amount to an assumption that all cell
probabilities were bounded away from zero. We discuss this further in Ex-
ample 4.1.

Once consistency has been established, only the behavior of {A4,(6)} in
shrinking neighborhoods is relevant. The final lemma requires that 4,(8) be
close to a fixed nonsingular matrix 4 uniformly over these neighborhoods. It is
this matrix A4 that will be passed through to the limiting variance matrix.

(3.5) LemMA: Let {A,(0:0€ ©)} be a family of sequences of nonsingular,
random matrices for which there exists a nonsingular, nonrandom matrix A such
that

sup [4,(8) — 4[| = 0,(1)
116 —6o]1<8,
whenever {8,} is a sequence of positive numbers that converges to zero. If
conditions (ii), (iii), and (iv) of Theorem 3.3 are satisfied by G,(-) and G(+), then
they are also satisfied if the G,(0) is replaced by A,(0)G,(8), the G(0) by AG(8),
the V by AVA’, and the I by AT.

PRrOOF: The convergence in distribution of the pair (4,(6,),Vn G,(6,)) to the
pair (4, N(0,V)) implies that vn 4,(8,)G,(8,) ~N(, AVA). (A formal argu-
ment would use Theorem 4.4 of Billingsley (1968) and the Continuous Mapping
Theorem.) Existence of a derivative with full rank for AG(8) at §, is a trivial
consequence of the nonsingularity of 4.
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For the uniformity condition, subtract and add terms A,(0)G(8) and
A,(0)G,(8,), then invoke the triangle inequality to get the bound

[4,(8)G, () — AG(8) — 4,(6,)G,(6) ||
<[4,(0)[11G,(6) - G(8) - G,(8,) | +4,(8) — 4] G (6) |l
+(14,(8) = 4,(6) G, (6) |
<0,(1[G,(0) - G(8) - G,(6,) |
+0,(D)G(8) ]|+ 0,(1)0,(n™1/?)

= op(n"l/z) + op(IIGn(o) “) + op(||G(0) ”)

uniformly over the neighborhood {||6 — 6,|| < 8,}. We need this to be less than
0,(1) times n~'/?+|/4,G,(0)|| +||AG(8)||, which is greater than

w12 44G,(0) | ~114,(0) - 4 1G,(0) | + 1 4G(0) .

again uniformly over the neighborhood. Because A is nonsingular, there exists a
positive C for which this last expression is greater than

n2+ [C=0,(D]G,(8) ]+ CllG(6)].

The asserted analogue of the uniformity condition (iii) follows immediately.

4. ANALYSES OF THE EXAMPLES

This section provides a detailed examination of the asymptotic behavior of the
estimators introduced by Pakes (1986) and McFadden (1989). Both examples
illustrate the effect of replacing an intractable function by a random function
generated from a simulation sample s times as large as the original data sample.
The linearity in the estimating equations makes the randomness from the
simulation act like an extra additive source of randomness in the data, but scaled
down by a factor of s~1. This is seen clearly in the form of the limit distribution
for the simulation estimators.

The analysis of both examples proceeds as follows. We begin by outlining the
model and deriving the objective function to be minimized. Assuming the
estimator is obtained by minimizing the objective function up to a term of order
0,(1/ Vn), we check for all but the uniformity conditions of the consistency and
asymptotic normality theorems in Section 3. Finally we show that the required
uniformity conditions are also satisfied.

4.1. Example

Pakes (1986) fit an optimal stopping model for the renewal of patents. Each
year patentees had to decide whether to pay a renewal fee in order to keep their
patents in force. The renewal decision was based on the expected discounted
value of future returns from holding the patent. Since the stochastic process
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generating those returns was assumed to be Markovian, the renewal decision
depended only on current returns. The stopping rule specified a value that
current returns had to exceed in order for the patent to be renewed. For any
given value of the parameter vector determining the distribution of initial returns
and the Markov process generating subsequent returns, say 6, the model deter-
mined a vector, 7(#), of the expected proportion dropping out at each age. The
data contained the observed dropout proportions, p,. If #(-) had been an easily
calculable function of @, any of the usual estimation procedures for the multino-
mial distribution could have been used to estimate #. The elements of #(8) were,
however, determined by the proportion of current returns greater than the
stopping value, and the Markov and stopping processes combined to produce a
distribution of current returns which was not tractable. This led Pakes to
substitute a simulation estimator, 7 (@), for #(8) in the likelihood equations used
to estimate 6,. For a fixed 6, the simulation estimate was obtained by taking ns
random draws from the implied initial distribution, passing each through the
process determined by the model, and then simply counting up the proportions
that dropped out at each age. (Note that s need not be an integer in this
example.)

We discuss the asymptotic properties of simulated minimum distance estima-
tors for this problem. (Minor modifications, along the lines of Pollard (1979),
provide the properties of Pakes’s simulated maximum likelihood estimator.) Our
discussion begins by checking the consistency and asymptotic normality condi-
tions of Theorems 3.1 and 3.3 for the estimator which minimizes

1G.(6) 1| =1l P, — #,(8) .

This is the simulated analogue of the estimator which minimizes ||g,(8)|| = || p, —
7(0)||, an estimator which satisfies the conditions of Theorems 3.1 and 3.3 by
virtue of the standard limit properties of g,(f,) and the differentiability of =(8)
at 8 = 6, (see below). Later we invoke Lemmas 3.4 and 3.5 to insure consistency
and asymptotic normality when we minimize instead 4,(0)G,(8), with 4,(8) =
diag[#,(0)~'/?] and A4,(0) = diag] p,'/?] (thus producing the simulated ana-
logues of the traditional minimum chi-square and modified minimum chi-square
estimators). Since

G <llp,—7(8) || +]|=(8) - 4,(6) .

the law of large numbers ensures that ||G,(6,)|| = 0,(1), which is condition (ii) of
Theorem 3.1. To obtain (iii), and hence consistency, we assume, as did Pakes
(1986), the identification condition that

oi?f 8||G(0)||= 1nf ]|7r(0)—-77(00)||>0 for all § > 0.
16 —6oll>

Now note that

inf [/} inf [|G(8)]—s G(0)—G(8)].
Lt IG(O)]> st [6(0)]- swpl6,(6)-G(0)]
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The right-hand side of this expression will be bounded away from zero with
probability tending to one, and (iii) will be satisfied, provided sup,||G,(8) —
G(0)|| = 0,(1). This is the uniform law we verify below.

To ensure asymptotic normality we check the conditions of Theorem 3.3. Pakes
proved that #(8) was differentiable at 6§ =6, and assumed that its derivative
matrix I" was of full column rank. Also 8 was specified to be an open subset of
Euclidean space so that 6, was trivially in its interior. Left to check are the limit
properties of the objective function evaluated at 6 =6, and the stochastic
equicontinuity condition, or (iii) and (iv) of Theorem 3.3.

The multivariate central limit theorem (Theorem 11.10 of Breiman (1968))
guarantees that

‘/’7[1’.1 - ‘7’(00)] ~ N(0,V),

where V = diag[w(6,)] — 7(8,)7(6,). Now recall that at the true §, the simula-
tion mimics the data generation process for a sample of size sn. Consequently
Vn [7,(6,) — 7(6,)] has the same limit distribution as Vil Psn — 7(0,)]: normal
with mean zero and variance s~ !V. Moreover, since the data generation and
simulation processes are independent,

‘/,7611(00) = ‘/l;[pn - 77(00)] - /’7 [7”}(00) - 7r(o())]
~N(0,(1+s71)V).
So the limit distribution of Vn G,(6,) differs from that of Vn g,(6,) = Vnlp,—
7(6,)] only through the presence of the scalar (1 + s~ 1), which reflects the extra
independent source of randomness generated by the simulation process. Theorem
3.3 then insures that the limit distribution of the simulated minimum distance
estimator of # differs from that of the estimator which minimizes || p, — 7(8)||
(the estimator that would be obtained were we able to calculate #(-)) only by the

fact that the covariance matrix of the former is (1 + s~ ') times that of the latter.
Since

n~2+(G,(0) | +lG(8) |
condition (iii) of Theorem 3.3 will be satisfied provided

sup |V [#,(0) = m(8)] = Vi [#,(6,) — 7(8)] || = 0,(1)

16— 6l1<8,

<|n2[G,(8) - G(8) - G,(8,)]

|,

for every sequence {§,} converging to zero. If independent simulation draws are
used to evaluate #,(0) for each different 6 then this condition will never be
satisfied, since the left-hand side will always be more variable than Vn [7,(6,) —
7(6,))- We show below, however, that the condition will be satisfied if the same
simulation draws are used to evaluate #,(8) for different values of 8.

The conditions discussed thus far also ensure the consistency and asymptotic
normality of the estimator formed by minimizing |4,(6)G,(0)|, where
{A4,(0):0<€ 0} is a family of nonsingular random matrices satisfying the
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conditions of Lemmas 3.4 and 3.5. That is, if 0':, is such an estimator and A4 is the
nonsingular probability limit of 4,(6,), then

Vn (6,—6,) ~N(0,(1+5s"')M(A)), where
M(A) = (I"A'AT) I A’ AVA'AT(I" A'AT) .

We check the conditions of Lemmas 3.4 and 3.5 for 4,(8) = diag[#,(8)~/?] and
for A,(0)=diag(p,'/?). These are the weighting matrices that provide the
simulated analogues of the method of minimum chi-square and modified mini-
mum chi-square, respectively, and in both cases 4 = diag[7(8,)'/?]. A modifi-
cation of Aitken’s theorem (Theil (1984)) shows that M(A4) — M(diag[(8,)'/*])
is positive semi-definite for every nonsingular 4, so the use of an A=
diag[7(8,) ~!/?] leads to an asymptotically efficient estimator for any fixed value
of s.

Pakes (1986) assumed that «(6,) > 0. Thus the law of large numbers ensures
that || 4,,(6y)]| = O,(1). Moreover, since all the elements A,(0)7! are bounded by
one, supy||4,(8)" || = 0,(1), and we have verified the conditions of Lemma 3.4.
Note that we have not required supy||4,(8)] to be stochastically bounded. Thus,
the minimum chi-square estimator can contend with elements in the parameter
space that generate cell probabilities that get arbitrarily small. This is a possibil-
ity we would have difficulty excluding a priori, and it generates a need for the
generality of Theorem 3.1 that is not available in Corollary 3.2 (see the discussion
following Lemma 3.4). Finally, since 7(8,) > 0, the continuity of the map from 6
to 7(0) at § =0, together with the condition that supy||7(8) — 7,(0)|| = 0,(1),
both of which are verified below, suffice for Lemma 3.5.

We now come back to the problem of verifying the uniformity conditions (iii)
of Theorems 3.1 and 3.3. More detail on the underlying model for patent
renewals is required for this. That model assumes that the sequence of returns
earned from holding a patent, should that patent be kept in force, is determined
by a random draw of the vector of independent random variables

£=(Z,X,,....X,,Y,,...,Y,)

which has distribution P on =2® (0, 0)?~. Here Z has a standard normal
distribution and the X; and Y, have exponential distributions with unit means
(i=1,..., L). For a given value of 8, where § = (u,0,A,6,8,¢,y)isin ®@ =Z®
(0, )®, the returns in year j, say R j» are generated from § by putting

R =exp(p+0Z), and R;= {AR; ;> Y,}max[SRj_l,Bij—y],

for 2<j< L, where ,Bj=¢{3, and {-} is notation for the indicator function
which takes the value of one if the logical condition inside it is satisfied, and zero
elsewhere. A patent is renewed in year j if it was renewed in all previous years,
and R; is greater than the stopping value, 7,(8). Pakes proved that the 7;(-) are
differentiable functions of (1 <j < L).

The original data are generated by this mechanism with 8 = §, from indepen-
dent vectors &;,..., &,. The simulation is constructed from a further sample of
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size sn from the ¢ distribution. Note that each § in & partitions the set 2 into
L + 1 subsets, the first L corresponding to those realizations of ¢ for which R ;18
less than 7; for the first time [1 <j < L], and the last set corresponding to those
values for which R ;> 7, for all L years. As we vary 8 over © these partitions
generate a class of subsets of Z. Our proof of the uniformity conditions consists
of verifying that this class is a VC class of subsets of € and then applying the
results on VC classes listed in Section 2.
This procedure is described best in empirical process terms. Let
X=(2,%0,0cs Xpy YVisernsr V1)
be the generic point in £, and put
ri(x,0)=exp(p+oz)

and

ri(x,8)={Ar,_i(x,0) > y; } max [Srj_l(x, 0),B8x;— y]
for 2<j<L.
For each 6§ define L + 1 subsets of & by

Dy(6) = N {r(x,0)>7(0)} N {r,(x,0) <7,(8))

i<j

and

D(9)=| U D,<o>] .

J<L

Finally set

2,={D;(0):0€6}, for 1<j<L+1.
Then the class of all subsets of % generated by varying 8 is

9= U@,.

J

Let P, be the empirical measure of the original sample, and Q, be the
empirical measure of the simulation sample. Then p, has jth component
P, D;(6,), and #,(8) has jth component Q, D;(9). Note that

sup [|7(8) = #,(6) || < (L + 1) max sup |7,(8) — 4, ,(8)].
[ J 0e€O

Thus, to prove the uniform law required for consistency it will suffice to show
that supy|7;(0) — #, /(0)] =0,(1) for each ;. But, from the definition of 2,
sup |7,(8) — 4, ,(8)| < sup |PD - Q,D|.
[4 De2

Lemma 2.3 guarantees this last term goes to zero almost surely if 9 is a VC class,
a condition we establish below.
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The argument for the equicontinuity condition required to complete the
asymptotic normality proof is similar. Provided the parameterization for the class
2 is £2(P) continuous at ,, and 2 is indeed a VC class, Lemma 2.17 implies
that for each j

sup Vs |[m(0) - 4, ()] = [7,(8) — %, (6)] | = 2,(1),
16 —6oli <8,
for every sequence {§,} that converges to zero. We sketch a proof of the £2(P)
continuity of the @-parameterization of & below. Pakes (1986) provides an
alternative proof of continuity.
Verifying that 2 is indeed a VC class is an exercise in applying the criteria of
Section 2. Let

,.j*(x, 0)= max{zlilgij[b‘j—q(xqﬁq— y)] , 81’—1;-1}.

r*(x,0) is the maximum current return a patent with a draw of x could earn
and, as can be verified by repeated substitution into the formulae given above, if
this patent is still in force in year j, its returns will be r*(x, 8). A patent in force
in j—1 will be in force in year j if r* >, and Ar*;<y;, so, omitting the
dependence of the return function on § and x we have

D,(0) = [{r* <7} v {Arxi <y}
N .fjl [{A’}tl——i>yj~—i} N {rjti>yj——i}]

where

{r*>m}= {8j—q(ﬁqxq“}’)>7‘j}U{8j“1r1>'rl},
2<gsy

and an analogous expression can be written for {Ar*; >y}, for j=1,..., L.
Since Lemma 2.5 ensures that classes of sets formed from the intersection (or
union) of the elements of one VC class with those from another are VC classes, it
will suffice to show that each generating set of the form {a,(0)x; + a,(8)y, +
a(0)= 0}, or {by(0)r(z,80)+ b,(0) =0}, or {by(0)ri(z,8) >y}, traces out a
VC class of subsets of 2" as § ranges over ©. Note that the a,(-) and b,(-) are
continuous functions of 6 (j=1,2,3). Also because the class of functions
generated from r(z,0) = exp(oz + p) by varying 6 is not a finite dimensional
vector space, use of Lemma 2.4 by itself does not complete the proof.

Write T for the map from % into #3L*! that takes x onto the vector
(x,log y;,...,10g y;). Let & be the vector space of all real-valued functions on
R3L*1) and recall that Lemma 2.4 ensures that the class € of all subsets of
A3+ of the form {g>1t}, with g€ ¢ and t €%, is a VC class. Then each of
the generating sets can be written as

{di(0)x,+d,(0)y,+ds(0)z+d,(8)log y,+ds(8) >0},
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with the d;(-) continuous functions of 6. As 6 ranges over O these sets trace out
a subset of ¢, and since subclasses of a VC class are a VC class, each forms a VC
class. But then Lemma 2.6 ensures that the inverse images of these sets trace out
a VC class of subsets of £, which completes the proof that & is a VC class.

The proof of continuity of § — D;(8), as a map from 6 into & 2(P), can be
built up in a similar fashion. Since continuity is preserved by the formation of
intersections and unions, it suffices to prove the continuity of the map for the
generating sets. Since each of the generating sets is a closed halfspace whose
boundary has zero P measure, the argument after Lemma 2.16 establishes their
£2(P) continuity with respect to 6 at 6 =6,

4.2. Example

McFadden (1989) proposed a simulation method for estimating the parameters
of a multinomial probit model. We will show that his estimator fits into the
framework outlined in this paper. To simplify the analysis needed to verify
the uniformity conditions, we will substitute combinatorial assumptions for the
various smoothness assumptions of McFadden. Our methods will depend on the
empirical process theory described in Section 2, whereas McFadden’s methods
allowed him to deduce the asymptotic distribution of his estimator by means of
an elegant limit theorem due to Huber (1967).

An individual has m alternatives to choose between. His choice is determined
by a set of m vector covariates z;,..., z,, and a random vector a of weights.
Alternative / is chosen if z/a is bigger than all the other z/a. The vector a is
generated as a k X 1 vector function k(n, 6,) of an r-dimensional random vector
n with known distribution; the unknown value 6, is an interior point in a
k-dimensional parameter space ©. If the covariates are stacked as the rows of an
m X k matrix Z, the choice is specified by the response vector

d=D[Zh(n,6))],
where D(-) maps #£™ into {0,1}", putting a one in the position of the largest
component and zeros elsewhere. The choice corresponds to the position in the
vector d that contains the one. Ties would be indicated by a one in multiple
positions of d. Following McFadden we assume a zero probability for ties.

The choices of n individuals are determined in this fashion from random pairs
(Z,n;) for i=1,...,n. These are assumed independent and identically dis-
tributed. From the observed response vectors d; and matrices of covariates Z,,
we must estimate the unknown 6.

Write w(Z, 8) for the conditional expectation of D[Zh(n, )] given Z. For a
k X m matrix W(Z, ) of instruments, define

G(0)=/W(Z,0)[d~7r(Z,0)] dP

=fW(Z,0)[7r(Z,00)—7r(Z,0)] dp.
Clearly, G(6,) = 0.
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If w(Z, 8) were easily calculable, a reasonable estimator of 6, would be the
value that minimized ||g,(8)||, where

g,(8)=n"" z W(Z,,0)[d, - 7(Z,,0)].

If the #(Z, ) were intractable it could be replaced by a simulation estimator.

For each individual generate s new random variables 7,,...,7,,, then replace
7(Z;, 0) by
#(Z,0)=s"' Y D[Zh(n,,,0)].
j=1

When 7, is independent of Z; the simulation is carried out by generating s new
independent observations from the same distribution. However, such indepen-
dence is not required for the application of the limit theorems. Writing

£i= (Zi’ Ni> Mits--+» ni:)

for the (mk + r + rs)-dimensional vector of data on the ith individual, we assume
only that: the {£;} are independent and identically distributed; and the condi-
tional expectation of D[Zh(n,;,0)] given Z, is m(Z, ). By permitting depen-
dence between the components of £, we leave open the possibility of using
variance reduction techniques in the generation of the simulation sample. With
these assumptions it becomes plausible to use

Gn(o) = n-l Z W(Zi’ 0)[d1 - ﬁs(zi’ 0)]
i=1
to replace g,(8) as the estimator for G(8). We define 0; to be any estimator for
which ||G,(6,)|| comes within 0,(n~/?) of minimizing ||G,(-)|l
We assume the identification condition:
inf ||G(8)||>0 foreach &>0.

16 —6ol1>8

Following McFadden, we could deduce this from lower level assumptions such

as: © is compact, G(-) is continuous, and 6, is the unique point at which
G(6,) =0. We will also require, as did McFadden, that:

G(-) has a nonsingular derivative matrix, say R, at 0.

These assumptions take care of all but condition (iii) of Corollary 3.2 (for
consistency), and conditions (iii) and (iv) of Theorem 3.3 (for asymptotic normal-
ity). To ensure that these conditions are satisfied we will impose additional
regularity conditions on the instruments. We assume first that

[ sup [W(2,0) | dP < oo.
6O

As [|W(Z,0)| is bounded by (km)'/?max |W,;(Z,8)|, this is equivalent to an
assumption that the components of W(Z, ) are dominated by a function that
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does not depend on # and has a finite first moment. This assumption is used in
the proof of consistency. (It also guarantees that G(8) is well-defined for every
0.) For the central limit theorem we will need an analogous second moment
condition near ,. Assume that for some positive §:

[ sup |W(Z,0)]dP <.
10—l <8

Certainly McFadden’s uniformly bounded instruments satisfy these moment
conditions.

To check the remaining requirements of Corollary 3.2 and Theorem 3.3 we
recast G,(-) as an empirical process indexed by a class of functions, upon which
we impose further regularity conditions. Write x = (X, y, y;,..., y,) for the
generic point in (mk + r + rs)-dimensional Fuclidean space, the first coordinates
being rearranged into the m X k matrix X, and the other coordinates being
partitioned into the r X 1 vectors y and y;. Define

f(x,0)=w(X,0)

D[Xh(y,8,)] —s" EMM%JW

If P, denotes the empirical measure of the {£,} and P denotes their common
distribution, we have

qw=ﬁmwm”mdaw=ﬁmm@.

Notice how the assumption about the conditional expectations for the simulation
sample is used to get the representation for G(8).
The asymptotic normality of

VG () = i | [1(x,00) P, = [1(x,6,) aP

follows from the multivariate central limit theorem for standardized sums of
independent random vectors with finite second order moments (Theorem 11.10 of
Breiman (1968)). The asymptotic variance matrix, V, equals

var [ (£, 8)] = [/(x,66)/(x. 6o dP.

In the spec1a1 case where 7, and the ;; are conditionally independent given Z,,
the expression for V simplifies to (1 + s~!) times

fW(X, 8,)[diag [7( X, 6,)] — 7( X, 8,) 7 (X, 6,)|W(X, 8,) dP.

It remains only to check the two uniformity conditions. We will give two
combinatorial conditions that will make the class of vector-valued functions
F={f(-,0): 0 € ©} Euclidean, in the sense that the class of all the component
real-valued functions satisfies Definition 2.7. Application of Lemma 2.8 to each
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component then implies that

sup||G,(8) — G(8)|| >0 almost surely,
0

from which condition (iii) of Corollary 3.2, and hence consistency, follows.
Lemma 2.17, applied to the components of f(-,8) for § in a small enough
neighborhood of §,, will imply a stronger result than the equicontinuity condition
(iii) of Theorem 3.3 if f(-,0) is Z*(P) continuous at 6, For the .£2(P)
continuity, assume that for P almost all X, each component of W(JX,#8) is
continuous in § at §;, and assume that there is zero probability of a tie at § = 6,
for each of the simulations. Because D[ Xh(y;, 0)] is continuous in 6 except at
those (X, ;) pairs for which there is a tie, it follows that f(x, 8) is almost surely
continuous in @ at §,. The second moment condition on the instruments converts
almost-sure continuity to #2(P) continuity, as explained at the end of Section 2.

The Euclidean property for % is a consequence of more basic assumptions
about A(-,8) and the instruments W(-, #). For each 6 in ® define a subset of
R R" by

B(0)={(z,y)eR*®R":z’h(y,0)>0}.

Assume that {B(0): € ©} is a VC class in the sense of Definition 2.2. In
special cases this assumption is readily checkable. For example, McFadden
checked his regularity conditions for the function

h(y,0)=B(0)+4(8)y,

when each component of 8(8) and A(#) depended smoothly on 4. With our
assumption the smoothness is irrelevant. As 8 ranges over © the functions

8o(z,y)=2'B(0) +2'4(8)y

range over a subset of a finite dimensional vector space ¥ of real-valued
functions on 2% ® #". Lemma 2.4 establishes the VC property for the class of all
sets of the form { g > 0}, with g in &; hence the subclass { B(f): 6 € @} is also a
VC class. We assume also that {W(-,0): 0 € ©} is Euclidean in the sense that
the class of all component functions satisfies Definition 2.7. This assumption can
be further reduced by means of the methods of Section 2. For example, if @ is
bounded and if each W( X, @) satisfies a Lipschitz condition of the type described
in Lemma 2.13, then the Euclidean assumption holds.

Now the criteria from Section 2 lead us directly to the Euclidean property for
& . Each component of f(x,8) is a bounded linear combination of products
involving the components of W(X,#) and the components of the two choice
functions. By Lemma 2.14, it suffices to establish the Euclidean property for each
individual component. For W( X, ) the property holds by assumption. The
components of the choice functions are indicator functions for sets, so it will
suffice to show that these sets generate a VC class as 6 ranges over ©. Consider,
for example, the first component of D[ Xh(y, 8)]. Write x{,..., x, for the rows
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of X. Then the set that corresponds to an individual choosing alternative 1 is the
intersection of the sets

A,(0)={(X,y):(x{—x))h(y,0) >0}, for 1<j<m.

By Lemma 2.5, it suffices to show that the class of all A, ;(6) sets is a VC class.

Define a map T}, from Z7*® 2" into Z*® 2" by putting T} (X, y) =
(%1 —x;, ). Then A, ;(0) = T{J.IB(ﬂ). Lemma 2.6 shows that the class of all such
inverse images, as B(#) ranges over its VC class of sets, is also a VC class. A
similar argument could be invoked for the sets corresponding to the choice of any
of the other alternatives. The proof that % is Euclidean is complete.
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