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Quantization  and the Me thod o f k-Means 
DAVID POLLARD 

Abstrucf-Asymptotic results from the statistical theory of k-means 
clustering are applied to problems of vector quantization. The behavior of 
quantizers constructed from long training sequences of data is analyzed by 
relating it to the consistency problem for k-means. 

I. INTRODUCTION 

T  HE THEORY developed in the statistical literature 
for the method of k-means can be  applied to the study 

of optimal k-level vector quantizers. In this paper, I de- 
scribe some of this theory, including a  consistency theorem 
(Section II) and  a  central lim it theorem (Section IV) for 
k-means cluster centers. These results help to explain the 
behavior of optimal vector quantizers constructed from 
long stretches of ergodic training sequences. I also offer a  
new proof (Section III) for the consistency theorem, based 
on  an  identification of the optimal quantizer with the 
measure that m inimizes a  Vasershtein-like distance be- 
tween an  emp irical measure and  a  collection of discrete 
measures corresponding to k-level quantizers. 

By a  k-level quantizer I mean  a  map  4  from some 
Euclidean space IWd into a  subset {a,, a2;. .,a,} of itself. 
Such a  map  can be  used to convert a  d-dimensional input 
signal X into an  output q(X) that can take on  at most k 
different values. An optimal k-level quantizer for a  proba- 
bility distribution P on  lRd m inimizes the distortion, as 
measured by the mean-squared error P ] X - q(X) 12, for a  
random vector X with distribution P. (Instead of the tradi- 
tional symbol lE, I use P to denote expectations as well as 
probabilities. A similar convention applies for expectations 
with respect to the probability measure P.) O f course, this 
makes sense only if the expected squared Euclidean dis- 
tance P ( x I2 is finite, or, equivalently, the L2 norm II XII = 

2  PIXI ) ‘/* of the corresponding random vector X is finite. 
Such a  constraint will remain on  P throughout this paper. 

Searching for an  optimal k-level quantizer for P is 
equivalent to the k-means problem: find a  set A = 
{ aI, a2,- f ep  ak} of cluster centers to m inimize the within 
cluster sum of squares 

wq, %,“‘,a k; P) = P(rr$nlX- aJ). 

The  corresponding quantizer maps each x into its nearest 
center ai. This formulation makes the dependence on  P 
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more explicit. Changing P would lead to a  new optimal A; 
but, intuitively, changing P by only a  small amount  should 
not affect the locations of the optimal centers too greatly. 
This is the idea underlying the consistency theorem for 
k-means clustering. 

Define the emp irical measure P,” by placing mass n- ’ at 
each of the first n members  of a  long training sequence of 
observations on  P. The  superscript w is to emphasize that 
P,” is a  random measure. The  emp irical measure can be  
used as an  estimator of P; the optimal quantizer for P,” 
provides a  good  approximation to the optimal quantizer 
for P. 

1 Consistency Theorem: Let P,” be the emp irical measure 
constructed from a  stationary, ergodic sequence of ob- 
servations on  a  distribution P for which P ( x I2 < co. Let 
A,” = {a;,; * . ,a,$} be  any set of k cluster centers that 
m inimizes I+‘( * ; P,“). If the set A = {a,, . + ., ak} that m ini- 
m izes W( ., P) is unique (up to relabeling of its members)  
then, under  an  appropriate labeling of the members  of A;, 
the sequence {a$} converges to ai for each i and almost 
every 0. 

Notice the awkwardness caused by the need  to match up  
the centers correctly. Especially in the mu ltidimensional 
case, this can greatly complicate the notation and  the flow 
of the proofs. The  approach to be  introduced in Section III 
avoids all these complications. 

A full proof of the consistency theorem for a  special case 
appears in Section II together with an  outline of the extra 
complications encountered in extending to the general  case. 
The  development is based on  [lo], which general ized the 
one-dimensional results of [6]. I also discuss in that section 
the possibility of replacing m inimum mean-squared error 
as the criterion of optimality. 

Section III treats the consistency theorem from a  differ- 
ent point of view. To  each optimal quantizer q for a  
distribution P there corresponds a  discrete probability 
measure Pq-‘, its image measure. I give a  simple char- 
acterization for such image measures. This correspondence 
between optimal quantizers and  discrete measures has nice 
continuity properties: if P’ lies close to P, then the image 
measures are also close to one  another. Applied to P and 
the emp irical measure P,,“, this gives a  result equivalent to 
the consistency theorem. 

All this theory sidesteps one  problem: results on  the 
asymptotic behavior of the global m inimum for W(. ; P,“) 
do not apply directly to the practicable quantization algo- 
rithms, which search out local optima. Confirmation of the 
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suspicion that all local minima get swept in towards a 
global minimum as IZ increases would therefore be of great 
theoretical comfort. This is a gap that needs to be filled. 

II. CONSISTENCY FOR ~-MEANS CLUSTERING 

For the proof of the consistency theorem, the 2-means 
problem for a distribution concentrated on a bounded 
interval of the real line presents the fewest difficulties. So, 
to begin with, consider sampling from the uniform distri- 
bution on [0, 11. The problem is to show that the optimal 
pair of centers constructed from a stationary, ergodic se- 
quence E,, t2,. - * of observations on that distribution con- 
verges to the pair of centers found by minimizing 

W(a, b) = W(a, b; uniform distribution) 

= /o’min(( x - a I*, ( x - b I”) dx. 

By symmetry I may assume that a 5 b. Break the range of 
integration into the intervals [0,1/2(a + b)) and [ 1/2(u + 
b), 13, then integrate out the two quadratics 

W(u, b) = u3/3 + (1 - b)3/3 + (b - ~)~,/‘12. (1) 
This function takes on its minimum value of l/48 at 
a = l/4, b = 3/4. Moreover, given any E > 0 there exists a 
6 > 0 (which you can actually calculate) such that IV(u, b) 
>e+1/48wheneverO1u~b11andmax(]u-1/4], 
I b - 3/4 () > 6. Put another way, a must be within a 
distance 6 of l/4 and b within a distance 6 of 3/4 
whenever 

W(u, b) I E + l/48. (2) 
To prove that the optimal empirical cluster centers at and 
b,” lie within 6 of l/4 and 3/4 I have only to check that 
they satisfy this inequality. 

The values of ai and b,” are found by minimizing, 
subject to the constraint 0 I ai i b,” I 1, the function 

W,(u, b) = W(u, b; P;) 

=n -’ f: min()& - ul*,l& - bj*). (3) 
i=l 

By the ergodic theorem, 

= w(1/4,3/4) 

Thus, 
= l/48. 

limsup W,( ai, b,W) I l/48 almost surely, (4) 

because Wn(ut, b,“) I W,(1/4,3/4). I shall show that W, 
can be replaced by Win (4) without increasing the left-hand 
side. From there it will follow that, with probability one, 
Ia:- l/4 1 I S and I b,” - 3/4 ] 5 S, eventually. You can 
apply the same argument to a sequence of 6 values con- 
verging to zero, discarding a null set of o at each 6, to 
establish the desired convergence, a: + l/4 and b,” -+ 3/4, 
for almost all 0. 

I shall justify substituting W for W, in (4) by proving 
that 

sup 1 W,(u, b) - W(u, b)l + 0 almost surely. (5) 
a,b 

This will follow from a uniform continuity property of the 
functions 

m(u,b;x)=min((x-u/~,(x-~/*). 

By compactness of the region defined by 0 I a or b I 1, 
there exists, for each positive 6, a finite collection 
(a,, b,); . -9 (a,, b,) such that 

min suplm(u, b; x) - m(a,, b,; x)] < c, 
i x 

for each (a, b) in that region; each m( a, b; .) is uniformly 
close to one of the functions m(a,, b,; e). Integrate out with 
respect to the uniform distribution, and then with respect 
to the empirical measure to deduce that 

and 
IW(a, b) - W(ui, bi)l<c 

IW,(u, b) - W,(ui,bi)l<‘, 

where i (the same i in both cases) depends on (a, b). Use 
this to bound the left-hand side of (5) by 

2~ + mFIW,(aip bi) - W(ui, bi)(. 

Apply the ergodic theorem s times, once for each pair 
(ai, b,), to show that the maximum here converges almost 
surely to zero. 

Convergence results like (5) are sometimes called uni- 
form strong laws of large numbers, or generalized 
Glivenko-Cantelli theorems, For a survey of such results 
see [4] or [3]. A more powerful combinatorial method that 
applies only to independent sequences of observations was 
described in [ 1 I]. This method gives rates of convergence. 

With some little ingenuity the proof of the special case 
just treated can be expanded to cover the general con- 
sistency theorem, as in [lo]. First consider the effect of 
replacing the uniform distribution by any P with compact 
support. The function W(u, b) need no longer take an 
explicit form, as in (l), but that affects the proof only 
superficially. As long as W(u, b)-or perhaps I should 
now write it as W(u, b; P)-has a unique minimum, the 
argument based on (2) still works. Of course you might 
have a little more trouble in finding 6 explicitly. 

When solving for k-means instead of 2-means, you will 
need to replace functions of two variables, such as 
W(a, b; P), by functions of k variables. The compactness 
argument leading to (5) generalizes easily to higher dimen- 
sions. 

For a general P on the real line, not necessarily with 
compact support but satisfying the conditions of the con- 
sistency theorem, a new complication enters. The uniform 
convergence (5) only holds when the cluster centers range 
over a bounded region. A preliminary argument is needed 
to show that the optimal empirical cluster centers must all 
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eventually lie in some fixed compact region. The  argument 
works by showing that any cluster center that lies too far 
from the origin can be  discarded without too great an  
increase in the within cluster sum of squares. This would 
result in a  (k - 1)-level quantizer with distortion almost 
equal  to that of the best k-level quantizer, which would 
contradict the uniqueness of the optimal k-level quantizer 
for the population distribution. For details I refer you to 
[lo, p. 1381  or Section V of this paper. 

Generalizing to mu ltidimensional distributions- to vec- 
tor quantizers, that is-presents only notational difficul- 
ties. No longer do  the cluster centers have a  natural order- 
ing imposed upon  them. W ithout some restriction on  the 
doma in of W(. ; P), the m inimum would not be  achieved 
at a  unique k-tuple of centers; relabeling of coordinates 
would give a  new k-tuple with the same value for W( . ; P). 
Working with the cluster centers as a  set of points in lRd 
calls for some fancy footwork to convert the preceding 
arguments into forms applicable to convergence of sets. 
That was the approach I adopted in [lo]; but now I find 
the solution offered later in this paper  more natural. 

F inally, what can be  done  to replace m inimum mean-  
squared error as the criterion of optimality? Consider, for 
example, a  criterion expressible in this form: choose the set 
A of optimal cluster centers to m inimize an  expectation 
H(A) = Ph(A; x). The  optimal emp irical cluster centers 
m inimize H,(A) = P,“h(A; x). As long as H( 0) were well 
defined and  finite, the ergodic theorem could be  applied to 
deduce that I H,,(A) - H(A) ) + 0  almost surely, for each 
fixed A. W ith sufficient smoothness properties for the 
functions h( *; .), this m ight be  extended to a  uniform 
convergence result 

sup I H,(A) - H(A) I -+ 0  almost surely, 
A 

at least if A were to range over a  compact region. Provided 
the optimal centers could be  forced into this compact 
region, and  provided H( *) had  a  unique m inimum at a  set 
A in this region, the argument at the beginning of this 
section could be  carried over. I would expect the first of 
these requirements to present the greatest difficulty. The  
references already cited for uniform strong laws of large 
numbers offer criteria powerful enough  to handle the uni- 
form convergence result. The  distortion measures discussed 
in [7] would be  good  cases to start with. 

III. REPRESENTINGQUANTIZERSBYMEASURES 

In Section I an  optimal k-level quantizer for P was 
defined as a  map  q that takes at most k values and  
m inimizes the L* distance II X - q( X)ll for every X with 
distribution P. Section II treated quantizers as sets of k 
points in R d, representing q by its range set. Now I turn to 
a  third method for representing a  quantizer, by considering 
the image measure Pq-‘. Questions of convergence of 
quantizers become questions of convergence of measures; 
problems of existence of quantizers become problems of 
m inimizing a  distance between measures. I defer proofs of 
results stated in this section to Section V. 

The  method for defining an  optimal k-level quantizer for 
P is equivalent to a  slightly more general  procedure. F ind a  
pair of random vectors X, with distribution P, and  Y, 
taking on  at at most k-distinct values, to m inimize the L* 
distance II X - Y Il. Up to almost sure equivalence, Y must 
be  a  function of X, this function will define an  optimal 
quantizer (3 Theorem). This construction suggests a  method 
for defining a  metric on  the class $’ of all probability 
measures on  Rd with finite second moment.  

2 Definition: The  distance A(P, Q) between two mea-  
sures in ?$’ equals the infimum of the L* distance II X - Y II 
over all pairs of random vectors X, with distribution P, and 
Y, with distribution Q . 

W ith the L* norm II X - Y II replaced by the L’ norm 
II X - Y I), , this distance would become a  special case of 
the Vasershtein distance [I] (also known as the ii metric 
[5]). Because the proof that A defines a  metric on  ??  follows 
Dobrushin [ 1, theorem 21  so closely, I om it the details. 

Write $?3k for the class of all probability measures on  Rd 
supported by at most k points, then define 

m,(P) = inf{A(P, Q): Q  E qk}. 

Call a  measure Q  in ??k optimal for P if A(P, Q) = m,(P). 
Optimal quantizers can be  identified with optimal mea-  
sures in $?)k. 

3 Theorem: Each optimal k-level quantizer q for a  mea-  
sure P in 9  defines an  optimal measure Q  in Tk by 
Q  = Pq-‘. Every optimal measure for P can be  con- 
structed in this way. 

Suppose P has a  unique optimal k-level quantizer q, 
corresponding to a  measure Q  in $?)k. Consider any other 
distribution P’ that is close to P in the sense that A(P, P’) 
is small. Then  members  of qy, that are optimal for P’ must 
lie close to Q  (9 Theorem). Put another way, if a  sequence 
{P,,} in $?  converges to P, that is A(P,, P) + 0, then the 
measures corresponding to the optimal k-level quantizers 
also converge: A(Q,, Q) + 0. 

Think of this as a  form of continuity for the map  that 
sends distributions onto optimal quantizers. The  conver- 
gence A( Q ,, Q) --f 0  comes as close as possible to proving 
pointwise convergence of the corresponding quantizers 
(4,). After all, each q, is defined only up  to almost sure 
equivalence. It certainly does imply convergence of the 
quantization levels (6 Corollary) though. 

Apply this argument with P, equal to the emp irical 
measure P,” constructed from a  stationary, ergodic se- 
quence of observations on  P. For almost every LJ (7 Theo-  
rem), A( P,“, P) + 0, which implies that A(Q,“, Q) + 0. This 
provides another proof for the consistency theorem of 
Section I. 

IV. FURTHERRESULTSON~-MEANS 

The  statement of the consistency theorem postulates the 
uniqueness of the optimal cluster centers for the underlying 
population distribution P. What happens when this condi- 
tion is violated? One  way to get nonuniqueness would be  
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for P to have fewer than k points in its support. In that Take independent observations [,, t2, . . . on the uni- 
case the whole theorem falls apart, because at least one form distribution on [0, 11. Remember the notation 
cluster center is free to wander where it will. With the 
elimination of this possibility, however, something can be 
salvaged. 

As long as the support of P contains at least k distinct 
points, Theorems 9 and 7 force the measure Q;, corre- 
sponding to an optimal k-level quantizer for the empirical 
measure P,“, to converge almost surely towards the set 
M(P) of optimal measures for P. 

4 Example: Consider the optimal 2-level quantizers for a 
probability measure P that places mass l/3 at each of the 
vertices u,, v2, v3 of an equilateral triangle. The optimal 
quantizer levels can be any of 

m(u, b; x) = min(]x - u12,]x - bl*). 

From (3), 

n’/*( W,(u, b) - W(u, b)) 

=n -‘I* i m(u, b; &) - Pm(u, b; &) 
i=l 

= X,,(u, b), say. (6) 
Concentrate on values of (a, b) close to the population 
optimal values (l/4,3/4), by writing 

u = l/4 + n-‘/5, b = 3/4 + n-‘/*t. 

4 aI = tv, + v2)/2, u* = 03 A formal Taylor series expansion of m about (l/4,3/4) . * 
b) a, = (01 + 03)/2, u* = v* leads to 
cl a, = (02 + Q/Z u* = v,. x,(1/4 + n- ‘/*s, 3/4 + n-‘/*t) 

The empirical quantizer levels will approach this set of = X,(1/4,3/4) + 2n-‘/*sY, 

three possible population quantizer levels; the pair of + higher order terms, 
empirical centers flips infinitely often between three possi- 
ble configurations, moving closer to one of a), b), or c). where 

The random measures {Qz} converge in distribution to- 
wards a uniform distribution over the three-point set M(P). 

Y, = n-‘$ (& - l/4){& 5 1 

t 2n-‘/*tZ 

?7) 

(To make sense of this statement, remember that Qz can 
be regarded as a random element of G?,.) If you don’t 
believe all this, you can prove it directly for yourself using 
elementary properties of the trinomial distribution. q 

Any distribution P that is invariant under some group of 
symmetries on Rd will exhibit this sort of behavior. The 
compact set M(P) of optimal measures inherits a group of 
symmetries; the random measures {Qz} converge in distri- 
bution to the invariant measure on M(P). Consider the 
case of optimal 2-level quantizers for the spherical normal 
distribution if you want an example less trivial than the 
three-point distribution above. 

What consequences do these results have for the con- 
struction of quantizers for distributions with symmetries? I 
would expect that the local optima found by the quantiza- 
tion algorithms would suffer from the same sort of rota- 
tional instability as the global minimum. 

Whenever a consistency result has been proved, prob- 
abilists always start looking for a companion central limit 
theorem. For k-means, such a theorem holds if the popula- 
tion distribution has a smooth density, in addition to 
satisfying the conditions for the consistency theorem. For 
independent sampling, the one-dimensional case was solved 
in [6], the multidimensional case in [ 121. 

Write (I, for the vector of optimal empirical cluster 
centers, and c1 for the optimal population centers, which 
are assumed to be uniquely determined. Then n’/*(a, - a) 
converges in distribution to a N(0, V) distribution. The 
variance matrix V involves terms like the integrals of the 
population density over the faces of the optimal clusters. 
Let me sketch the method of proof for the 2-means prob- 
lem considered at the beginning of Section II. 

and Z,, has a similar form. Read the factor {ti i l/2} in 
the summation here as an indicator function of the set 
where & I l/2. Combine (6) with (7) to get an approxima- 
tion for W, near the population optimum. 

W,(1/4 + n- ‘/*s, 3/4 + n-‘j2t) 

= W(1/4 + n- ‘/*s, 3/4 + n-‘/*t) 

fn-‘/*X,(1/4,3/4) 

+2n-‘(sY, + tZ,) + higher order terms, 
= l/48 + n-‘(3s2/8 - st/4 + 3t2/8) 

+n-‘/2X,(1/4,3/4) 

+2n-‘(sY, + tZ,) + higher order terms, 

= l/48 + n-‘/*X,( l/4,3/4) 

fn-‘(quadratic ins and t) 
+ higher order terms. 

To accuracy of the order n -I/*, the location of the mini- 
mum of W, can be found by minimizing the quadratic 
term. This gives the optimal empirical centers 

aw = l/4 + n-‘i2(linear function of Y, and Z,) n 
+higher order terms, 

and 
b,” = 3/4 + n-‘/*(linear function of Y, and Z,) 

+ higher order terms. 
The linear functions of Y, and Z, here have an asymp- 

totic joint normal distribution, because both Y, and Z, 
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have the form (8) of a  normalized sum of independent 
random variables. This accounts for the asymptotic nor- 
ma lity of the optimal emp irical centers. See [ 121  for a  more 
rigorous derivation of this result. 

The  argument becomes much more complicated when 
the distribution P does not have a  unique optimal k-level 
quantizer. Hartigan [6] has conjectured the asymptotic 
distribution of the m inimum value of W ,, the m inimum 
distortion obtainable with a  k-level quantizer, but has 
given no  proof. 

V. PROOFSOFTHERESULTSOF SECTION III 

The  infimum in the definition of A is achieved. That is, 
for each P and Q  in 9, there exist random vectors X with 
distribution P and Y with distribution Q  such that A(P, Q) 
= II X - Y II. Indeed, as shown by Shields in [9, appendix], 
the random vectors X and  Y can be  taken as the coordinate 
projections on  Rd X Rd: there exists a  probability measure 
p  on  lR2d, with marginal measures PX-’ = P and PLY-’ = 
Q , for which A( X, Y)* = p  I X - Y I*. Put another way, 
there exists a  family {Q(x, .)} of probability measures on  
Rd such that, for any X with distribution P, any random 
vector Y generated by using Q(x, a) for the conditional 
distribution of Y given X = x will have distribution Q  and  
satisfy II X - Y II = A( X, Y). This representation will be  
needed  for the proof of 5  Theorem. 

Proof of 3 Theorem: To  each Q  in $?)k there is a  k-level 
quantizer s such that 

A(P, Q) 2 IIX- s(X)ll, 

for any X with distribution P. The  construction is easy. 
F ind random vectors such that A(P, Q) = 11  X - Y II. Sup- 
pose Y takes the values a,, u2; + * ,uk. Define the clusters 

ci = {x E Rd: ( x-u,(I(x-(1,1,forallj}. 

It doesn’t matter that these clusters overlap, al though it 
does necessitate some nit picking in the definition of s. If x 
belongs to C, and  does not belong to Cj, for any j less than 
i, define s(x) to equal  a,. 

Suppose q is an  optimal k-level quantizer for P. Then  

A(P, Q) = IIX- YII 2  IIX- s(X)11 

2 IIX- q(X)ll 1  A(P, Pq-‘) 2 m,(P). 

Since these inequalities hold for every Q  in 9,, the measure 
Pq-’ must achieve the lower bound  m,(P). 

Conversely, suppose Q  is optimal for P (that is, 
II X - Y 11  = mk( P)). Then  (1 X - Y II = II X - s( X)11. This 
implies that Y = s(X) almost surely, except possibly for 
those sample points where Y = ui and  X lands on  the 
boundary between Ci and  some Cj. By showing that this 
can occur only with probability zero, I shall prove that 
s(X) has distribution Q , the desired result. (Compare the 
method of proof with Lloyd’s [B] discussion of his Method 
1.) 

F irst notice that a, must equal  the conditional mean  
pLI = P(XI Y = a,), for otherwise II X - Y II could be  de- 
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creased by the amount  I ui - pi J*lP’{Y = ui} by shifting the 
center ui to pi. (I assume here that lPp(Y = a,} #  0. The  
same argument would work if Y took on  fewer than 
k-distinct values with positive probability.) This constraint 
forces X to place no  probability on  the cluster boundaries. 
For suppose there were a  set B of positive probability for 
which Y = ui and  X fell on  the boundary common to C, 
and  C;.. Define Y* to equal  Y at sample points not in B, 
andtoequalujonB.BecauseIIX- Y*ll = IIX- YII,this 
Y* would correspond to a  Q* optimal for P; but uj would 
not equal  the conditional expectation P( X I Y* = a/). 0  

Since the definition of the A metric involves an  infimum 
over a  large class of pairs of random vectors, it m ight seem 
that checking convergence in that metric would require 
messing about with many L* convergences. The  next theo- 
rem gives a  much cleaner characterization, relating A con- 
vergence to the well studied concept of weak convergence. 
This characterization simplifies the task of proving conver- 
gence of emp irical measures. 

5 Theorem: A( P,,, P) -+ 0, if and  only if {P,} converges 
weakly to P and P,, I x (* -+ P 1 x I*. 

Proof: Suppose A( P,, , P) * 0. Choose any X with dis- 
tribution P then, using the conditional distributions de- 
scribed at the start of this section, construct random vec- 
tors {X,} with distributions {P,} such that II X, - XII = 
A( X,, X). Convergence in L* norm of {X,} to X implies 
weak convergence of {Pn} to P and convergence of second 
moments. 

Now to show that weak convergence plus convergence of 
second moments implies convergence in the A metric. By 
the Skorohod representation [2], there exist random vectors 
X,, (with distribution P,) and X (with distribution P) such 
that X,, converges almost surely to X. From Fatou’s lemma, 

From this and  the convergence 5’ I X, I2 + P I X I2 deduce 
that X, converges to X in L* norm. 0  

6  Corollary: If a  sequence {Q,} in T7k converges in the A 
metric to some Q  in G?k then with a  suitable labeling 
{a nit’ . -,unk} for the support points of Q , and  { 
for the support points of Q , 

u,i + uiY for each i. 

Proof: For any tiny 6  Seth(x) = [l - 6-l 1  
This function is bounded  and  continuous. In 

x - ui I]‘. 
order that 

Q ,( J;) -+ Q( f,), the measure Q , must eventually land one  
of its support points within a  distance 6  of ui, for each i. 0  

5 Theorem corresponds to Dobrushin [ 1, theorem 21. The  
construction he  used in the second half of his proof paral- 
lels Dudley’s [2] method for obtaining the Skorohod repre- 
sentation. 

7 Theorem: Let P,” be the emp irical measure constructed 
from a  stationary, ergodic sequence of observations on  P. 
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For almost every w, 
A(P,“, P) --f 0. 

Proof: The idea behind this result goes back at least as 
far as [ 131. Write C for the class of all bounded, continu- 
ous, real functions on Rd. Let C, be a countable subclass 
such that every fin C can be obtained as a pointwise limit, 
h rf, of functions in C,. For each fixed A, the ergodic 
theorem ensures 

P,W( f; ) --) P( J; ) almost surely. (9) 
Discard at most countably, many null sets of w to be 

assured that the convergence in (9) holds with probability 
one for every fi in C, simultaneously. For an w at which 
this holds, liminf P,“(f) 2 lim P,“(h) = P(f,), for every i. 
Let i tend to infinity. Then lim inf P,“(f) 2 P(f). Apply 
the same argument with -f in place of f to get weak 
convergence of {P,“} to P, for almost all 0. Cast out 
another null set on which {P,” 1 x I*} might not converge to 
P 1 x I’ to be left with a set of w on which A(P,“, P) + 0, by 
virtue of 5 Theorem. 0 

In [lo], the hard step in proving the consistency theorem 
for k-means came with showing that all the optimal cluster 
centers eventually lie in some compact region of Rd. The 
argument needed there appears in a disguised form in the 
next lemma. Before proving that lemma, I need to dispose 
of one trivial case that would otherwise continue to de- 
mand attention. Clearly it makes no sense to look for 
k-level quantizers for a distribution concentrating on fewer 
than k points. So from now on I shall insist that P does not 
degenerate in this way. Existence of a unique optimal 
k-level quantizer demands at least this much. Equivalently, 
I can require that m,(P) < m,-,(P): if P does not con- 
centrate on k - 1 or fewer points then an optimal (k - l)- 
level quantizer can always be improved by adding in one 
more quantization level. 

8 Lemma: Suppose the support of P contains at least k 
distinct points. Then if mk 5 a =C mk-,( P), the set K(a) 
= {Q E $7”,: A(P, Q) 5 a} is compact. 

Proof: I shall show that, for a suitably large value of 
R, all the measures in K(a) have support in the closed ball 
S(5R) of radius 5R centered at the origin of Rd. Since a 
measure in $?k is specified by a set of k points in Rd and a 
set of k nonnegative weights summing to one, K(a) can 
then be expressed as a continuous image (by virtue of 6 
Corollary) of a product of S(5R)k and a compact simplex 
in Iw k, which makes K(a) itself compact. 

The R needs to satisfy two conditions. First choose r so 
that PS(r) > 0, then choose R to achieve 

a) (R - r)*PS( r) > a 
b) 2(P 1 x I*{\ x I> 2R})‘/* < m,-,(P) - a. 

Given Q in K(a), choose Y with distribution Q and X with 
distribution P so that (Y 2 A(P, Q) = II X - Y Il. The ran- 
dom vector Y must take at least one value within the closed 

ball S(R), for otherwise 

IIX- Yll’?P(R-r)*{(X(Ir}, 

contradicting a). 
Suppose that Y takes values y,, y2; . . ,yk, where at least 

y, lies in S(R). I shall show that S(5R) contains every yj. 
Suppose, to the contrary, that ( y, (> 5R, for example. 
Define a random vector Y*, which takes on at most k - 1 
values, by setting it equal to Y, if Y # y,, and equal to yr, 
if Y = y,. From the inequality 

lx-Y1 triX-ykl +2txt {iXi>2R) 

deduce that 

IX- Y*ll 5 IIX- YII + 2llX{(Xl> 2R)II 

< ff + (m,-,(P) - a). 

This contradicts the defining property of mk- ,( P). (Com- 
pare this argument with Lloyd’s [8] discussion of his Method 
1.1 El 

Incidentally, 8 Lemma proves that optimal quantizers do 
exist. The set 

M(P) = {Q E qk: A(P, Q) = mktP)} 
equals the intersection of the nonempty, compact sets 
K(a), for mk( P) < (Y < mk-,( P). It therefore cannot be 
empty. 

For the P appearing in the statement of the continuity 
theorem, M(P) contains only one element, by assumption. 
A form of the result can be proved without this assumption 
however. Recall that the distance between a measure Q* 
and the set M(P) is defined as A(Q*, M(P)) = 
inf{A(Q*, Q): Q E M(P)}. 

9 Theorem: For n = 1,2,. . . , let Q, in y)k be optimal for 
a probability measure P,,. Suppose A(P,, P) * 0, where P 
has support containing at least k distinct points. Then 
A(Q,, Wf’N + 0. 

Proof: Define N(6) = {Q E ??‘,: A(Q, M(P)) 2 S}. 
I shall prove that, for each 6 > 0, 

inf{A(P, Q): Q E N(6)) > m,(P) (10) 
and 

A@‘, Q,) --) mk(P). (11) 

Together these imply the stated result. 
By definition, the continuous function A( P, a) is strictly 

greater than mk( P) at all points of qy, not in M(P). For 
any fixed (Y between m,(P) and m,-,(P), this continuous 
function must achieve its lower bound on the compact set 
N( 6)K( a); everywhere outside K(a) it exceeds (Y. Combine 
these two bounds to get (10). 

The triangle inequality ensures that m,(P) varies con- 
tinuously with P. Thus, 

mk(P) 5 A(P, Q,) 5 A(f’, P,> + A(Pn, Q,) 
= A(P, p,> + mktPn) --) m,(P). I7 
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Exponentia l Rate o f Convergence for 
L loyd’s Me thod I 

JOHN C. KIEFFER 

A &tract -For a random variable with finite second moment and log- 
concave density, a unique quantizer exists which produces the min imum 
expected encoding error, using squared-error distortion. An algorithm 
given by Lloyd (Lloyd’s Method I) yields a sequence of quantizers which 
converges to the opt imum quantizer. Using results of Fleischer, it is shown 
that the convergence takes place exponentially fast if the logarithm of the 
density is not piecewise affine. As a consequence the number of iterations 
of Lloyd’s algorithm needed to obtain the opt imum distortion correct to n 
decimal places approaches infinity no faster than linearly in n. Another 
consequence is that if the output of a stationary information source at each 
time is distributed according to the given density, the source output can be 
encoded at each time i using the quantizer obtained on the i th iteration of 
Lloyd’s method obtaining the same asymptotic behavior one would have 
obtained if the opt imum quantizer had been used to encode at each time. 

I. INTRODUCTION 

L ET u, r be  extended real numbers with u  < 7. Let p: 
(u, 7) -+ (0, cc) be  a  log-concave probability density 

with /,‘x*p(x) dx < cc. Let N be  a  fixed positive integer, 
greater than one. We  call a  map  Q : (u, 7) -+ (- co, cc) an  
N-level quantizer, if and  only if there are real numbers 
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ECS-7821335: 

The author is with the Department of Mathematics and Statistics, 
University of Missouri-Rolla, M O  65401. 

Yl>. * . , yN and  real numbers x1 < . . . < xN-, in (u, 7) such 
that 

Q(Y) =Y,, xi-, 5  y < xi, i = l;**,N > 

where we take x0 = u, x - 7. (We adopt this convention 
from now on* that is if z,~~(u . 

1,’ . . , uN-, ) is a  sequence of 
(N - 1) real’numbeis, it will be  understood that in addi- 
tion there is a  u0  defined to be  u  and  a  uN defined to be  r.) 

It is well-known [2] [9] that if X is a  (a, r)-valued 
random variable with density p, there is a  unique N-level 
quantizer Q* for which 

E{tX- Q*(X))‘} -{tX- Q(X))‘}, 

for every N-level quantizer Q . Thus, if one  wishes to 
encode X with an  N-level quantizer, the best encoder,  in 
the sense of squared-error distortion, is Q*. 

Lloyd’s Method I [6] is a  way of finding Q*. It involves 
applying a  certain iterative procedure to an  initial quan-  
tizer Q ,, obtaining a  sequence of quantizers Q ,, Q , , 
Q2,. . -3 which are successive approximations to Q*. In the 
lim it, Q , + Q*. We  now describe this method. 

Let R denote the real line and  let 0, be  the set of all 
(Xl,’ * * ,x,-,1 E R N-‘suchthatu<x, < . ..<xN-.<r. 
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