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T h e  M i n i m u m  Di s t ance  M e t h o d  o f  T e s t i n g  1 ) 

By D. Pollard, New Haven 2) 

Abstract: In this paper a method is developed for generalising tests of Kolmogorov-Smirnov and 
Cram~r-von Mises type to cases where parameters have to be estimated. The procedures are based 
on comparing the empirical distribution function Fn, as a random point in a normed linear space, 
with a parametric surface (F(O): 0 E | which represents the family of possible underlying distri- 
butions. Asymptotic results are proved for the distribution of the minimum distance ~ inf It F n -  

0 
--F(_0) II and for the corresponding minimizing value of _0. The results are extended to cases where 
It ~ II is replaced by a parameter dependent norm tl ~ fl 0, and where the underlying distribution is 
replaced by a sequence of alternatives. The basic assumptions require convergence in distribution of 
x/-ff IF n -- F(_00 )1 and differentiability in norm of the map _0 ~ F (_0). 

1. Introduction 

The subject of this paper is the problem of goodness-of-fit testing based on the empi- 
rical distribution function, in the case where unknown parameters have to be estimated. 
The results provide a means for extending the scope of the test procedures associated 
with the names of Kolmogorov, Smirnov, Cram6r and von Mises, i.e. tests based on the 
asymptotic behaviour of some type of distance between the empirical distribution func- 
tion F n and its specified underlying distribution F. 

For situations where F depends on an unknown parameter 0, a natural procedure 

would be to form an estimate _O n then compare the distance between F n and F ( . ,  _On)' 
Some of the most far-reaching results of this type have been obtained by Durbin [ 1973, 
1976], using methods involving convergence in distribution of random elements of 
D[0,1 ]. Estimating the inverse of the underlying distribution function by F - 1  (. ,  -0n), 
Durbin proved that the random functions x/-ff(F n [F-1 ( . ,  _On)] - - ' )  converge in distri- 
bution to a Gaussian process with specified covariance structure (which in general de- 
pends on the unknown parameter). Goodness-of-fit statistics such as the supremum 

^ 

norm distance between F n and F ( . ,  On) can be recovered by applying various contin- 
uous functionals to these random functions. 

Alternative measures of fit can be constructed by choosing the estimate of_0 to 
minimize the distance between F n and F ( . ,  _0); this corresponds to using the so-called 
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minimum distance estimator _O n. Asymptotic results for the distribution of_On itself 
have been proved by Bolthausen [ 1977], who chose _On to minimize 
II Fn [F-  1 ( . ,  -O)]_.  L[ for some suitable norm on D[0,1 ]. For example, use of an L :  

1 
norm leads to statistics of  the Cram6r-von Mises type, since f0 (Fn [F-1 (t, _O)] -- t )2dt  = 

= f (F n (x) - - F ( x ,  _O))2F(dx, 0_). The reader will recognise a number of extensions of  
Bolthausen's ideas in the present paper. 

The essence of  my method consists of reducing the problem to a geometric one of  
minimizing the distance of  a random point in a normed linear space (X, II " II) to a 
prescribed parametrised surface. Instead of  a sequence of  empirical distribution func- 
tion in a space such as D [-- ~,  oo], I consider the more general situation of  a sequence 
of random elements {F n ) in (X, II " II). The role of a parametric family of  possible un- 
derlying distributions is taken over by a map _0 ~ F(O) from a subset 19 of  R s into X. 
This formulation has the advantage that the same norm II " II can serve three different 
purposes. Firstly, it is involved in the measure of  fit inf L[ F --F(-O)II. Secondly, it 

0 
enters into the definition of  convergence in distribution of the random elements 
G n := x / n  (F n -- F (0  0))- Since X need not be separable (e.g. D [-- oo, oo] under its sup 
norm), a slightly modified concept of convergence in distribution must be employed; 
further details are given in Section 3. Finally, the norm is needed to specify a natural 
differentiability requirement, viz. that F ~ )  should be approximable by a linear func- 
tion F(_0_ o) + (_O -- _0o, _D) with an error whose norm is of  order o(I _0 ---O o 1) near 
-O o- This concept is discussed in Section 2. 

Roughly speaking the method consists of  justifying the approximation of  
x/fil[ F n --F(fl_) [i for -O near the "true value" _0o by x/~-/[ [ E G o )  + 
+ n -1/2G n ] -- [F(-O0) + (-O -- _0o, _D)] 11 = [[ G n -- (x/rff (fl_ -- _0o), _D) II. If G n 
converges in distribution to some random element G of  X, and if the minimum is 
achieved at a distance of  order Op (n "1/2) from _0o, then the distribution of  

x/-ff inf 1[ F n --F(O)II should be close to that of  infl[ G--(t_, _D)[[. This heuristic argu- 
0 t 

ment is given a rigorous justification in Section 4. Section 5 concerns some slight ex- 
tensions needed to cover the Cram6r-von Mises type of  statistics where the distance 
depends on the parameter _O. A method for deriving the asymptotic power under se- 
quences of  alternative hypotheses is described in the next section, followed by some of  
the asymptotic theory for minimum distance estimators. The paper concludes with 
some comparison with the other method of  testing goodness-of-fit mentioned at the 
start of  this introduction. 

2. Norm Differentiability 

It is my contention that differentiability in norm is the most natural form for the 
linear approximation property required in the study of  minimum distance estimation 
and testing. Indeed, the regularity conditions to be found in the literature are often 
only necessary insofar as they imply this property; when X happens to be a space of  
real functions, norm differentiability can frequently be deduced from various condi- 
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tions on the existence and regularity of partial derivatives ~ F / ~ O  i in the usual sense. 
The following examples illustrate this point. I find it preferrable, however, to frame the 
main results in terms of  the more general concept, rather than fragment the conditions 
into a number of  assumptions about such partial derivatives. 

Recall that _0 ~ F(_0_) is a map from O C_ R s into X. This map is said to be norm dif- 
ferentiable at _0o if there exists a column vector _D E X s such that 
II FC0_) - F(_Qo) - <__0 - _0o, _D) II = o([ _0 --_0o I) near _0o. Here (_,t _D) denotes the sum 

tiD i where _t E R s has components t l , . .  �9 t s and D has components D I , . . . ,  D s. 
l 

Differentiability ensures that F ~ )  may be approximated by the linear function 
F ~ o )  + (_0 -- _0o, _D) near _0o. In order that the corresponding affine plane in X not be 
over parametrised, the derivative vector _D must be non-singular, i.e. the components 
D 1 ,  . �9 . , D s should be linearly independent elements of  X. Put another way, if t r 0 
then (gt _D) 4: 0. Since the function _t ~ (_gt _D) is continuous and non-zero on the com- 
pact set (_rE RS: I t  I = 1}, it follows that nonsingularity of_D is equivalent to the 
existence of a constant C > 0 for which II (_Lt _D) II ~> C I t I for all _t E R s. Nonsingular- 
ity will be used in this form. 

2.1 Example 

Consider the location parameter problem as treated by Blackman [ 1955] and Pyke 
[ 1970]. Here F(O) denotes the translation H(" -- 0) of  a known distribution function 
H on R through a distance specified by the real location parameter 0. A convenient 
choice for X is the space D[ -- ~o, oo] of all real functions on R which are right contin- 
uous with left limits everywhere, and have finite limits at -+ oo. Equip this space with 
its supremum norm. 

For norm differentiability it suffices that H should possess a uniformly continuous 
density cf. Pyke [ 1970]. Indeed, since -- h (x -- 00) must converge to zero as [ x I -+ o o  

this function belongs to D [-- 0% oo] and satisfies 

sup [H(x--Oo - - t ) - - H ( x - - O o ) +  th ( x -  0o) l  
X 

X-~0 -t 
= sup l [h ( y ) - - h ( x - - O o ) ] d y l  

X x - O  o 

~ < l t i s u p  (I h ( y ) - - h ( y ' ) I :  l Y - - y ' l ~ l t  I) 

= o ( I  t I). 

A similar differentiability property holds for the two parameter scale/location family 
H[7  (. --/a)]; in this case it would suffice to have a uniformly continuous density h for 
which h (x) = o (x- l ) as I x I -+ oo. [] 



46 D. Pollard 

2.2 Example 

In treating the multidimensional case of  Cram6r-von Mises statistics under parameter 
estimation, Neuhaus [ 1973] adopted the approach of regarding distribution functions 
as elements of  the Hilbert space L2(R k, F(dx_, _00)). The family {F(. ,  _0)) of  possible 
underlying distributions was specified by density functions f ( - ,  0_) with respect to some 
a-finite measure ~t. The assumptions made by Neuhaus included the requirement that 
there should exist a neighbourhood U0 of_0o in w h i c h f h a d  continuous partial deriva- 
tives af/oO i satisfying the domination condition: there exists a function go with 
fgodp < oo and I ~f/ao i [ ~go on U0. Such a condition guarantees not only differen- 
tiability o f F ( . ,  _0) at 0_0 in L 2 norm, but also in the stronger supremum norm sense. 
Consider for example the case where _0 is a two-dimensional parameter. 

The vector function _D(x_) from R k into R 2 having components 
f (alia oi) (~_., 0o) Id (dy), for i = 1, 2, is an element of  the space [D [-0% oo] k ]2 

(--__oo,X__ 1 
and hence square integrable, and 

sup I F ~ ,  0_o + t_) -- F (z  , _O o ) -- ( _,t D ~ ) )  [ 
X 

af af 
~<f If(_._Y, _00 + t__) --f(),_, /9o) -- tl ~ l (_y ,  _0o) --  t: ~ (_y, 00) I kt (_~v). 

Two applications of  the Mean Value Theorem show that the integrand has the form 

where I L* .I and t L** I are both less than I L I. Since the two terms in square brackets 
are both dominated by 2g0, and they converge to zero as I _t I ~ 0, it follows that the 
integral is of  order o(I t t), as required. 

Notice that the above argument actually shows that _0 ~ F ( - ,  _0) is norm differen- 
tiable as a map into D[- -  0% ,,o]/~ when that space is equipped with its supremum 
norm. [] 

2.3 Example 

In order to prove very general forms of  the functional central limit theorem for 
empirical measures, Dudley [ 1978] has introduced a class of spaces which incorporates 
the essential features of  spaces such as D[0,1 ] and D[ - -  oo, 00]% His space Do (C, X) 
can be defined for any class C of measurable subsets of any probability space (M, M, X). 

First define C b (C, ;~) as the set of  all bounded real functions on C which are contin- 
uous with respect to the Lz(~,) norm on C. Continuity of  a function f a n  C in this sense 
is equivalent to the requirement thatf(Cn) ~f(C) whenever X(C n AC) ~ 0. For a prob- 
ability measure P absolutely continuous with respect to X, Dudley [ 1973; Theorem 2.1 ] 
has given conditions ensuring the existence of a version of the so-called "tied down P 
noise process" Gp having sample paths in C b (C, X). This process, which generalises the 
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notion of a tied down Brownian motion (= Brownian bridge) in C[0, 1 ], is a Gaussian 
stochastic process with index set C, with zero mean and having covariance kernel 
P (C n D) -- P(C) P(D). It often occurs as the limit in distribution of a sequence of 
normalised empirical measures formed by sampling from the distribution P. 

Now define Do (C, X) as the linear space of real functions on C generated by C b (C, X) 
together with the functions C -+ e m (C), where e m ranges over all the point masses on 
M. Equip this space with its supremum norm. Notice that Do (C, X) contains enough 
functions to accommodate the sample paths of empirical measures together with the 
continuous paths of the Gaussian limit processes. The closure of this space under uni- 
form limits corresponds to the usual D[0,1 ] type of space. As an example, consider the 
class C of all semi-infinite intervals of the form ( - -~ ,  x_], including those where some 
of the coordinate~ of x__ are + o% in R k. The classical result on convergence in distribu- 
tion of the multidimensional empirical distribution function could be formulated in 
terms of this Do (C, P). Observe that, i fP  does not have nonatomic marginal distribu- 
tions, the space C b (C, P) in this case includes members corresponding to functions with 
discontinuities (in the usual sense) at certain fixed points and along certain hyperplanes. 

Suppose now that (Po } is a family of probability measures on M dominated by X. 

The evaluation C ~ P o  (C) defines an element of C b (C, X) for each _0, and hence a 

map _0 ~ F ~ )  from O into C b (C, X). Write ~(_0) for the square root of the density func- 

tion f ~ )  := dPo/dX. I shall show that norm differentiability of F ~ )  follows from the 

condition of quadratic differentiability of ~ which was exploited by Le Cam [ 1970] in 
one of his studies of the asymptotic theory of.maximum likelihood estimation. Assume 
then that there exists an s • 1 column vector ~ o f  functions in L2(X) for which 

~;~) = ~@o) + ( o - O o ,  ~_) +Rfi~  -_0o)  (*) 

where [ fR  2 (0 -- Oo)d?~] 1/2 = o(1 0 --_0 o 1) near 0o. 

The function _D(C) := f 2 ~ (_0_o) ~_dX certainly defines a column vector of elements 
c 

of C b (C, X) since ~(0o) and all the components of ~ are square integrable with respect 

to X, and 

sup^ [F(Oo + t )  - -F(Oo)  - ( L  D(C)) [ 
C~C 

= sup^ i f~2 (0o  +L)-~2(ff_o)-2~(ff_o)(t,'~)dXl 
C~C' - - 

~<f [(L ~)[ 2 +R2 ( / )  + 2 1~ (_0_o)R(t) I + 2 I(L ~)R(_t) Ida, 

= o(I t I) 

as may be seen by applying the Schwarz inequality to each of the last two terms in 
the last integrand. 

The above result may be formally interpreted as one of "taking a derivative under 



48 D. Pollard 

the integral sign". For if we write ~ in the more suggestive form (O/OO__)fl/2(fl_o) and 

carry out the formal differentiation to give (1 /2) f  "1/2 (if_o) �9 (0/0_0)f(ff_o), then we 

obtain (~/~0_) f fdX = f (a/OO_) fd'A uniformly with respect to C. 
c c 

Notice also that to check (*) it suffices to verify quadratic differentiability of  

~-(O) := (alp0/dl.t)l/2 for any dominating measure/a absolutely continuous with re- 

spect to 2~. l~or then (*) is satisfied with ~ = (dla/d?O 1/2 �9 ~. [] 

3. Convergence in Distribution in Non-Separable Metric Spaces 

The space D [0,1 ] under its supremum norm topology is not separable. Partly be- 
cause of this fact, we encounter difficulties when trying to analyse the asymptotic be- 
haviour of  empirical distributions as random elements in that space: these functions 
are in general not Borel measurable, cf. Billingsley [1968, Section 18]. This problem 
provided the motivation behind Dudley's [ 1966, 1967] introduction of  a slightly mo- 
dified concept of  convergence in distribution for random elements in a non-separable 
metric space. 

Dudley defined weak convergence for measures defined only on the smaller o-algebra 
Bo generated by the class of all closed balls in any metric space X. For the case of 
D [0,1] under its supremum norm, this o-algebra coincides with the cylinder o-algebra. 
Empirical distribution functions are therefore B0 measurable. 

The corresponding definition for convergence in distribution of a sequence (X n } of  
D 

Bo measurable random elements to a variable X (written X n -+ X) consists of  two re- 
quirements: 

(i) the distribution of X concentrates on a separable subset of  X; 
(ii) E f (X  n) ~ El(X) for each bounded, continuous, Bo measurable, real valued func- 

tion f on X. 

When the topology is separable this definition reduces to the usual one, since Bo then 
coincides with the Borel o-algebra. 

Apart from eliminating the measurability problem, this modified concept does not 
differ all that much from its more well-known counterpart; the two theories run clo- 
sely parallel cf. Pollard [ 1979a]. The usual results on convergence of the partial sum 
process to Brownian motion,  and of convergence of empirical processes to the Brow- 
nian bridge, carry over readily to this setting. The multivariate form of the second of 
these results even seems more naturally suited to the space D[--0% oo] k under its sup- 
remum norm topology. What is more, we still have at our disposal a form of the 
Skorokhod representation, a result whose usefulness has been amply demonstrated by 
Pyke [1969, 1970]. 

3.1 Theorem 

D 
Suppose X n --, X in Dudley's sense. Then there exist versionsX n and X, defined on 
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some new probability space, for which J7 n �90 )7. [] 
As usual, "version" means that the new variables induce the same distributions on 

B0 as do the original X's. The theorem is a simplified form of  a result of  Wichura 
[19701. 

This theorem is especially well adapted to proving results related to the continuous 
mapping theorem. The typical sort of  argument goes something like this. 

- 

Suppose X n X and that {h n } is a sequence of  functions converging in some sense 

to a function h. When does h n (Xn) h(X). Switch to a.s. convergent versions X n and 

,Y. Find conditions on {h n } ensuring that h n (Xn) %s. h(X~. This implies the weaker 

form of convergence h n (Xn) ~h(R) .  But h n (Xn) and h n (Xn) have the same distribu- 

tion, and so h(Xn) ~ h ( X )  follows, l shall be using arguments of  this type several times, 
without spelling out all the details each time. Once an a.s. convergence statement for 
one version of  the process has been reached, the remainder of  the argument will be 
left to the reader. 

In this paper the starting point for such a procedure will generally be a convergence 
assertion involving an empirical distribution function. This could either be obtained by 
adapting known results [e.g. Theorem 16.4 of Billingsley] to our setting, or by appeal- 
ing to one of  the powerful theorems recently proved by Dudley [ 1978]. For future re- 
ference, I shall describe here one of Dudley's results. 

Let F n be the empirical measure obtained by i.i.d, sampling on a probability distri- 
bution P. Regard x /n (F  n --P) as a random element of  the space Do (C, P) discussed in 
Example 2.3. I ignore the question of  measurability (with respect to Bo), to which 
Dudley has devoted some effort. Suffice it to say that, for all of  cases we shall encoun- 
ter, Dudley's measurability criteria will prove adequate. A sufficient condition for 
x /n (F  n --P) to converge in distribution to the tied down Gp of Example 2.3 can be 
framed in terms of  the concept of  metric entropy with inclusion. This quantity depends 
on the measure P and on the particular class C c M chosen. For each e > 0 define L (e) 
as the logarithm of the smallest value of  n satisfying: there exist n sets A 1 . . . . .  A n E M 
having the property that to each C E C there correspond an A i and A i with 

A i C_ C C_ A/and P(Ai \ Ai) < e. 

3.2 Theorem 

1 
I f f  L (e2)l/2de < oo then N/~ (F n --P) ~ Gp. [] 

0 
This is Theorem 5.1 of Dudley [ 1978], but with the question of measurability ignored. 
The entropy condition here also guarantees the existence of  a version of  Gp with sam- 
ple paths in C b (C, P); use of  this version is understood in the theorem above. It should 
also be noted that Vr-ff(Fn --P) and Gp can be interpreted as random elements in 
Do (C, X), for any probability ?~ dominating P, and that the convergence in distribution 
still holds under this interpretation. 

By way of  illustration, consider the classical situation where 
C = ( ( -  0% x] : - oo ~< x ~< oo) and P is any probability measure on R. To bound L (e), 
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determine points -- oo = Xo < x l  < . . .  ( X m _  1 ( x  m : + r  inductively by 
xi+ 1 := sup {x : P(Xi, x] ~ e/2}. Since P(xi ,  xi+ 1 ] >~ e/2 we have m < 2/e. The collec- 
tion of  sets (0, (--  0% xl  ), ( -  ~o, xx ], ( -  0% x2 ) . . . . .  (-- co, Xm-1 1, R} will serve as our 

1 
A i's. Convergence of the entropy integral f L (e 2)1/2de follows from the convergence 

1 0 
o f f  [log (4/e2)] l /2de.  Theorem 3.2 then gives the classical result for convergence in 

0 
distribution of (normalised) empirical distribution functions on the real line. Exten- 
sion to the multivariate case can be carried out by techniques similar to those employed 
by Elker/Pollard/Stute [ 1979] for obtaining the multivariate extension of the classical 
Glivenko-Cantelli Theorem. 

In the theorems to follow the reader will notice that the main requirement regarding 
F n is that x /n  ( I n  - F ( O o ) )  should converge in distribution. In principle then, the re- 
sults could be applied in various case of dependent sampling where such a central 
limit result holds. I leave such further developments to the reader. 

4. Distribution of  the Minimum Distance 

Let us first agree on the formulation of the basic model. The following assumptions 
are to remain in force for the rest o f  the paper. Given are a normed linear space 
(X, ]] " [[) and a map 0 ~ F(-0) from a subset | o f R  s into X. This map will be assumed 
continuous (and even norm differentiable later). The statistical information comes from 
a sequence (F n ) o f  random elements of X, defined on a probability space (~2, ~:,  P), 
each of  which is assumed to be measurable with respect to the a-algebra B0 generated 
by the balls in X. In some sense F n should converge to F@_o) where -0o is some fixed 
(but unknown) point in the interior of  O; if-00 were a boundary point of O then the 
results would have to be modified along the lines followed by Chernof f[1954] .  To 
preserve the analogy with the classical situation I shall sometimes refer to-00 as the 
"true value" of  -0. Our initial concern will be with the limiting distribution of  
x /n  inf [I F n -- F ~ )  [t. Notice that, because of  the continuity assumption on F ~ ) ,  

0 ~ |  

there are no problems with measurability here. 
As with many problems in asymptotic theory, the argument naturally breaks into 

two pieces: a global part needed for justifying restricting our attention to values of_0 
within arbitrarily small neighbourhoods of  the true value (cf. consistency); and a local 
argument, based on the shape of II F n - F(O_) II near -00, which determines the actual 
form of  the limiting distribution. It will prove advantageous to maintain this separation. 

The idea behind the global half o f  the argument is closely related to the one devel- 
oped by Wolfowitz  [ 1957 ] for proving consistency of  minimum distance estimators. 

4.1 Lemma 

Suppose that It F n --F@_o)II P 0 and that, for every neighbourhood N of_0o, 
inf II F(O) - -F(f io) I I  > 0. Then, again for every neighbourhood of  0o,  
0~N 
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P { inf II F n --F(_0_)[J > II F n --F(_0_o)II) ~ 1 
o~N 

and consequently 

P { inf II F n --F(_O)II = inf I 1 F  --F(O.)II)  -~ 1. 
o~N 

Proof: From the triangle inequality 

1[ F n --F(_0)II ~ II F(_0) - - F ~ o ) l [  --II F - - F ~ 0 ) I I  

and therefore 

inf 
o ~ N  

It F n --F~)11- li F --F(~o)[i 

/> inf 

P inf 
o ~ N  

II F (~ )  -- F(Oo) I I -  2 II F n --F(fl_o)II 

[I F ~ )  -- F(ff_o) II 

> 0 .  

The second part follows from the fact that __0o EN. [] 

To verify the separation requirement of  this lemma it suffices to show that  
F(_0_) + F ~ o )  whenever _0 :~ _0o, and that there exists at least one compact neighbour- 
hood No of_0o for which inf II F ~ )  -- F(_~0) 11 > 0. For then, given an N,  the con- 

_0~No 
tinuous function _0 -~ II F(_0_) - - F ~ o ) I [  must  be bounded away from zero on the 
compact set No \ int N, and hence also on the set ((9 \ N0) U (No \ int N) c | \ N. 

Once it has been established that the values of_0 determining the asymptotic distri- 
bution of the global infimum lie withing a small neighbourhood of 0o,  the analysis 
then depends only upon the form of F ~ )  near _00. When the convergence in probabil- 
ity in Lemma 4.1 is strengthened to an assertion concerning the behaviour of  the dif- 
ference x / n  (Fn - - F ~ o ) ) ,  this gives first a result corresponding to the V~-consistency 
of the location of minimising values of_0, then the desired asymptotic distribution for  
the infimum itself. 

4.2 Theorem 

Suppose the following assumptions hold: 

(i) inf II F ~ )  - F ~ o )  [I > 0 for every neighbourhood N o f  00 ; 
O~N 

(ii) F is norm differentiable with non-singular derivative _D at _0o ; 
Off) there exists a random X valued element G for which 
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G n := x/-ff(F n - - F R o ) ) ~ G ,  

in the sense described in Section 3 for the metric induced by the norm It �9 II. 

Then the limiting distribution of the goodness-of-fit statistic is given by 

V ~  inf I IF n - F R )  II ~ tinfsll G--<~D>II. 
o~| i I 

Proof 

Step/.Because of Lemma 4.1 it suffices to consider only values of  0 lying within any 
particular neighbourhood of 0o. My choice for this neighbourhood will be governed 
by the remainder term 

R R )  := F R )  - F R o )  -- (0 - - 0 o  ,_D). 

Assumption (ii) can be expressed by saying that there exists an increasing function 
A(e) of  order o(1) as e 4 0 for which tl R R )  II ~< l _0 -- _0o I " A(I _0 --_0o I), and a 
positive constant C such that II <,t _D) II/> C I _t [ for all t E  R s. Choose the neighbour- 
h o o d N l  of_0o such that A(I _0 -- _0o I) ~< (1/2) C whenever _0 EN1.  Now for any value 
of 0, 

[[ F n - F R ) I [  = II F - F R o  ) I(_O --__Oo,_D) - R R )  II 

/> II (_0 - 0 o , _ D ) t l  --II R R ) I I  - I I  F n - F R o ) I I .  

Thus for 0 G N1, 

1 
[IF n - F R )  I I - I I F - E R o  ) 1 1 / > - ] C I 0 - 0 o  1- -211F n - E R o ) l l .  

Define Pn := 4 V'-ff II F n -- F R o )  II / C. [By assumption (iii) this random variable con- 
verges in distribution to 4 II G I I /C ,  and so it must be of  order Op (1).] This last ine- 
quality then implies that the infimum of II F n _ F R )  II over NI  agrees with its infimum 
over Nl • {_0 :Vrff I_0_0 - - 0 o  I <~Pn)" Upon taking Lemma 4.1 into account we deduce 
that 

P { inf l[ F - - F R ) I I  = inf 
s  ~ IOiIOo I <~ Pn 

l i E  - F R ) I I )  ~ 1. 

Step H. In view of the above it makes sense to rescale and work in terms of 
t = x/-ff(_0_ - -0o ) .  Define the random s e t J  n := (_t: I t  I <~Pn and 0o + L / x / n E  ~}. 
Over this set x/fill F n - F R ) I 1  can be approximated by a simple convex function: 

t S y  [ V ~ [ I  F n - -F(Oo 4-_t/N/-n) [[ -- II G n -- (t, _D) [[ [ 
- -  n 
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Lsu~ [ I[ V rff (F n --  F ~ o ) )  --  ( t, D) E/fiR ~ o  + _t / V ~ )  II - II G n - -  (t_., D)  [[ [ 

~< sup x/~llR~o +_t/V~ )II 
tEJ  

i 

~< sup Vrff. I L / V t - f f I . A ( I t l ~ ' - ~ [ )  
Les~ 

< p. ZX(p. / ,J-if) 

= Op(1) since pn = O p ( 1 ) a n d P n  / x / - f f = O p ( l ) .  

Now the continuous convex function t -~ II G n -- ( t ,  D)  II achieves its overall minimum 
at a point in (_t: I L I ~< Pn ); for if I L I > Pn then 

[IG n -- (t_, D_) II >1 C I _t I -- II G n II 

> 3 II G n II 

~> 11 G n -- (0, D_) II. 

With probability tending to one, this minimizing value lies in Jn because _0o E int | 
We thus have two functions which, with high probability, are uniformly close over Jn 
and whose unrestricted infima are the same as their infirna over Jn" This implies that 

X/%-0infeo II F n -- F ~ )  11 = t ~ R  s i n f  l[ G n -- (t~ I ) )  II + Op (1). 

Step  111. To prove that t ~ R  s in f  II G n - (t_, O)_ II ~ t ~ f s  II G - {t_, O)_ II we have only to 

apply the continuous mapping theorem for the functional m ( x )  := inf [[ x -- (L D) 1[. 
t~R  s 

This functional is both Bo measurable (take the infimum over a countable dense set 
o f t  values) and continuous (since [ re(x)  --  toO') [ ~< 1[ x - - y  I[). [The continuous map- 
ping theorem in this simple form follows directly from the definition of convergence in 
distribution given in Section 3.] [] 

From this theorem we can deduce results of the Kolmogorov-Smirnov type without 
much trouble. More importantly, though, the method of proof  will serve as the model 
for the various extensions to be presented in Sections 5, 6 and 7. 

4.3 Example 

Consider once more the location problem described in Example 2.1. Take F n as the 
empirical distribution function based on random sampling from H( .  - 0o). As discus- 
sed in Section 3, the process ~ IF n - H ( .  - 0 o ) ]  can be shown to converge in distri- 
bution, as a random element of  D[- -  0% oo], to a Gaussian process. This limit process 
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may be identified with W ~ (H(" -- 0o)), where W ~ denotes the usual Brownian bridge 
on [0,1 ] [see Theorem 16.4 of Billingsley]. 

I f H  has a uniformly continuous density h then, as was shown in Example 2.1, the 
function -- h( ,  - 0o) plays the role of  the derivative D. The parameter space R being 
one dimensional, no problems with singularity of this derivative can arise. Notice also 
that lim inf LI H( .  -- 0) - - H ( "  -- 0o) II > 0, which shows that the separation property 

10 I--* ~ 

holds. 
It follows therefore that 

x /~  inf II F - - n ( "  -- 0) II ~ inf II w ~  -- 0o)) + th(.  -- 0o) 11. 
0 t 

The right hand side can be further simplified to inf II W ~ (n ( - ) )  + th ( . )  II, a variable 
whose distribution does not depend on the unknown 0o. [] 

4.4 Example 

Using the results of  Example 2.3 and Theorem 3.2 (or one of the other theorems 
proved by Dudley, 1978) a general asymptotic result for statistics of  the form 
x / n  inf sup^ I F n (C) --Po (C) I could be obtained. Even for the relatively simple cases 

0 C ~  C 

where C consists of  intervals ( - ~ ,  x] in R k though, several difficulties remain which 
make the results far from satisfactory. Firstly it appears difficult to give general criteria 
ensuring non-singularity of  the derivative _D - this is a common problem with theorems 
of this type. Also, the separation assumption would have to be checked by means of 
some special features of  the class C and the family (Po }' Worst of  all, the limit distri- 
bution will depend on the unknown parameter 0o in-a possibly complicated fashion. 
If this dependence on _00 were continuous then there would certainly be asymptotic 
procedures available for constructing tests of  fit, cf. Chernoff/Lehmann [ 1954], Neu- 
haus [ 1973 ] or Cs6rg~ et al. [ 1974]; but these procedures would involve a prohibitive 
amount of calculation. [] 

5. Minimization with Parameter Dependent Norms 

The methods of the previous section can be modified to cover situations where the 
distance between F n and F ~ )  is measured by a norm II " II 0 depending on _0, and it is 
the quantity II F n --F(fl_) II 0 which should be minimized. Two procedures of  this type 
come to mind: Cram6r-von~lises tests where the measure of  fit is taken as 
f [ F  n (x) -- F(x,  0 ) ] 2 F ( d x ,  0 ) ,  and the method of minimum • in the classical X 2 
goodness-of-fit test. The local parts of  the argument for both these procedures can be 
handled by a generalised form of Theorem 4.2; the global aspects seem to require two 
distinct, but clearly related, approaches. An alternative method,  based on the use of  a 
preliminary consistent estimate for _0o, is given by Theorem 5.6. 

The basic setting of  random elements F n in a normed linear space (X, It �9 II) and a 
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continuous map 0 ~ F ( 0 )  from | into X etc. as described in Section 4, remains the 
same. In addition X will be equipped with a parametric family {11 �9 II 0 : 0 E (9} of  
norms which must  satisfy the following regularity conditions. 

5.1 Assumptions on II " II0 

(i) there exists a neighbourhood N *  of_0o for which II x IIo ~< II x II for all x E X and 
all 0 E N * ;  

(i) for each fixed 0,  the map x -+ II x II o is /3o measurable; 
(iii) for each fixed x, the map 0 -~ II x Iio is cont inuous;  
(iv) the map x -+ inf II x --  F ~ )  II 0 is ~o  measurable. 

o ~ |  

In view of (ii), assumption (iv) would be redundant if the infimum could be replaced 
by an infimum over a countable dense subset of  O. Because of  the continui ty of  
0 ~ F ~ ) ,  such would be the case if the map (x, O) -~ I[ x El o were continuous.  Assump- 
tions (i) and (iii) in fact imply the slightly weaker property~ that this map is cont inuous 
on X X N * ,  since I l[ x 11o --  [I x '  11o' [ ~< 111 x 11o --  11 x II0' [ + l] x - - x '  11 when _0' C N * .  
This ensures/3o measurability of  quantities like inf II x --  F ( 0 )  tlo whenever N _C N* .  

o E N  

5.2 Lemma 

Suppose that II F n --  FCqo)  II P 0. Then 

P, ( inf 
O~N 

II F --F@_) II o > 11F n - - F ~ o )  II ~o ) ~ 1. 

under either o f  the following assumptions: 

a) for each n e i g h o u r h o o d N  of_0o there exists a constant  k > 0 such that 
k II x II ~< II x Iio for all x whenever _0 ~ N ;  also inf II F(O_) -- F ~ o )  II > 0; 

- O ~ N  

b) for each neighourhood N of_0o there exists a constant  k > 0 such that 
k II x [I/> II x I[ o for all x whenever _0 ~ N ;  also inf II F ~ )  - F_0o) II0 > 0. 

- O ~ N  - 

Proof: The argument in both  cases is similar to that  in Lemma 4.1. For  part a) use the 
inequality 

inf II F n - - F ~ )  I1 0 --II F n - E C h o ) I I 0 o  
o ~ N  - - 

~>k" inf II F(ff_)--F@_o)[I--(k + 1)II F n - - F ~ o ) ] l ,  
O ~ N  

and for part b) 

inf l IF  n - - F ( 0 ) [ [ o  --4[Fn - - F ~ ~  o 
O ~ N  - - 

>~ inf [[ F(ff_) --F(_0_o)II o - - ( k  + l)  t 1 F  - - F ( 0 o ) I [ .  
~ O ~ N  

[]  
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Once again the asymptotic distribution of the minimum distance can be obtained by 
strengthening the convergence in probability to convergence in distribution of 

(F  n - - F R o ) ) ,  and introducing the norm differentiability (with non-singular deri- 
vative) condition for F R )  at _.0o. Both of  these requirements are to be interpreted as 
for Theorem 4.2, i.e. in terms of the norm II " II. This time though, non-singularity of  
the derivative _D can be used to prove the existence of  a positive constant C such that 
]l (t. _D) l[ 0 ~> C i t [  for all t E  R s and all _0 near enough to _0o. For, without loss of  

generality, we may suppose that the neighbourhood N *  of Assumption 5.1 (i) is com- 
pact. Continuity of(x,  _0) ~ II x 110 on X • N *  implies continuity of the 

map (L _0) ~ II <t, _D> II 0 on R s • N*;  this function must therefore be bounded away 

from zero on the compact set {L E RS: I t I = 1 } X N*.  We can choose C as the lower 
bound over this set. 

5.3 Theorem 

Suppose that 

(i) at least one of the assumptions a) and b) of  Lemma 5.2 holds; 
(ii) F is norm differentiable with non-singular derivative _D at __0o ; g ~G.  
(iii) there exists a random X valued element G for which G n := x / ~ ( F  n - - F R o ) )  

The the limiting distribution of the goodness-of-fit statistics is given by 

x / ~ i n f  I I F n - - F R ) [ I o  ~ inf I l a - - ( L O ) [ [ O o .  
O ~| - t E R  s -- 

Proof 

Step  1. Use the same definition of R R )  and A(e) as in Step I of  Theorem 4.2, but this 
time take C as the constant defined in the discussion above. Then choose the neighbour- 
hood N1 _CN* so that A(I _0 --_0o I) ~< (1/2) C onN1.  As before we have 

II F n --F(_0.)II o ~ II <0 - - 0 o  ,O> II 0 --tl  R R ) I I  0 --II F - - F R o ) I I  0 , 

and thus for _0 E N 1 ,  

II F n --FR)Iio_ --II F --FRo)11_%3 (1/2) C 1__0 --_0o l-- 2 II F --FRo)11. 

Defining Pn := 4 II G n II / C as in Theorem 4.2, we then conclude that the search for the 

infimum of II F n -- F R )  ll0 may be restricted to values of_0 of the form _0o + L~ ~/-ff, 

w h e r e t  E J := {L: lL l<<,pn  and_0o + t / x / - n E N * ) .  

Step  II. The same argument as before shows that 

sup I ~ II F - F R o  + t~ E/if) II0_o+t_/vrff - II a n - (L  D_) [l_0 ~ +_t/x/~ ] 
t_~ 
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is of  order op (1), and therefore that 

inf I IF  n - - F ~ )  II 0 = inf 
0_Go - t_~J n 

II G n - ( L  17> II0_o+t/x/n + Op (1). 

We cannot replace the infimum on the right hand side by an unrestricted infimum at 
this stage, because of  the presence of  the Lin II " II~_o+_t/x/~ �9 However this small com- 

plication will disappear in the limit. 

Step 111. This time a slightly more complicated form of the continuous mapping 
theorem will be required. The easiest approach is via the use of  a.s. convergent versions 
together with a convergence theorem for convex functions. By Theorem 3.1 there exist 

versions of  the G n and G processes for which (?n %s. t?. All of  the preceding argu- 
ments still apply when On is replaced by its corresponding Pn, and "In by Jn etc. As ex- 
plained in Section 3, it suffices to prove an a.s. convergence result for the new process, 
in order to obtain the distribution convergence result for the original G n 's. With this in 
mind, select and fix a point ~ of  the new underlying probability space, a point at which 
II G n (co) -- G(6o) II -~ 0. 

The first thing to notice is that 

sup sup t II a n ( ~ )  -- <L P> II 0 - II a(co)  -- (L, D> II 0 I ~< II G n (~ )  -- a(~o) II. 
t E R  0_EN * - - 

Thus it suffices to show that 

inf II G ( ~ ) - -  (L D) JJOo" inf II G ( r  - -  ( L  _O)I[_o ~ + A / x / h -  t E R S  _ _ 

LE.Yn (~) 

The functions involved in the lefthand side of  this last expression need not be convex 
in t ,  because of  the presence of the _0o + t_,/x/-n on the norm. To avoid this problem 
it will pay to introduce the artifice of  a second variable and define functions 

gn ~ _t) := II C(6o) - <_t, _D> ll0_o+_~ ix/- h- 

and 
m u 

g ~ )  := II G ( ~ )  --<L, D> Iloo. 

For each fixed s ,  the funct ionsg n (_b ") are convex. Now choose a compact  set 
K E_ R s containing all the "In (~) ' s ;  this is possible since Pn ( ~ )  -+ 4 II G ( ~ )  II / C. The 
continuity assumption 5.1 (iii) implies that, for each fixed x E X, 
sup I tl x Iloo §  - II x II0o I ~ 0. Taking x = G (6o)-- (_bt _D) we thus obtain the 
s E K  

result that, for each fixed t ,  the sequence gn (2, t_) converges uniformly in s E K to 
g(_t). In particular, the family {gn (~s "): _s E K, n = 1, 2 . . . .  } of  convex functions is 
pointwise bounded. Theorem 10.6 of Rockafellar [ 1972] thus guarantees the existence 
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of  a real number X such that 

Ign ~ ,  _ . t ) -gn  Cr t ' ) I ~ < X  I _ t - t '  I 

for every n, every _s E K  and every pair of  point t and _t' in K. With all of  these uni- 
formity properties we can hardly help but get uniform convergence o f g  n (_s, t_) to g(.0 
over K • K. 

Choose a finite subset Ko of K with the property that for each L E K  there exists a 
t*  E K o for which X I L -  L* I < e and l g(L) - g ( t * )  I < e. Then 

sup Ig,,C~ _ t ) - g ( L )  [ 
s ,L~K 

~< sup 
s, t c K  

I gn (~, ttO -- gn (~  t__* ) l + sup [ gn ( s~ t__* ) -- g(s ) l + 
s~K , t*EKo  

+ sup I g ( L * ) - g ( L )  I 
tEK 

from which the desired uniform convergence follows. In particular, 

sup K ill C ( ~ )  - <_,t _D)tle_o +_t/,/~ - II G(~o) - <~D_) Iio_ ~ I -~ O, 

which implies that 

-- -- inf [ [ G ( c o ) - - ( t _ , D ) l l o o ~ O .  inf II G(co) <t_,_D>lloo+z/x/~ t ~ . ~ ( ~ )  - - 

L~Jn (Co) 

The infimum in the second term can be replaced by an unrestricted infimum because 
II G(co) -- (L  _D) II0_ ~ certainly attains its overall infimum somewhere in the region 

{t: I t I ~< 2 II G(ff~) 11 / C, a set which is eventually contained in a~ (~) .  [Notice that 

for I t [ >  2 IIG(co) I I /C,  

II G ( ~ )  - <t_, _D> IIo ~ - II G(co) - <_0, _D> Iio_ ~ 

/> C I t I -  2 II a(~a)II0o 

> 0]. [] 

Since all of  the points of  interest in the application of this theorem to Cram6r-von Mi- 
ses type statistics can be brought out through the simple location parameter example, I 
shall restrict myself to this case. The reader will assuredly be able to piece together the 
appropriate norm differentiability and convergence in distribution results to obtain the 
details for the more general cases. 
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5.4 Example 

Consider yet again the location problem discussed in Example 2.1 and 4.3. This 
time the minimization involves IJ F n -- F(O) II ~ := f [F n (x) -- F(x, O)]2F(dx, 0), where 
F ( . ,  0) denotes the translate H(" -- 0). For the normed linear space (X, II �9 [I) we have 
a choice. Perhaps the simpler possibility is D[--0% oo] under its supremum norm, but it 
would also be possible to equip the same space with the (pseudo) norm 
II " II := sup II �9 II 0 �9 The latter would have the advantage of leading to a separable 

0 
topology. Under the condition on h used before, all of  the required assumptions are 
easily checked. The corresponding limit result then takes the form 

n inf f [F n (x + O) --H(x)]2H(dx) ~ inf f[W~ + th (x)]2H(dx). 
o t 

The limit distribution again does not depend on the unknown parameter 0o. The ex- 
pression on the right hand side can be put in a more explicit form, since the function 
to be minimized reduces with a change of variable to the quadratic in t : 

1 1 
f W~ + 2 t f  W~ + t 2 ~ h[H-l(y)12dy 
0 0 0 

whose minimum equals 

1 1 1 
fo W~ dY -- [fo0 W~ (y)) dyl2 /fo0 h[H-I(y)12dy" 

Approximations to the distribution of such quadratic forms involving the Brownian 
bridge W ~ may be obtained by eigenfunction expansions into a series of  weighted non- 
central X 2 variates; the reader is referred to the papers of  Darling [ 1955 ], Kac/Kiefer/ 
Wolfowitz [1955], Neuhaus [1973] plus other references given by Neuhaus [1977]. 

One slight problem has been overlooked so far, viz. the II �9 II0's might only be 
pseudonorms. The only difficulty this could cause would be in the argument leading 
up to the existence of the constant C. There it was necessary that II (L _D) II0 * 0 
whenever I Li = 1 and 0 is near 0o. Convexity of  the functions t - ~  II (L _D> I10 ensures 
however that sup Ill (L  _D) I10 -- II (L _D) II0o I ~ 0 as 0 ~ 0o. Thus it would suffice to 

Itl=l 
interpret non-singularity of_D as meaning that II (t_, _D) II0o ~ 0 whenever t t 0. For the 

problem at hand, non-singularity in this sense is easily checked. [] 
When application of the general result of  Theorem 5.3 to any specific problem is 

envisaged, it should not prove surprising if special features of  that particular problem 
should render parts of  the general proof  redundant. This is indeed the case with app- 
lication to the method of minimum X z , where much of the argument in Step III could 
be avoided because of finite dimensionality considerations. Nevertheless, the proof  as 
it stands still compares favourably with other known methods of approach - see for 
example Section 2.7 of Witting~NOlle [1970]. What is more, as I shall show in a future 
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paper [Pollard, 1979b], the methods developed above lead to a simple analysis for the 
problem of X 2 goodness-of-fit testing (using the maximum likelihood estimator) with 
random cells. 

5.5 Example 

Observations are taken on a multinomial distribution over k cells, where the proba- 
bility Pi (fl-) of falling into the i-th cell depends on an unknown parameter _0. The set 
| of  possible values for 0_ is a subset of R s which contains the true value _0o in its 
interior. Arrange Pl (if_) . . . . .  Pk (fl-) into a column vector F ~ ) .  Taking X as R k, we 
thus have our map _0 ~ F(O) from | into X. For the i-th component of  the random 
column vector F n take the proportion of  the first n observations which fall into cell i. 

With each _0 associate a diagonal matrix A(_0) := diag (Pl ~ )  . . . . .  P/c ~ ) )  and a 
norm 11 x_ N 0 := (_8_'A-1 (_0)x) 1/2 on R k. We must of  course assume all the Pi (0)'s to be 
positive. As the norm II " [1 on X take a multiple of the usual Euclidean norm large 

enough so that I[ �9 II/> II " I[0 for all _0 close enough to _0o. 
The test of  goodness-of-fit derived from the method of  minimum • consists of  mi- 

nimizing the quantity Xn 2 (_0) := ntt F n --  F(_0) l] 0 over | Under appropriate condi- 

tions this mimimum has a limiting X 2 distribut-ion. The simplest set of  conditions k-s-1 
seems to be those used by Birch [ 1964] for obtaining the limiting distribution of 
Xn 2 (_O n), where On is an estimator of maximum likelihood type. These conditions are 
essentially equivalent to: 

(i) for each neighbourhood N of_00 

inf II F(ff_) --F(_0o ) II > 0; 
o q N  

(ii) there exists a non-singular k X s matrix D such that 

F ( P _ ) = F ~ o ) + D ( f i _ - O _ o ) + o ( ] O _ - - O _ o  [) near 0o. 

Since each of the pi (_0_)'s can be not greater than one, it is easy to verify condition a) 
of  Lemma 5.2. Continuity of each Pi(ff-) would take care of  all the assumptions on 
II " II 0 , although the result still holds under somewhat weaker assumptions in this case. 

The ordinary multivariate form of the central limit theorem ensures that 

( F  -- F ~ o  )) ~ Z, where _Z has a N(_Q, A (_0_o) -- F ~ o )  F(~o )') distribution. From 
Theorem 5.3 it follows under these assumptions that 

inf X2 (_0) -~ inf t[ Z -- Dt  11 o 
o ,, t - -  - -  _ 0  

I 

Standard techniques of  multivariate normal distribution theory show that the right 
hand side of  this last expression has the desired X~.s 1 distribution. [] 

As evidenced by the need for Lemma 5.2, the global part of  the argument for Theo- 
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rem 5.3 has a slightly ad hoc flavour to it. This was caused by the possibility of strange 
behaviour of the norm I[ " It0 for values of  0 a long way from _0 o . To some extent this 

difficulty can be overcome by using a preliminary consistent estimate -on of Oo in the 
norm II " II~n measuring the goodness-of-fit. Such consistent estimates are generally 

regarded as being easily obtainable. 

5.6 Theorem 

Suppose that 

(i) there exists a neighbourhoodN'  of 0o such that, for every other neighbourhood N 
of 0o, we have inf inf Ilf(O_)--f(O_o)llo,>O; 

o ~ N  o ' ~ N '  

(ii) f is norm differentiable with non-singular derivative _D at _0o ; 

(iii) G n :=Vrff(Fn -- F(ff_o)) ~ G. 

Then for any sequence of estimators {-on } with _O n POo,  

V/-ff inf l[ F n --F(_0)I[~, n ~ ti~s[I G - ( L  D)II0o. 
0 ~ o  - - 

Proof: By almost the same procedure as before we arrive at the stage where 

x / n  inf 11F --F(O)II~n= inf tl G n --(t_, D) lib" n + Op(1). 
O E O  - -  - t ~ R  s - -  - 

This time there are no difficulties about taking the unrestricted infimum on the right 
hand side since, with probability tending to one, ~n belongs to the neighbourhood N* 
o f0o  in which the inequality l[ (t_, _D) 110 ~> C [ L [ holds for all t .  

For the analogue of Step Ill we need-to consider the limiting behaviour of (Gn, O_ n) 
as a random element of  the space X X R s. Equip this space with the norm 
11 (x, _0) II := max ([1 x II, I O I}. Since the o-algebra generated by the balls for this norm 
coincides with the product of/30 with the Borel o-algebra on R s, no problems with 
measurability arise. Very slight modifications of  the standard argument [Theorem 4.4 

of Billingsley] then show that (G n , O_n) D (G, 0o)) .  Change over to a.s. convergent 

versions (G n, On) a~. (2, 0 o). The rest of  the argument is then similar to that of  Theo- 
rem 5.3. [Theorem 10.8 of Rockafellar, 1972 can be used to demonstrate uniform 
convergence on compact L sets of  II G n (co) -- (L D_) II_~n (Eo) to l[ a(co)  - (L _D) lf0_o.] 

[] 

The application of  this result to the problems of Examples 5.4 and 5.5. is straight- 
forward. Further refinements along the same lines are possible, but I don' t  wish to 
labour this point, For example, for Cram~r-von-Mises statistics the squared "random 
norm" f [  �9 ]:F(dx, O_n) could be replaced by f [  �9 ]2F n (dx) under appropriate cir- 
cumstances. 
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6. Power of the Tests Under Alternatives 

For a test to be considered as a useable procedure, there should at least be some 
method for gauging its power under an alternative hypothesis. When treated as an 
asymptotic result for tests of  the type considered in this paper, this would lead to the 
rather uninformative statement to the effect that the power against any fixed alterna- 
tive tends to one as the sample size increases. In order to get around this problem it 
has become customary to consider not just a fixed alternative, but rather a sequence of  
alternatives approaching the null hypothesis at a rate which produces a non-trivial li- 
miting value for the power. This then gives some measure of  the discriminating power 
(against close alternatives) of the proposed test. 

In the framework adopted in this paper such an approach can be handled without 
changing the basic setting; the effect of certain sequences of  alternatives can be com- 
pletely specified by modifying the limit in distribution of X/~(F  n - -F(~o) ) .  At least 
the parametric alternatives of Durbin [ 1973] fall into this category. To illustrate the 
procedure in a setting which incorporates most of the essential features, 1 return to the 
situation considered in Example 2.3. 

Instead of supposing that F n denotes the empirical distribution function obtained 
by a sample of size n from a fixed P0o' assume that the underlying distribution actually 

depends on the value of n i.e. F n represents the empirical distribution function from 
n independent observations on a probability distribution Qn" The measure ), will be 
assumed to dominate each of  the Qn's as well as the family (Po }" 

Write L n (e) for the metric entropy with inclusion obtained by using the class C and 
the measure Qn �9 For ease of  notation write P for P0_o" Suppose that there exists 

EDo(C, X) such that 

sup I,v/-ff[Qn(C)-P(C)]-6(C) I - ' 0 .  (*) 
c~  C 

Then given that F n has the appropriate measurability properties it can be shown, by 
slightly modifying the proof of Dudley [ 1978], that a sufficient condition for 

x/-ff [F -- Qn ] ~ GP as random elements of  Do (C, X) is 

lim lim sup f L n (e2)l /2de = 0. (**) 
ov~O n ~ 0 

For example, the argument given in Section 3, for the case where C consists of  all inter- 
vals ( -  % x] in R, demonstrates that the uniform convergence in (**) holds for such a 
C. The same argument extends to the multivariate case. We therefore have a result 
which will apply to the classical multidimensional empirical distribution functions. 

Once we have that V"ff IF  n -- Qn ] ~ Gp, it follows immediatley from (*) that 

x / ~ [ F  --P] ~6 + Gp; that is, a drift term has been added to the limit Gaussian pro- 
cess. This then appears in the limit distribution for the test statistic under the alter- 
natives {On) ; it is only necessary to replace Gp by 6 + Gp to evaluate the limiting 
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power under alternatives of  this type. 
The added drift term in the limit also appears in the work of Neuhaus [1973, 1976a, 

1976b] who considered sequences of  contiguous alternatives. Some conditions 
under which contiguous alternatives may be expressed in the form (*) can be deduced 
from the works just cited. 

In the one dimensional case, convergence o f x / n  (F n - -Qn)  can also be proved by 
more well-known methods. Working with the space D [0,1 ], Chibisov [1965 ] obtained 
the result by means of the usual representation of an empirical distribution function in 
terms of that for uniformly distributed random variables. His method even incorpora- 
tes the use of different metrics on D[0  1 ], metrics which are more sensitive to the 
behaviour at 0 and 1. 

Finally, to come back to the situation with which we began, notice that a sufficient 
condition for (*) can be expressed in terms of  the densities ~ := (dQn/dX). Exactly 

the same argument as in Example 2.3 would show that if x/h-[~n -- ~ (0 o)] converges 
in L2(X) norm to 2x then (*) holds with 6(C) := 2f~(Oo) AdX. In particular, if the 

C 
underlying model can be embedded in a two parameter family P(" ; 0, r~), with 
Po ( ' )  = P(" ;O, r/o), and the densities for this family satisfy the quadratic differentia- 

bility condition (as a function two variables 0_ and r~ at (0o r~o) then (*) would be ob- 

tained by considering Qn ( ' )  := P(" ;Oo, ~_o + n l  / 27 ) for some fixed ~. Such sequences of  
alternatives were built into the model considered by Durbin [1973]; the end effect 
there was also to add a drift term onto the limit Gaussian process. 

7. Minimum Distance Estimators 

In general the procedures for testing a hypothesis and estimating parameters speci- 
fied by the hypothesis often represent complementary aspects of a statistical model. 
This is indeed the case for the model considered in this paper: goodness-of-fit can be 
tested by the magnitude of a minimized distance, and the parameter can be estimated 
by the value of_0 at which the minimum is achieved (or at least where some value 
suitably close to the infimum is attained). In the papers of Blackman [1955] and Bolt- 
hausen [1977], as well as in the basic work of Wolfowitz (culminating in his 1957 
paper), the properties of such minimum distance estimators have been investigated 
for a number of cases. In this section a method for obtaining the limiting distribu- 
tion for the minimizing value of_0 in the situation of Theorem 4.2 will be described 
the corresponding results for the cases of  norms depending on the parameter may be 
derived analogously. 

The simplest case occurs when the function _t -~ II G - ( i ,  _D) [i achieves its minimum 
at a unique value of  L, for almost all sample paths of G. The functional ~t ( .)  which as- 
sociates with x C X a value o f t  minimizing II x - (t_G _D) II will then be G almost surely 
continuous; the argument can be based on the convexity of L -+ It x - (t_, _D) II cf. Propo- 
sition 3.2 of Bolthausen [1977]. If then _0" is a measurable function for which 
II F - - F ~ * ) I I  = inf II F - -F(O)II  (an extra Op(1/x/~) term could be added to the 

0 
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infimum without changing the result), the same argument as for the proof of  Theorem 

4.2 can be used to prove that x/-ff (0"  -- 0o)  ~ t~(G); in Step 1II the functional x -+/l(x) 
rather than the infimum functional should be applied. [The last part of the argument to 
Step 11 would also need some modification but, since a more general result will be des- 
cribed below, the details will be omitted.] 

A slight complication occurs if the infimum of II G -- <t_, _D> [I need not be achieved 
(almost surely) at a unique point. The most that could be asserted in that case would 
be that x/-ff (_0_* -- _0o) should behave asymptotically like one of  these minimizing 
values; but this falls short of a true limit theorem for Vrff (_0 * --_00). To overcome 
this difficulty I propose considering the entire set of  minimizing values, and proving 
a limit theorem for this random set. 

Define M n := {_0 E | [I F -- F(_0) II ~< inf II F - - F ~ ' )  II + r~ n/Vrff} where 
0' 

{r/n } denotes some fixed sequence of  random variables, with r/n = oo(1), chosen to 
ensure thatM n be non-empty. [This avoids the problem of the infimum not being achie- 
ved.] The limit result will assert the existence of  a sequence of random compact con- 
vex sets {K n } which converge in distribution to the minimum set o f t ~  II G --(t_, _D) tl, 

and for whichM n _C 00 + n-1/2Kn with inner probability converging to one. The use 

of  inner probability seems necessary since there is no guarantee that the set 
(M n C_ 00 + n "l/2K n) be measurable. The precise description o f  the random sets 

{K n } requires some preliminary definitions. 

The class of all compact, convex, non-empty subsets of  R s will be denoted b y / ( .  
For each x E X and each 3 ~> 0 define 

f(x, Z) := II x - <L D> I[, 

re(x) := inff(x,  t_), 
t 

and 

K(x, 3) := "[Z CRs "f(x, t )< .m(x )  + 3 ) .  

First observe that both f ( - ,  t_) and m ( ' )  are /3o measurable - the infimum may clearly 
be replaced by an infimum over a countable dense set o f  t values. When the derivative 
D is non-singular, the function L -~f(x, L) becomes unbounded as I L I ~ oo. It follows 
that K( . ,  3) defines a map from X into/( .  

The natural topology o n / (  is that generated by the Hausdorff metric defined by 

d(K1, K2) := inf {6 3> 0: K ] D  K2 and K~ _D K1 } 

where K ~ denotes the closed set of  points at distance less than or equal to 6 from K. 
A general reference for this topology is Eggleston's [ 1977] book (note that he has 
used a slightly different metric). 
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7.1 Lemma 

For each fixed/3 >/0, then map x ~ K(x, 13) is /30-Borel measurable. 

Proof: Notice that as 13 ~ 0 the sets K(x, 13) decrease to K(x, 0), which implies conver- 
gence with respect to the Hausdorff metric topology. Thus it suffices to consider only 
the case where 13 > 0. This case is simpler because each K(x, 13) then has nonempty 
interior. 

Since the Hausdorff metric induces a separable topology on K, it suffices to show 
that the inverse image of  each closed ball in K belongs to /3o. Now the inverse image of  
the closed ball with centre Ko and radius r > 0 may be represented as the intersection 
of the two sets A 1 := (X (~- X : K (x, 13) _C K~ } and A 2 := {x E X" Ko C_ K (x, ~)r ). Con- 
sider A 1 first. 

Let To be a countable dense subset of  the complement o f K  r . I assert that 
A1 = ('/ { x E X :  f(x, t )  > m(x) +13). That the latter set contains A1 isclear. On 

_tE To 

the other hand suppose that x ~A~.  Then K~ does not contain int K(x, 13), for other- 
wise it would also contain K(x, 13) which is the closure of  its interior. The nonempty 
open set int K(x, 13) \ K~ thus contains a point of  To" that is,f(x, L) ~ rn(x) + 13 for 
at least one t @ To. 

For the set A2 start with a countable dense subset (s t2 . . . .  } of  Ko and choose 
T n to be a countable dense subset of  the closed ball with centre t and radius r. --n 
Simple continuity arguments show that 

A 2 =  ~ ~ U {xEX: f (x , t_ )<. .m(x )+13+p-1) .  
n = l  p = l  t ~ T  n 

The Bo measurability of  the functions f ( ' ,  _t) and m( . ) ,  together with the countable 
nature of  the unions and intersections involved in the above representations for A 1 
and A 2, leads us to the desired conclusion. [] 

This takes care of any problems regarding measurability which might have arisen 
in the proof of the main result of  this section. 

7.2 Theorem 

Under the conditions of  Theorem 4.2 there exists a sequence of real number fin ~ 0 
satisfying 

(i) P .{M n COo +n-1/2K(an,13n)}~ 1, 

(ii) K(Gn, 13n) ~ K(G, 0) as random elements of  K under its Hausdorff metric topology. 

Proof: Most of  the proof is already contained in Lemma 4.1 and Steps I and 11 of  Theo- 
rem 4.2; another variant of  the continuous mapping theorem will be needed to replace 
Step II! and complete the argument. Once again it will suffice to prove a stronger 
result (this time convergence in probability) for a version of  the process satisfying 

a . s . -  
-+ G. With this in mind, let us ease the notation and omit the bars denoting the 
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use of a different version. I take up the proof  from midway through Step I of Theo- 
rem 4.2. 

From the inequality 

1 
tt F - F C 0 )  tl >t ~- c I _o - _Oo I - II F n - F ( _ 0 o )  II, 

valid for _0 ENd ,  it follows that (with inner probability tending to one) 

MnC_ 0_0 + n-1/2Ln , 

where L n := {L E RS: [ L [ ~< (4 11G n II + 2rln)/C). Define 

f '  n := sup I x/-n-[[ F n - E G o  + t / x / ~ - ) [ I -  II G n - < L  D_)II I. By the argument in 
t E L  

- -  r l  

Step II this quantity is of  order Op(1). We can therefore find real numbers 7n ~" 0 for 

which P {Yn > 7n } ~ 0. 
Also, since r/n = Op(1), there exist constants 6 n ~ 0 satisfying 

P ( r / n > 6 n ) - ~ 0 .  

Finally choose constants e n $ 0 for which 

P {ll  G n - -G II > e  n } -+0.  

Define 3 n := max {27n + 6n, 2e n }. To complete the proof  we have only to show that: 

a) K(G n, 3n) P K(G, 0); 

b) if r_ E L  n and_0o +n-1/2r_ E M  n and I'n ~Tn  andr/n <~6 n then_r EK(Gn ,3n) .  

For the proof  of a) first notice that If(x, t) - - f (y ,  t )  1 ~< [[ x - - y  ]1 for all 
x, y C X and _t G R s, and hence I m(x)  -- re(y) [ ~< 1[ x - - y  II. Thus when 
IIG n - G [ l ~ < e  we have 

K(G, 0) = {t: f (G,  t_) <. re(G)} 

C_ {_t: f (Gn,  t_) ~ m(Gn) + 2 t[ G n -- G H} 

c K(G n, ~) .  

On the other hand, for any given a > 0 and sample point w there exists a value 
Xo = X0(~o) for which K(G(co), X) C_ K(G(co), 0) a whenever X ~< ~0 [if a decreasing 
sequence {K n } of compact sets has intersection contained in a given open set U then 

K n C_ U eventually]. Thus if {X n } forms a sequence of random variables converging 
a.s. to zero it follows (after a measurability argument similar to that for Lemma 7.1 ) 
that 

P {K(G, Xn)C_K(G,O)a } -~ 1. 
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Apply  this with X n = 13 n + 2 I1 G n -- G 1[ to  see tha t  

K ( G n , {3 n) = (L: f ( G  n , t_) <~m(Gn) + 13n) 

C_ {L: f (G,  t) <~m(G) + 3n + 2 [IG n - - G  11} 

C_ K(G,  0) c~ with p robab i l i ty  tending to one. 

Part a) is thus proven.  
For  part  b) start  f rom the inequal i ty  for  tOiL n 

II G n - <L O> II ~ c I L I - II G n H 

> 3 1 I G  11 
n 

~> II G n - -  (0,_D> II 

to deduce that  

m ( G n ) =  inf  [IG n - ( L  D_)j[. 
tEL 

- -  n 

Then,  since F n ~< 7n and r/n ~ 6 n , 

m(Gn)  >~ inf  x / ~  II f -- F(O_o + L / x / ~ )  II - 7 n 
tEL 

- -  11 

~>x/~  II F n - F C Q o  + z / x / % - )  I I - 6  n - T  n 

/> [IG n -- (z , -D)  11 --  7n - - 6  n --  Tn , 

implying that  Z E K(Gn ,  13n). [] 

The procedure  used to define the constants/3 n has the curious feature that  it de- 
pends  on the choice of  a par t icular  version of  the {G n }; the rate of  convergence in 

p robab i l i ty  specified by e n need no t  be the same for all versions. The final assertion 

of  the theorem,  however ,  must  be valid for  all versions. This apparen t  pa radox  may  be 
par t ly  expla ined by results of  Strassen [1965] and Dudley [1968] which connect  the 
en'S with the rate of  convergence to zero of  the Prohorov distance between PGn 1 and 
P G -  ~ ; this rate must  indeed be the same for all versions. 

The result in the case where [I G -- (L, D_) II achieves its min imum (a lmost  surely) in 
a unique poin t  can be recovered f rom Theorem 7.2 by noticing that ,  i f K  n E K and 

K n -~ {t_ } in the sense of  the Hausdorf f  metr ic ,  then -nt ~ _t for each sequence of  

points  t E K . As Bolthausen [ 1977] has observed however ,  only  in the case of  the 
- - n  n 

L 2 type norms is it at all easy to verify the condi t ion  of  uniqueness of  minimizing 
values. 
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8. The Method Based on Direct Estimation of the Parameter 

Let us consider once more the other approach to goodness-of-fit testing where the 
estimation of/9 proceeds by a so-called efficient method. As an example start with a 
modified version of the situation treated by Durbin [1973, 1976]. 

The empirical distribution function F n is based on n independent observations 
X1 . . . . .  X n on the distribution F(- ,  _00). AS the space X use D[--  0% ~]  under its 
sup norm. The test statistic is derived from the random function 
VCff (F n ( ' )  - - F ( - ,  ~n)) where ~n is an estimator having the following form: 

n 

Xf f f (~  n - - 0 o )  = n ' l / 2  i=l N ~ (Xi)  + Op(1). (*) 

When E _~ (X/) = 0 and the variance matrix var _~ (Xi) exists the central limit theorem 

ensures asymptotic normality of t" := vr-ff (~n - _0o), and consequently ~ = Op (1). - n  

Under the conditions that G n ( ' )  := x / i f [ F ( ' )  -- F(- ,  _0o)] converges in distribution 
and that _0 ~ F ( . ,  O) is norm differentiable at _0o, the same arguments as for Theo- 
rem 4.2 show that 

]l X/~  (Fn(") -- F ( ' ,  O_n)) -- (G n ( ' )  -- (-~n' _D('))) II = op (1). 

This time it will be the joint distribution of G n and {n which determines the asympto- 
tic behaviour of G n -- (~-n' D_). Durbin proved convergence in distribution of this 
random function by the standard uniform tightness plus convergence of fidis argument. 
As Neuhaus  [ 1976a] later noted, the uniform tightness follows easily from the fact that 
both G n (.) and (t 'n '  D( ' ) )  satisfy the usual condition restraining the oscillation of their 
sample paths. ThefidTconvergence results from an application of the multidimensional 

form of the central limit theorem by writing G n ( . )  = n "1/2 ~ d (Xi , .),  where 
i=1 

d ( X  i, .) = 1 ( _ = .  ](Xi) --F(',_0.0o). For G n (-) -- (t" n , _D(-)) then has the asymptotic 
n 

form o fa  normed sum of i.i.d, random functions: # 1 / 2  E [dO(/, .) - 
i=1 

- <~ (xi), D(-)> ] + Op (1). 
Neuhaus  [ 1973] used a similar representation together with a central limit theorem 

for sums of i.i.d. Hilbert space valued random elements to prove the corresponding 
weak convergence result for the Cram&-von-Mises type statistics. 

It is thus apparent that much the same apparatus can be used for both approaches 
to constructing goodness-of-fit tests. Only in the last steps of the method do signifi- 
cant differences occur; whereas the minimum distance method essentially depends on 
variants of the continuous mapping theorem, the method with direct parameter esti- 
mation requires an asymptotic form for ~n as in (*) together with a weak form of 
central limit theorem for sums of i.i.d. X valued random elements. 

The differentiability conditions required for the second method can usually be in- 
terpreted as a means for obtaining differentiability in norm. Also hidden in this method 
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though are extra (differentiabil i ty)  requirements  needed to just i fy  the form (*) for 

~n  ;usually reference is made to the classical condi t ions  o f  Cramkr [ 1964] for asymp- 

tot ic  eff iciency of  max imum likel ihood est imators  (see for example  the further  com- 

ments  of Durbin [1973] or CsOrgd'/Burke [1976]).  In this respect it is interesting to 

note  that Le Cam [1970] in t roduced the quadrat ic  different iabi l i ty condi t ion  o f  Ex- 

ample 2.3 in his study of  condi t ions  needed to prove asymptot ic  normal i ty  of  maxi- 

m u m  likelihood estimators.  
Perhaps the most  interesting problem for either o f  these two methods  remains that  

of  freeing the limit distr ibution o f  the test statistic f rom dependence  on unknown  para- 

meters.  Apart  f rom the procedure ment ioned  at the end of  Example  4.4, the half-sam- 

pt~ device of  Durbin [1976] seems the most  promising m e t h o d  to date, al though it 

has been criticised on the grounds that it requires post-sampling randomisat ion.  Maybe 

the corresponding problem in the area of  the X 2 goodness-of-fi t  tests [cf. Chernoff/ 
Lehmann; Watson] could give some clue to a more satisfactory solution. 
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N o t e  a d d e d  in proof: 

Prof. Lucien Le Cam has kindly shown me some old lecture notes o f  his, dating from the late 
fifties, in which he proved results similar to some of  those in my paper. He has also derived some 
of  the properties of  minimum distance estimators on pp. 103-107 of  his "Th~orie Asymptotique 
de la D~cision Statistique" (University of  Montreal Press, 1969). 


