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Asymptotics via Empirical Processes

David Pollard

Abstract. This paper offers a glimpse into the theory of empirical processes.
Two asymptotic problems are sketched as motivation for the study of
maximal inequalities for stochastic processes made up of properly standard-
ized sums of random variables—empirical processes. The exposition devel-
ops the technique of Gaussian symmetrization, which is the least technical
of the techniques to have evolved during the last decade of empirical process
research. The resulting maximal inequalities are useful because they depend
on quantities that can be bounded using simple methods. These methods,
which extend the concept of a Vapnik-Cervonenkis class of sets, are
demonstrated by use of the two motivating asymptotic problems. The paper
is not intended as a complete survey of the state of empirical process theory;
it certainly does not present the whole range of available techniques. It is
written as an attempt to convey the look and feel of a very powerful, very
useful, and tractable tool of contemporary mathematical statistics.

Key words and phrases: Empirical process, maximal inequality, Gaussian

process, capacity, symmetrization, Vapnik-Cervonenkis classes.

1. INTRODUCTION

Empirical process theory extends classical results
for empirical distribution functions to multidimen-
sional and abstract settings. At the heart of the theory
lies a collection of refined methods for proving maxi-
mal inequalities. In the empirical process literature,
the simplicity of the basic idea is sometimes lost
amongst the supporting mass of detail needed for
mathematical precision. This paper takes a more
relaxed approach to explain one special version of
one empirical process method.

I make no attempt to obtain the best results possi-
ble, and no attempt to discuss the measure theoretic
precautions needed for a fully rigorous treatment. A
dissatisfied reader should consult the references cited
in Section 6 for further details. That section also
mentions some of the other empirical process methods
not covered in the paper.

. As the title suggests, the paper also has something
to say about asymptotics. Stated tersely the message
is: Much asymptotic effort has been devoted to bound-
ing error terms in Taylor expansions; empirical proc-
ess theory provides some effective new tools for doing
this. The discussion in Section 2 concerns two exam-
ples chosen to illustrate the message. My aim is to
convince the reader that all asymptotic subtlety in
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these problems can be captured by two uniform con-
vergence conditions (numbered (2) and (3) in Section
2), which are amenable to the particular empirical
process method described in Section 4. This method
works well for problems involving averages of func-
tions of independent observations. The functions can
depend in a discontinuous fashion upon multidimen-
sional parameters. Instead of smoothness, the required
regularity properties involve combinatorial or geomet-
ric constraints, as catalogued by Section 5.

The empirical process method depends upon two
tricks that at first seem to lead in the wrong direction.
Starting from a family of averages, one introduces
extra randomness to symmetrize and then transform
the process of averages into a conditionally Gaussian
stochastic process. The details appear in Section 4. A

- recursive method, known as chaining, can be applied
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conditionally to the transformed process, taking ad-
vantage of the rapid decrease in Gaussian tails to
bound the process probabilistically by an integral in-
volving a capacity function. Section 3 discusses the
chaining method for Gaussian processes; Section 5
discusses the various ways to obtain the necessary
uniform bounds on the capacity function.

Throughout the paper, I use linear function notation
whenever it can cause no ambiguity. Instead of EX for
the expected value of a random variable I write PX;
instead of [ f(x)Q(dx) or [ f dQ for the integral with
respect to a measure I write Q(f), or just Qf. The
notation is good because it eliminates an unnecessary
distinction between (indicator functions of) sets and
other functions.



342 D. POLLARD

2. TWO ASYMPTOTIC PROBLEMS

Suppose x,, %2, - - - are independent and identically
distributed observations from a distribution P on the
real line. One historically interesting estimator for
the spread in P is the average absolute deviation
from the sample mean,

n

A, =n' Y |x — %|.

i=1

If P has a finite variance, what is the large sample

behavior of A,,? That is the first of the two problems

to be discussed in this section.

As a first approximation one might replace % by the
population mean, u, which suggests that A, should be
close to an average of independent random variables
| x; — p|. That would give

A,,z‘r=f|x—u|P(dx) for large n.

It would also suggest that n'/2(4,, — 7) has an approx-
imate N(0, ¢%) distribution, with ¢ equal to the
variance of P minus 72. One should treat the second
suggestion with some suspicion because the difference
% — u, which is of order n~"/?, might not be negligible
when magnified by the n'/? scaling factor. To decide
whether it can be ignored, let us approximate A, by
an expression involving ¥ — u explicitly.
For each real ¢ define

n

G.(t) =n' ¥ |x — t].
i=1
The statistic A, equals G,(x). At each .‘ﬁxed t, the law
of large numbers implies that G, (t) is eventually close
to .

G@t) = f | x — ¢| P(dx).

If P has a finite variance, the standardized difference
n'2(G,(t) — G(t)) is asymptotically normal, for each
fixed t. Because the asymptotic variance depends con-
tinuously on ¢, the approximating distribution is al-
most unchanged if ¢ varies over a small neighborhood
‘of u. With big probability, the random variable %
selects out index values from a small neighborhood of
. So perhaps n'/2(G,(x) — G(x)) has the same limiting
distribution as n'?(G,(x) — G(r)). That is indeed
what happens.

The argument is clearest when expressed in empir-
ical process notation. Expectations with respect to the
empirical measure P,, which puts mass n™' at each of
X1, ---, Xp, are just sample averages. In particular,
G, (t) equals the expectation of the function f (x, t) =
|x — t| with respect to P,, or in linear functional
notation, G,(t) = P.f(-, t). Similarly, we have

G(t) = Pf(-, t) and
n'2(G,(t) — G(t)) = nV*(P, — P)f(-, t).

The empirical process, v,, denotes the rescaled differ-
ence n'/?(P, — P). It may be thought of as an operator
that acts on a function h to produce a properly stand-
ardized sample average. If h has a finite variance with
respect to P,

b =1 3 (h(x) = Ph) v N(O, varp(h)),

where varp(h) = Ph? — (Ph)?. If v, acts on a paramet-
ric family of functions, it produces a parametric family
of approximately normally distributed random vari-
ables. In some asymptotic sense, the process v,f (-, t)
is approximately Gaussian. If the paths of the approx-
imating Gaussian process depended continuously on
the parameter t, small perturbations in ¢ would not
have much effect on v,f (-, t). If that were true, and
if the averaging effect of P made G a smooth function
near u, one could argue in the following way. For ¢
near u,

Gn(t) = Paf(-, t)
=P +n")f(-,t)
= G(t) + nTuf (-, t)
~ Gp) + (t — w)G' (p) + n7 v f (-, u).
In particular,
n*?(A,—G(p)) =n(Z— p)G’ (p) +vaf (-, ).

As a properly standardized average of independent
summands, the righthand side would have an asymp-
totic normal distribution.

Notice that the difference ¥ — u would contribute
to the limiting distribution of A, unless the derivative
G’ (p) vanished. That would happen if G were mini-
mized at p, that is, if u were a median of P. The
contribution from % — u could be ignored if P were
symmetric about u, for example. Alternatively, one
could replace x by a sample median, m,, then argue
that

n'*(G.(m,) — G(m)) = v,f(-, m)

with m a population median.

To make the approximation arguments precise, one
needs probabilistic bounds on the oscillations of », in
shrinking neighborhoods of a point ¢, (either 4 or m
in the preceding discussion) in the index set. It would
suffice if one could prove, for every sequence of posi-
tive numbers {8,} converging to zero, that

Sup{anf(', t) — an('y t0)|5|t - tOl = 6n}
(2)
=op(1).
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If G is differentiable at u and if (2) holds, it is easy to
show that n/2(A,, — G(u)) does have the asymptotic
normal distribution suggested by the heuristics.

Empirical process theory offers very efficient meth-
ods for establishing uniformity results for v,. As will
be shown in Example 5.3, assertion (2) is a conse-
quence of the simple fact that, for each «a and ¢, the
set

fx ER:f(x, t) — f(x, &) = o}

is an interval. It will also be shown that the analogous
problem in higher dimensions—asymptotic behavior
of the sum of Euclidean distances from a vector esti-
mator of location—can be solved using empirical proc-
ess methods almost as easily as the one-dimensional
problem.

Now for the second problem. A sample median m,
offers a more natural centering than x because it
minimizes G,. Choice of m, for the centering leads to
another measure of spread, inf, G,(t), for the sample.
Many goodness-of-fit and estimation procedures in-
volve a minimization of random functions like G,. In
general, however, there is no simple closed-form so-
lution for the minimizing value, and then one must
argue directly from the consequences of the minimi-
zation.

We could analyze inf, G, (¢) directly, using empirical
process methods. Or, more ambitiously, we could con-
sider a multidimensional analogue such as the spatial
median (Pollard, 1984, Example VII.18) or the least
absolute deviations regression estimator (Bloomfield
and Steiger, 1983, Section 2.2). But these examples all
involve minimization of a convex criterion function,
whose analysis can be carried out much more simply
using elementary methods (Pollard, 1989a). For the
second problem, I have instead chosen an estimator
whose study involves several nasty complications:
minimization over a multidimensional parameter of a
nonconvex, random criterion function that is not
everywhere differentiable. To forestall criticism of my
choice of estimator, let me stress that I am interested
in it only for its resistance to traditional methods of
analysis. The reader probably knows of more sensible
estimators whose analyses share some of these com-
‘plicating features. '

Suppose x;, Xz, --- are independent, identically
distributed observations from a distribution P on R>2.
For each ¢ in R? let h(-, t) be defined by

h(x, t) = min{l, |x — t|?}.
Suppose 7, is chosen to minimize
H,(t) = P;h(-, t).

As before, for each t, the random variable H,(t) will
settle down to its expected value, H(t) = Ph(-, t). Let

us assume that H has a unique minimum at some 7o,
and that the distribution P is sufficiently smooth to
make H twice differentiable at 7,. If we also assume
the second derivative to be nonsingular, we can sim-
plify notational difficulties by reparametrizing to
make 7, equal to 0 and

H(t) = H() + %|t|2+ o(]£|?) near zero.

It is necessary to carry the Taylor expansion to quad-
ratic terms, because a linear approximation analogous
to (1) would not suffice to locate the minimizing value
of H,.

A typical analysis would begin by establishing con-
sistency of 7, (that is, by showing that it converges in
probability to zero); then strengthen that to an n™'/2
rate of convergence; and then concentrate on the
behavior of H, in a O,(n""/?) neighborhood of zero, to
deduce the limiting behavior of n?7,. Let us skip
straight to the third step, which is the most interest-
ing, by assuming that 7, = O,(n"*/?). See Pollard
(1984, Section VII.1; 1985) for some discussion of how
to justify such an assumption.

For |t| of order n™'/2 the %|t|? contributed by
H(t) is of order n™!, whereas n”"?v,h(-, t) is of order
n~Y2.If the contribution from the random component
of H, is not to swamp the quadratic, we must decom-
pose v,h(-, t) further, into a part that is linear in ¢
plus an error of smaller order.

To extract a linear contribution from »,, we have to
carry out some sort of pathwise Taylor expansion on
h(-, t), but only to linear terms. If we ignore possible
problems with nondifferentiability at the truncation
point, we are led to regard

Alx) = —2x{|x| < 1}

as the derivative dh/dt evaluated at ¢ = 0. The
remainder term,

R(x, t) = h(x, t) — h(lxt,|0) —t'A(x)

I

is small for t close to zero, but only in a pointwise

" sense: R(x, t) — 0 as |t| — 0, except for those x

with | x| = 1. It does not converge uniformly to zero
as |t| — 0, which explains in part why traditional
methods have difficulty with this problem.

The approximation to H, required by the minimi-
zation problem is

H,(t)=H(¢t)+n " v,[h(-,0) +t"A(-) + | ¢|R(-, 1)]
=H(0)+%|t|>+0(| t|?) +n""?v,h(-,0)
+n 2t A+ n" V2| t | v R(-,t).

With error terms discarded, and the contributions that
do not depend on t consolidated into a single term,
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the approximation becomes
H,(t) =~ H,(0) + %[ t|* + n "2t v, A.

This suggests that the 7, minimizing H, should be
close to the t that minimizes the quadratic approxi-
mation, or,

1/2 2

n'’*r, = —p,A.

The random variable —v, A has an asymptotic normal
distribution. A rigorous argument to show that n'/?7,
does have the same limit distribution, under the as-
sumptions that we have made about H, can be based
on an analogue of the uniform convergence condition
(2). The main difficulty is to show, for each sequence

of positive numbers {4,,} converging to zero, that
(3) sup{| v, R(-, t)|: | t] = 8.} = 0,(1).

This task will be completed in Example 5.4. For the
remaining details in a rigorous proof of asymptotic
normality for n'/%7, the reader is referred to Theorem
VII.5 of Pollard (1984) or Theorem 2 of Pollard (1985).

3. MAXIMAL INEQUALITIES FOR GAUSSIAN
PROCESSES

A stochastic process is a collection of random vari-
ables {X,:t € T}. If each finite subcollection of these
random variables has a joint normal distribution the
process is said to be Gaussian. This section describes
an efficient method—a version of the approximation
technique known as chaining—for obtaining proba-
bilistic bounds on sup; | X;|. In its various forms,
chaining has become a basic tool in studies of Gaussian
processes, empirical processes, partial sum processes,
and probabilistic limit theory in Banach spaces.

The method depends on a very simple moment
bound for the maximum absolute value of a finite
collection of normal random variables. Suppose Z; has
a N(0, ¢?) distribution, for i =1, - - -, n. Nothing need
be assumed about their joint distribution; in particu-
lar, they need not be independent. Write ¢ for the

largest ¢;. The crudest bound for max| Z;| is },; | Z;|. -

This gives

P max | Z;| = Con,
i

where C = P| N(0, 1)|, a universal constant. Clearly
a bound that grows this fast is of little use. If the Z;
were independent N(0, 1) random variables the ex-
pected value would grow like (log n)'?; if the Z; were
as dependent as possible, with all Z; equal to Z;, the
expected value would not even change with n. In the
independent or near independent case, the bound can
be much improved by applying the crude inequality to
a transformation of the Z;. Let H(-) be a nonnegative,
convex, increasing function on the positive half line.

Then, from Jensen’s inequality followed by the crude
inequality,

H(P max |Z,-|) =P max H(|Z]|) = ZPH(|ZL~|).

The idea is to make H increase about as fast as the
tails of | Z; | can bear, keeping the sum of expectations
bounded by a multiple of n. For normal tails, the
function H(x) = exp(Vax>/o?) suffices:

P exp(Y4Z?2/s?)
< (27w)71? j:: exp(Vax? — %x?) dx = 2.
Thus
H(P max |zi|) =< V2n.

To get a tidier inequality, increase V2n to n?, apply
H™(-) to both sides, then increase 2 V2 to 3, giving

(4) P max |Z;| <3 max o;(log n)"? forn = 2.

If the {Z;} are not too dependent this bound has the
correct order of magnitude. For example, if they have
a joint normal distribution and if P(Z; — Z;)* = Y¢?
for i # j, then an inequality of Sudakov (Section 2.3.1
of Fernique, 1974) shows that

P max | Z;| = co(log n)'’?,

for some positive universal constant c.

Repeated application of inequality (4) can lead to
a surprisingly good bound on the supremum of a
Gaussian process.

3.1 Example

Brownian motion on [0, 1] is a Gaussian process
{B(t):0 = t = 1} having continuous sample paths and
independent increments, with B(0) = 0 and B(t) —
B(s) distributed N(0, |t — s|). A rescaling argument
shows that

P sup |B(t)| = K62

0=<t=<é

with K a positive constant. As we will see, inequality
(4) gives the same 6'/2 rate of decrease.

The idea is to approximate the supremum by max-
ima taken over a succession of increasingly finely
spaced, finite subsets of [0, 1]. For k=0, 1, - - - define
6, = 6/2* and let T'(k) denote the set of 2* equally
spaced points {8, 20k, - - -, 2%8,}. Because B has con-
tinuous sample paths, the maximum of | B(t)| over
T(k) increases monotonely to the supremum for each
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path, and hence
P max |B(t)| - P sup |B(t)| as k— .
T(k) 0=<t=<$é

Direct application of (4) bounds the lefthand side by
36'2(log 2*)'/?, which increases to +o with k. Appar-
ently there is too much dependence between the values
of B(t) as ¢t runs through T'(k).

One must take a more devious approach, working
towards the maximum a step at a time. Inequality (4)
should be applied to the maximum of the small incre-
ments that enter into the difference between the max-
imum over T'(k) and the maximum over T'(k — 1).
Figure 1 represents a systematic way of relating the
maxima over successive T'(k) sets. The name chaining
comes from the picture. To each ¢ in T'(k) there
corresponds a t* in T'(k — 1) lying within a distance
0r-1, as indicated by the vertical and sloping lines.
Sometimes t* = t, but that does not matter. By the
triangle inequality, for any particular ¢, ¢ * pair,

[B(t)| = |B(t*)| + |B(t) — B(t*)|.

As t runs through T'(k), the first term on the righthand
side runs through the variables involved in the maxi-
mum over T'(k — 1), and the second term runs through
a set of 2* increments of B across index points less
than §,-, apart. It follows that

max | B(t)| = max |B(t*)| + max | B(t) —B(t*)].
T(k) T(k—1) T(k)

Take expected values of both sides, applying (4) to the
contribution from the increments, to get

(5) Pmax|B(t)| <P max | B(t)| + 35}/% (log 2¥)'/2.
T(k) T(k—1)

The star has been dropped from the ¢* to emphasize
the recursive nature of the inequality. Repeated sub-
stitution for the first term on the righthand side of (5)
eventually replaces it by a maximum over the single-
ton set T'(0), with the addition via (4) of one more

T(0)

T(1)

T)

—

Fi16. 1. Chaining.

error term for each level moved up:
k
Pmax |B(t)|<P|B(6)| + X 362 (log 2")/?
T(k) i=1
<é2P|N(0,1)|

+ 62 Y 3((*£)tilog 2)V%
i=1

i=

The infinite sum converges; the last bound is a con-
stant multiple of 62, as required. N

The construction for Brownian motion on [0, 1] can
easily be carried over to a more general Gaussian
process, {Z(t): t (T}, whose index set T carries a
pseudometric p. (That is, p has all the properties of a
metric except that p(s, t) could be zero for some
distinct pair s, ¢t. Restriction to metric spaces would
unnecessarily complicate the argument for the case
where T is a collection of functions equipped with an
Z2(P) distance.) Suppose the pseudometric controls
the increments of the process, in the sense that

PIZ(s) — Z(t)|2 < p(s, t)? foralls, tin T.

For Brownian motion this suggests the metric
p(s, t) = | s — t| Y2, rather than the usual Euclidean
distance. It is no coincidence, as will become apparent
in Section 4, that | s — ¢ | /2 equals the .#%(P) distance
between the indicator functions of the intervals [0, s]
and [0, t], for P equal to Lebesgue measure.

The role of the equally spaced grids of points in
[0, 6] is taken over by an increasing sequence of finite
subsets {T'(k): E = 0, 1, ---} of T, chosen so that
T(k) is a maximal set of points greater than 6, = §/2*
apart. If T'(0) consists of the single point ¢,, then 6 =
sup;p(t, to). Maximality of T'(k) ensures that each
point of T lies within 6, of at least one point in T'(k),
for otherwise the maximal T'(k) could be enlarged by
the addition of at least one more point. In particular,
to each ¢t in T'(k), there must exist a t* in T'(k — 1)

‘with p(t, t*) < 6p—1.

Finiteness of each T'(k) forces T to be totally
bounded, thereby ruling out indexing sets such as the
whole real line under its usual metric. The size of
T(k), as 6, decreases, is measured by the function
D(¢) = D(e, T, p), which is defined as the largest
n for which there are points ¢;, ---, t, in T with
p(t, t;) > ¢ for i # j. The logarithm of D(e) is
sometimes called the e-capacity of T. It may be inter-
preted as the largest number of disjoint closed balls of
radius Y2¢ that can be packed into T'. (Closely related
measures for the size of T are the metric entropy and
covering numbers. Dudley (1984, Section 6) has ex-
plained the relationship.)
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Corresponding to (5) one gets a recursive formula
for the expected maximum over T'(k), but with D(5,),
the bound on the size of T'(k), taking over the role
of 2%:

P max | Z(t)]|
(6) T(k) .
<P max | Z(t)| + 36,_1(log D(5:))"%

T(k—1)
Repeated application of this inequality, followed by a
passage to the limit, leads to a bound on P sup| Z(¢)|,
with the supremum taken over a countable dense
subset of T, involving an infinite sum of the error
terms. It is traditional to treat the sum as a lower
step-function approximation to an integral. Also, it is
neater to have the supremum run over all of T. If Z
has p-continuous sample paths, that will follow with-
out further calculation. (If we write Z(w, t) to show
the dependence of Z on the point in the underlying
probability space, then sample path continuity means
that Z(w, -) is a continuous function on the pseudo-
metric space (T, p). With sample path continuity,
the supremum of | Z(w, t)| over T is the same as the
supremum over a dense subset of T')

3.2 Theorem

Let (T, p) be a pseudometric space, and {Z(t):t €
T} be a Gaussian process with p-continuous sample
paths, for which

P|Z(s) — Z(t)|* < p(s, t)* foralls,tin T.

Then there exists a universal constant K such that,
for each ¢, in T,

P sup | Z(t)|

)
=P|Z(t)]| + Kf (log D(x, T, p))"/* dx
0

where 6 = sup,p(t, to). O

Of course the theorem has content only when the-

bounding integral is finite. In that case, the assump-
tion of sample path continuity could be omitted:
finiteness of the integral actually implies that there
exists a version of the process having continuous
sample paths, for which the stated inequality holds.
(A small improvement of the chaining argument would
show that, with probability one, the restriction of
Z(w, -) to the dense subset of T is uniformly
p-continuous. We could redefine Z(w, t) for t outside
the dense set to give a hew version of the process
with uniformly continuous paths, almost surely. See
Theorem 2.1 of Dudley (1973) for a closely related
construction.)

Theorem 3.2 could be improved in several ways,
only one of which will be discussed here. In the recur-

sive inequality (6), the expected values can be replaced
by .#2(P) norms with only minor adjustment of the
error term. The source of the improvement is a
strengthened form of the basic bound (4): if Z,, ---,
Z, are random variables for which there is a constant
C such that

P eXp(IAZ?/gz) <C fori=1,---,n,
then

1/2
<|P max | Z;| 2) < 2¢(log Cn)'?,
because
exp<1A[F° max Z?/a2> <P maxexp(4Z}/c®) =nC.

As before, the factor C can be absorbed into other
constants to give a tidier bound.

3.3 Theorem

Under the assumptions of Theorem 3.2, there exists
a universal constant K such that

1/2
<Psup IZ(t)|2>

é
=(P|Z(t)|?)"? +Kf (log D(x, T, p))/?dx
0

where 6 = sup,p(t, t,). A similar inequality holds for
Z*(P) norms, for each « in [1, 2]. O

4. THE SYMMETRIZATION METHOD

Let &, &, - - - be independent observations sampled
from a distribution P on a space £. Construct P, and
v, from these observations. For applications, 2 is
usually a Euclidean space, but the general theory
would allow it to be any set (equipped with a o-field
on which P is defined).

The two uniform convergence requirements (2) and
(3) call for bounds on the probabilities

P{sup | vof| > e}
5

for classes of functions & that change with n. In this
section, Theorem 3.3 will give a bound that will be
more than enough to establish the uniform conver-
gence for appropriate & classes.

It is perhaps not surprising that », can be controlled
using Gaussian process inequalities, since v, is in some
sense approximately Gaussian; but it does take a
surprising amount of maneuvering to get from a vague
approximation to a strict inequality. The approach
adopted in this section is based on a symmetrization
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technique from the theory of probability in Banach
spaces, a technique that was very cleverly exploited in
the empirical process context by Giné and Zinn (1984).

The idea is to construct from the {{;} and a new
source of randomness a new process, Z,,, which is more
variable than p, in the sense that PP sup|v.f|? is
bounded by a constant multiple of P sup| Z,.f|2. Con-
ditionally on the {£;}, the Z, process is constructed to
be Gaussian. The bound from Theorem 3.3 can be
applied conditionally on {£;}, and then averaged out
to give the desired unconditional bound.

The extra randomness takes the form of a new
sample {¢;} from P and a sequence of sign variables
{o;} for which P{o; = +1} = P{o; = —1} = %. All the
&, £/ and o; are chosen to be mutually independent.
The method depends heavily on the independence of
the {£;}, but only notational changes would be required
to generalize beyond the assumption that each £; has
the same distribution (see Pollard, 1989b).

Write P; to denote expectations conditional on the
{&;}. Then, because £, has distribution P independ-
ently of the {£;},

n 2

2 f&) = Pef (&)

1

-1

P sup |v.f|2=P sup n
F F

By Jensen’s inequality,

2 2

=P

éf(&) _PfE!) %f(&) D

for each f.

Because
sup Py| -] < Pysup| --- |2,

the conditional expectation can be moved past the
supremum over &, then combined with the P to
increase the bound to

2

é F&) - f(&)

P sup n!
7

The symmetry here between £; and ¢/ allows one to
introduce sign variables inside the summation without
changing the expected value: the bound equals

n 2

? ail f(&) — f(&))]

1

P sup n~
F

For a deterministic sequence {o;} of signs this is easy
to verify: each ¢; that is —1 interchanges the roles of
& and &/, leaving the expected value unchanged. The
expectation with random {s;} merely averages out over
2" such terms. :

With the {o;} in the bound the auxiliary {£;} var-
iables can be discarded. Take Z2(P) norms after

applying the triangle inequality,

sup
F

S alf (&) - f(&’)]’

1

< sup imsn’ + sup i«nf(&'){,
F 1 F 1

to the bound, to get

2

P sup | v.f|? < 4P sup n™" | ¥ aif (&)
F F 1
One could work directly with the process Y, o:f (&),
which, conditionally on the {{;}, is a sub-Gaussian
process in the sense of Section 2(c) of Giné and Zinn
(1984). The inequality from Theorem 3.3 also applies
to sub-Gaussian processes. But why stop there when
the final step to Gaussian processes is so simple?
Construct the variables {s;} from a sequence {g;} of
independent N (0, 1) random variables by putting o; =
g:/| &:|. Symmetry of the N (0, 1) distribution implies
that o; is independent of | g; | . Write « for the expected
value P|g;| = P, ,| &, that is, v = (2/7)"2. Then, by
an argument using Jensen’s inequality, similar to the
one for the {£/},

n 2

; oif (8P| 8| /vy

P sup
F

2

< PP, sup | Y &f(&)/y
7 |1

If we define
Zn(f7 E) = n_1/2 21: gif(gi)’

then the symmetrization inequality may be written as

(1) Psup |v.fI?<4y?Psup | Z.(f, £)|*
F F

Theorem 3.3 will bound the right-hand side.
Conditionally on the {;}, the Z, process is Gaussian
with increments controlled by the .#2(P,) norm:

PEIZn(fD E) - Zn(f29 S)I2
= z 1A(&) = f(E)1% = Pal fy — ful

Notice that, for fixed {£;}, the sample paths of Z,, are
continuous in the #2(P,) sense: if P, |f, — f|>— 0 as
k — o, then f,.(£) — f(&) for each i, and Z,(f, £) —
Z,(f, £) for each realization of the {g;}. It is therefore
natural to equip the set & with its .#2?(P,) norm
(pseudonorm, actually).

Let us write Dy(e, &, P,) for the corresponding
e-capacity of & : that is, D, (e, &, P,) equals the largest
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N for which there are functions fi, - - -, fy in F with
P.|fi = fi|?> ¢ fori##j.

For fixed f, (typically the zero function) in %, Theo-
rem 3.3 provides a universal constant K such that

. 1/2
(Pe sup | Z,(f, E)Iz)
5

8 < (P¢| Z.(fo, &)%)

A(%)
+ K f (log Dy (x, &, P))"? dx
0

where A(¢) = sups (P, | f — fo|%)Y2 The first term on
the righthand side of (8) equals (P,f%)2. The other
term can often be bounded by an integral that depends
on P, in a very simple way.

4.1 Definition

Let # be a class of functions with an envelope F,
that is, F = |f| for each f in .#. Call & manageable
for the envelope F'is there exists a decreasing function
D(-) for which

(1) Ll (log D(x))"? dx < oo,
(ii) for every measure @ with finite support,

D, (¢(QF*)'?, 7,Q) <= D(¢) for0<e<1.
Call D the capacity bound for #. O

Manageable is a word coined for this paper because,
even though several very similar ideas have appeared
in the literature, this particular combination of con-
ditions has not been given a name. Dudley’s (1987)
concept of a universal Donsker class comes closest,
but it applies only to uniformly bounded classes. A
manageable class for a constant envelope is a universal
Donsker class in Dudley’s sense, but not all Donsker
classes are manageable.

The restrictions to measures with finite support in

(ii) is inessential, but it ensures that QF? is finite.
There is no need to consider more general @, because
the bound will be used only for @ = P,.

- The definition captures a simple regularity property
enjoyed by many useful classes of functions. For ex-
ample, as will be explained in Section 5, the class of
all intervals on the real line is manageable for the
constant envelope 1. In practice, one establishes man-
ageability by starting from the basic criteria of Section
5, and building up more complicated classes by means
of various stability properties derived from elementary
Z? inequalities. Specifically, if & is manageable for
envelope F and & is manageable for envelope G, then

*theclass # 0% = {flg:feE F, g€ &}is
manageable for the envelope F + G, where the

symbolic operator O can be interpreted as point-
wise addition (+), pointwise maximum (V) or
pointwise minimum (A);

* the class ¥+ = {fg: f € F, g € £} of pairwise
products is manageable for the envelope FG;

* the closure of & under the topology of pointwise
convergence is manageable for the envelope F.

A sketch of the argument for pairwise products will
illustrate most of the tricks used to generate new
capacity bounds.

Proof of the Stability Property for Products

Let € be a measure with finite support. Let A be the
measure with density F2, and p be the measure with
density G?, with respect to Q. Denote the capacity
bounds for the two classes by Ds and De. Choose
maximal collections of functions f;, - -, f, in ¥ and
&1, -, & in &, with m < D (e) and n < D¢ (¢), such
that

ulfi = fi|? > e®uF? fori#j
and
>\|g, - gj|2 > ¢2\G? for i #].
For each fin 7, there is an f; with u | f — f; | % < 2uF?;
for each g in & there is a g; with \| g — g;|% < £2\G™~
By the triangle inequality for @,
QI fs — figi )
= Qlfs — fig|>)'* + (Q|fig — fig 1)
= (lf = £+ (Mg —gi1P)"
< (82QG2F2)1/2 + (CZQF2G2)1/2.
That is, the product fg lies within .#%(Q) distance
2¢(QF*G?)Y? of f, g;.
There are at most mn different products f;g;. In any
collection of 1 + mn products from . * £, at least one
pair, fg andf ' g’, must share the same f;g;. That would

force fg and f’g’ to lie within 4¢(QF2G?)Y? of each
other. Thus

D, (4e(QF*G*)"?, 7+, Q) < Dy (¢)Dg(e),
or
Ds.g(e) < D (¢/4)De(e/4).

The product of capacity bounds satisfies the integra-
bility condition of Definition 4.1. O

For a manageable class, inequality (4.2) takes a
neater form. Define

I'(e?) = f (log D(x))"* dx.
0
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Then, by a change of variable in the integral, one gets

1/2
<Pe sup | Z.(f, £)|2>
< (P.f&)* + K(P,F*)'*T'(A(£)*/P.F?).

Taking .#2(P) norms of both sides, then invoking (7),
we get

1/2
(P sup Ivnf|2> = @/ (P

: 1/2
+ (2K/7)[PPnF2F2<sgp P.|f - foIZ/PnF2>] .

The factor 2/ in front of (Pf¢)*? is an artifact of
the symmetrization method. We could reduce it to
1 by applying the preceding argument to the class
{f — fo:f € &} with envelope 2F, and by using the
inequality

1/2
<P sup |v,,f|2>
7

1/2
< (Plvafol®)? + <P sup | v(f = fo)|2) .

Defining J(x) = (4K/v)I'(x/4), to tidy up the con-
stants, we would then have the second of the inequal-
ities asserted by the next theorem. The other
inequality would be obtained by substituting #*(P)
norms for #%(P) norms in the argument leading up
to (7) to get

P sup | v.(f = fo)| = (2/v)P sup | Z.(f = fo, E) |,
F b

and then invoking Theorem 3.2.

4.2 Theorem

Let # be a manageable class of functions for an
envelope F. There exists an increasing, continuous,
real function J such that for each f, in ¥,

i P sup | vaf | < (Pf§)2

+ P (P, F?)\2J <si17p P.(f — fo)2/P,.F2>,
' 1/2
(ii) <IP sup |v,,f|“'> < (Pf$)'?

1/2
+ <|P’P,,F2J2<sup P.(f- fo)z/P,,Fz)) .

The function o satisfies J(0) = 0, and depends on &
only through its capacity bound. O

As a special case of (ii), we get a neater upper bound
by increasing Pf¢ to PF2, increasing the argument of
J? to 4, and then collecting terms.

4.3 Corollary

If ¥ is a manageable class of functions with enve-
lope F, then there exists a constant C, depending only
on the capacity bound for .#, for which

P sup | v.f|2 = CPF?* for all n. O
F

The corollary ignores any benefit that might be
bestowed by a small sup P, (f— fo)% For an application
to the uniform convergence conditions in Section 2,
that would correspond to ignoring the convergence of
{6,,} to zero. The next theorem captures the effect of a
shrinking index set by using bound (ii) from Theorem
4.2.

4.4 Theorem

Let 7 be a manageable class for an envelope F with

PF? < . Let #(n), forn =1, 2, ---, be subclasses
for which
i) 0e F(n) for all n;

(ii) sup P|f| >0 asn— oo
F(n)

Then

P sup |v.f|?— 0 asn— .
F(n)

Proof. Let ¢ > 0 be fixed. Choose a constant M
large enough to ensure that PF*{F > M} < ¢. By an
application of the stability results for products and
maxima, each of these classes is manageable:

{fIF>M}:feZF (n)}  withenvelope F{F> M};
{(f{IF=M}:feF (n)}

{IfI{IF=M}:fEZ (n)} withconstant envelope M.

with constant envelope M ;

The constant C from Corollary 4.3 and the continuous
function J(-) from Theorem 4.2, with f, = 0 and &
replaced by each of these classes, do not depend on M
or n. Thus, for all n,

P sup |v.f{F > M}|?> = CPF*{F > M} < Cs,
F (n)

and

P sup |v.f{F = M}|?

Fwn)
< MZPJZ’(sup P.fiF < M}/M2>.
F(n)

We complete the proof by showing that the last
expression converges to zero. Because J(1) < o and
J(0) = 0, it is enough to show that the argument of J
converges to zero in probability. This follows from the



350 D. POLLARD

inequalities

sup P,|f|{F <= M}
F(n)

< sup P|f| + n™?sup | .| fI{F < M}|
F(n) Fn)

and, from Corollary 4.3,
P sup |v.|f|I{F < M}|? < CM> O
F(n)

5. MANAGEABLE CLASSES

It is seldom possible to calculate directly the uni-
form bound on capacities required by Definition 4.1.
The success of the methods in Section 4 rests instead
upon an indirect argument that depends ultimately
upon a beautiful combinatorial result of Vapnik and
Cervonenkis (1971). The theory is largely based on
the concept of a VC class of sets.

Let & be a class of subsets of 2. It is said to be a
VC class (or a polynomial class, in the terminology of
Pollard, 1984) if there exists a polynomial p(-) such
that, for each finite subset S of 2,

#(C N S: C €} =< p(#S).

Here, and throughout the section, the # sign indicates
cardinality. The definition requires that the number
of subsets picked out by @ from a set of n points grows
like some power of n, which is much slower than 2",
the number of all possible subsets.

Examples of VC classes are the class of all intervals
on the real line (with p(n) = O(n?)) and the class of
all rectangles in the plane (with p(n) = O(n*)). Rec-
ognition of more complicated VC classes is made
possible by a surprising characterization:

+ #isa VC class if and only if there exists a positive
integer V such that, for all S with #S =V,

(10) #HCNS:Cer} =2’ -1

The polynomial p can then be chosen to have
degree V — 1: it suffices to take

=3+ ()¢ +(u7)

The bound is achieved when & consists of all subsets
of 2 with V — 1 or fewer points. A proof due to Steele,
which reduces the general case to this very special
situation, appears as Theorem I1.16 of Pollard (1984).

Construction of VC classes usually goes as follows.
Start from a finite dimensional vector space, &, of
real-valued functions on 2. Construct the class & of
all sets of the form {g = 0} with g in . A simple piece
of linear algebra (see Theorem 7.2 of Dudley (1978) or
Lemma I1.18 of Pollard (1984)) shows that % satisfies
the inequality (10) with V one greater than the dimen-
sion of Z. For any fixed k, construct the class &, by

taking all possible Boolean combinations of at most %
sets at a time from %. That is, a typical member of &,
is obtained by choosing k sets Cy, - - -, C from &, then
forming any expression involving unions, intersec-
tions and complements of those k sets. These opera-
tions preserve the VC property because a product of a
finite number of polynomials is still a polynomial.

5.1 Example

The class of all closed balls in a finite-dimensional
Euclidean space R? is a VC class. This follows from
the representation of the ball with center t and radius
ras

{g(-, 1,2, -+, —1,2tq, P2 —t3— ... —t2) = 0},
where
g(x, oy, :819 sy, 04, ABd’ 7)

= x4+ Bixy + -+ + agx; + Baxa + 7.

The set of all such functions, with the «;, 8; and v
ranging over R, is a vector space of dimension
2d + 1. O

The first connection between VC classes and capac-
ities was demonstrated by Dudley (1978). His Lemma
7.13 established a bound for the capacity of a VC class
% under an Z}(P) pseudometric. He showed that,
uniformly in the distribution P, the largest m for
which there exist sets C, - - -, C,, in & with

P(C;AC;)=¢ fori##j

grows no faster than O(¢™"), for some V. (Actually he
obtained a slightly sharper bound.) In particular, there
is a uniform bound on .#*(Q) capacities,

sup D, (eQ(Z), %, Q) = 0(:™Y),

for measures @ with finite support. Replacing ¢ by ¢,
one gets the corresponding uniform bound for the
Z2(Q) capacities.

Dudley’s method provides an interesting example of
a probabilistic existence proof. He proved that each
C: A C; contains at least one out of a particular set of
k =~ 2¢log m points, by showing that there is positive
probability of this happening if the & points are an
independent sample from P. Each C; picks out a
different subset from the set of k points; the class &
picks out at least m different subsets. The inequality
m < p(k) forces a rate of growth slower than some
O(¢7V) on m.

Minor modifications of Dudley’s technique extend
the result from VC classes of sets to what Dudley
(1987) has called VC subgraph classes of functions.
The subgraph of a function f is defined as a subset of
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a product space:
subgraph(f)
={x,t) EZQOR: 0<t<f(x)orf(x)<t<Ol

The connection between subgraphs and capacities
appears in Lemma [I1.25 of Pollard (1984):

» If & is a class of functions with envelope F such
that
{subgraph(f): f € 7}

is a VC class of subsets of 2 ® R, then
(11) sup D, (eQF, &, Q) = O(¢™")
for some V.

Both (2) and (3), and their analogues for vector-valued
t, could be established by checking the VC subgraph
property.

Classes for which a bound like (11) holds were
singled out by Nolan and Pollard (1987) under the
name Euclidean (for the envelope F). As argued in
that paper, and also in Pakes and Pollard (1989),
empirical processes indexed by Euclidean classes of
functions behave like processes smoothly indexed by
bounded subsets of finite dimensional Euclidean
spaces. Euclidean classes enjoy the same sorts of
stability properties as manageable classes.

When & consists of indicator functions of sets in a
class &, a straightforward calculation shows that ¥ is
Euclidean for the envelope 1 if and only if # is a VC
class.

Elementary inequalities involving the .#*(P) and
the #?*(Q) seminorms, where P has density F with
respect to @, show that the bound in (11) is equivalent
to an analogous bound for .#2 capacities. In particular:

* Every Euclidean class is manageable.

The envelope plays a subtle role in the definition of
Euclidean classes (and manageable classes). A VC
subgraph class is Euclidean for every possible choice
of envelope. But, in general, a class might be Euclidean
for certain choices of envelope and not for others.

5.2 Example

Let 2 be the set of non-negative integers and % be
the class of all subsets of £2°. Certainly % is not a VC
class, but it is Euclidean for the envelope F defined
by F(n) = 2" For suppose that 0 < ¢ < 1, that Q is a
measure on 2 with 0 < QF < », and that C;, ---, C,,
satisfy

Q(C,AC_,) > SQF for ¢ 75]

Find the integer k for which F(k) = 3¢ > F(k — 1).
Define C} to be the set C;N {0, 1, - - -, k — 1}. Then

Q(C\C) = Q[k, ©) = Y3¢QF,

which implies that
Q(CFAC}) > Y5eQF for i # j.

In particular, the C§, - - -, C* must be distinct subsets
of {0, 1, - - -, k — 1}. That forces m < 2* < 6¢7, which
establishes the Euclidean property. O

The ploy of choosing a large envelope F to make a
class Euclidean will succeed only if the underlying
distribution puts little mass where F is large. Both
Theorem 4.2 and Theorem 4.4 need a sampling distri-
bution for which PF? < «. Looked at another way,
bad behavior of # on parts of the space where P
concentrates little mass should not disturb the empir-
ical process, for samples from P, too greatly.

A decreasing function for which D(e) = O(¢7")
certainly has (log D(e))"/? integrable on (0, 1] with
plenty to spare. Dudley (1987) has identified an op-
eration that generates manageable classes with a D ()
that comes closer to violating the integrability condi-
tion. The symmetric convex hull of a class & consists
of all finite linear combinations Y, «;f; of functions f;
in & for which Y | ¢;| < 1. Denote it by sco(# ). His
Theorem 5.3 implies that:

» If # is Euclidean for the envelope F then
sup D (c(QF?)?, sco(F), Q) < Crexp(Cae™)
Q

for constants C,, C;, and A\ with A < 2. In partic-
ular, sco(.#) is manageable.

Dudley’s result establishes another connection be-
tween the VC property and manageability. A class of
functions & is said to be a VC major class if there
exists a VC class of sets & such that {f = «} is a
member of @ for every f in & and every real number
a. Dudley (1987) has shown that:

» Every uniformly bounded VC major class is man-
ageable for a constant envelope.

The proof for the typical case where 0 < f < 1 is easy:

“each f is a pointwise limit of a convex combination

(with equal weights) of indicator functions of the sets
{f=j/n}forj=1, ---, n. Thatis, each f is a pointwise
limit of functions from the convex hull of the Euclid-
ean class of indicators of sets in #. The result is not
necessarily true for a VC major class whose envelope
is not bounded away from zero.

5.3 Example

The first problem in Section 2 involved the class of
functions of the form

flx, t) =|x—¢],

indexed by a real parameter ¢. The analysis depended
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upon a uniform convergence condition,
sup{ | va[f (-, £) = f(-, t)1l: 1t — to| < b2} = 0,(1)

for every sequence {4, } of positive numbers converging
to zero. As already noted, the sets

Hyo =1x:f(x, t) — f(x, &) = o}

are intervals on the real line; the class of all such H,
is a VC class; the class of functions

{f(" t) _f('y tO):lt_tOI 561}

is a uniformly bounded VC major class; it is manage-
able for the constant envelope ;. Since

Plf(’ t)_f(9t0)| = lt_tOIy

the hypotheses of Theorem 4.4 are satisfied. The
uniform convergence condition (2) holds.

Generalization to higher dimensions requires little
extra work. If ¢ is a d-dimensional parameter and ¢, =
0, the set H,, can be represented as

{lx| = —a}

Uflx|>—a, =2t'x — 2a|x| + | t|? - a® = 0}.
This is a Boolean combination of three sets of the
form {g = 0} with g taken from a vector space with
dimension d + 2. Again we end up with a uniformly
bounded VC major class. The analogue of (2), and the

corresponding limit theory for the measure of spread,
carry through to higher dimensions. O

5.4 Example

The second problem in Section 2 introduced the
functions "

h(x, t) = min{l, |x — |2},
indexed by ¢ in R2 The uniform convergence require-
ment (3) involved the functions
R(x,t)

=min{l, |x—¢|2} —min{l, | x |2} +2t"x{| x| <1}
[

with ¢ ranging over shrinking neighborhoods of the
origin. It is easy to check that | R(x, t)| < 4 for all x
and t, and that

’

R(x,t) >0 as|t|] =0,

except when | x| = 1. If P puts zero mass on the set
{| x| = 1}, a dominated convergence argument gives
P|R(-,t)| > 0 as | t| — 0. In particular, hypothesis
(ii) of Theorem 4.4 will be satisfied for the classes

{R(-, £):1t] =< dn}

if 8, — 0. The manageability can be established by
checking the VC major property. The set {R(-, ¢t) =
a} can be represented as a union of four sets:

flzl<1l,|x—t| <1, |t]| =al}
{lx| =1, |x—t| <1,

[x|2—2t'x+ |t]2—1—|t|a=0},
{flxl<l,|x—t|=1,—|x|*+2t'x+1— |t|a=0},
{lx] =1, ]x—¢t]|=1,0=«a}. |

As in the previous example, with a finite number of
Boolean operations we can build such a union from
sets of the form {g = 0}, with g taken from a finite
dimensional vector space of functions.

The uniform convergence condition (3) holds pro-
vided P puts no mass on the set {| x| = 1}. O

6. REMARKS AND HISTORY

This paper has concentrated on a single empirical
process method and has suppressed numerous tech-
nical details. A reader who would like to explore the
subject further has a number of places to start. There
are several papers, monographs, and sets of lecture
notes that provide a wider coverage. The lecture notes
of Dudley (1984) are particularly useful for their care-
ful treatment of measurability difficulties. They also
bring together some of Dudley’s many contributions
since his landmark 1978 paper, which has inspired
much of the last decade of empirical process activity.
The review paper by Pyke (1984) gives a most readable
introduction to set-indexed processes. The review pa-
per of Gaenssler and Stute (1979), updated by the
monograph of Gaenssler (1983) and the seminar notes
of Gaenssler and Stute (1987), contains an enormous
amount of well organized material. The 1987 notes,
complemented by the impressively detailed volume of
Shorack and Wellner (1986), could easily be turned
into a graduate course on the applications of empirical
process theory. Pollard (1984) devoted several chap-
ters to empirical processes; Pollard (1989b) has devel-
oped the approach of the present paper further,
putting particular emphasis on nontrivial applica-
tions.

One of my main inspirations in the preparation of
the paper has been the very important discussion
paper by Giné and Zinn (1984). Their work bridges
over to the theory of probability in Banach spaces,
making a connection that has provoked much of the
very recent activity in empirical process theory. In
particular, I borrowed the idea of Gaussian symmetri-
zation from them. However, a referee has pointed out
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that the idea has a long history. It was used by Jain
and Marcus (1975) to prove an abstract central limit
theorem; it was even applied by Marcinkiewicz and
Zygmund (1939), to establish an inequality for linear
operators. (I am grateful to J. Michael Steele for
bringing this reference and other related work to my
attention.) .

The chaining inequality of Theorem 3.3 improves
slightly upon the inequality I1.3.5 of Marcus and Pisier
(1981). It can be used to extend the sufficiency part
of Pisier’s (1984) characterization of type 2 operators
(on Banach spaces of bounded signed measures) from
VC classes of sets to manageable classes of functions.
The particular ideas behind inequality (4) and Theo-
rem 3.2 come from Pisier (1983). Credit for the general
idea of applying the chaining technique to Gaussian
processes in the abstract is usually given to Dudley
(1967), or maybe Dudley and Strassen (1969). How-
ever, a knowledgeable referee has pointed out that
Sudakov also deserves credit—for details, see Dudley’s
review (number 4359) of Sudakov’s book in Mathe-
matical Reviews, Volume 55 (1978).

The chaining method used for Theorems 3.2 and
3.3 is but one variation on a general technique. More
commonly it is used to bound tail probabilities instead
of moments. (See, for example, Pollard (1982, 1984)
or any of the other references cited at the start of this
section.) It can also be applied directly to the empirical
process v, although the argument becomes more del-
icate, because the tails of », are not as well behaved
as Gaussian tails. The method is again best thought
of as a recursive procedure, with something like a
Bernstein inequality for tail probabilities taking over
the role of inequality (4)—the approach exposited by
Pollard (1989c). The name bracketing is usually at-
tached to this style of chaining. The nicest of the limit
theorems under bracketing conditions is due to
Ossiander (1987); a simplified version of her argument
appears in Pollard (1989d). Her method has been
brought to a high degree of refinement in the work of
Andersen, Giné, Ossiander and Zinn (1988). Good
places to start for information about bracketing would
be Pyke (1984), Dudley (1984), or Giné and Zinn
(1984). .
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Comment

R. M. Dudley

David Pollard proved perhaps the most useful cen-
tral limit theorem for empirical processes indexed by
families of functions (Pollard, 1982), somewhat ex-
tended and exposited in Dudley (1984, Theorem
11.3.1) and Pollard (1984, Chapter 6). He has also
been a leading worker at the interface of empirical
processes and statistics, as in Pollard (1979) and the
paper under discussion, with its 6 valuable references
to his own work. Readers of Pollard (1985, 1989a), for
example, will not need specifically econometric pre-
requisites, and they will find ideas not necessarily to
be found elsewhere as far as I know.

On the foundations of empirical processes I would

mention, as a step beyond my 1984 course which
Pollard kindly cites, the paper Dudley (1985), which
incorporates the new definition of convergence in
distribution for stochastic processes due to Jgrgen
Hoffmann-Jgrgensen (unpublished). This definition
avoids the need to define any o-algebra on large (non-
separable) spaces of bounded functions. Thus the
process v, on a family of functions can converge in
law without having a law on function space. Hoff-
mann’s convergence in law is strong enough to imply
existence of realizations converging almost surely or

better, almost uniformly (also in Dudley, 1985) and so

seems to be the “right” definition.

Pollard makes a good point that hypotheses on
smoothness of parametrized families of functions
f(-, 0) with respect to 6 can be weakened via empirical
process theory. A related but different viewpoint is
that of von Mises nonlinear, differentiable functionals
of the empirical measure, which are beginning to be
studied from the empirical process viewpoint (Sheehy
and Wellner, 1988; Dudley, 1989). Let a family ¥ of
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functionals be, say, manageable with envelope 1, so
that the supremum of |»,f| over F is bounded in
probability as n — . The supremum norm over F'
then provides a norm for which functionals may be
differentiable (Dudley, 1989). The many possible
choices for such norms should help free von Mises
theory from its focus on the real line as sample space
and supremum of absolute differences of distribution
functions as the main norm. It should also then be
possible to make more use of Fréchet differentiability
rather than compact (Hadamard) differentiability.
Instead of least absolute deviations, one can
take an M-estimate of location (in R* for any k),
setting p(x) = (c + |x]»)Y?, ¢ > 0, and minimizing
P,p(x — t) with respect to t, where p is smooth but
for small ¢ is close to |x|. To treat laws P with in-
finite mean one can, as in Huber (1981, page 44),
minimize P(p(x — t) — p(x)) in ¢, where the integrand
is bounded in x for each t. Since p is strictly convex,
the minimization is equivalent to finding the unique
solution of Py/(- — t) = 0 where y is the gradient of p.
The components of ¥, for any ¢, all belong to a uni-
formly bounded class of functions that can be shown
to be manageable in much the same way as in the
paper under discussion, Examples 5.5 and 5.6, even
for ¢ = 0 where the functions are no longer smooth.
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Comment

Evarist Giné and Joel Zinn

Since Dudley’s influential paper of 1978 the theory
of empirical processes has undergone a vigorous de-
velopment. David Pollard and his collaborators,
among others, have applied some of these develop-
ments in asymptotic statistics. However, probably due
to the technical character of this theory, applications
are slow in coming. The present article will certainly

help to make the subject better known to potential

users.

We have no criticism to offer on this interesting
paper. Instead, we take it as a basis for a digression
both on points of view and aspects of empirical process
theory that we have found useful in our work.

In the present article, Pollard describes how to
obtain maximal inequalities for Gaussian and related
processes using the “chaining method” associated to
metric entropy. It is important to highlight this subject
as Pollard has done, because, directly or indirectly, it
is at the core of most of the progress made on empirical
processes since 1978. Closely connected to this subject
is Talagrand’s (1987a) landmark work characterizing
sample boundedness and continuity of Gaussian proc-
esses by means of properties of their covariances.
These properties are the so called majorizing measure
conditions which, like metric entropy, are conditions
on the size of the index set for the Gaussian pseudo-
distance. Actually these are the minimal conditions
under which a chaining proof quite similar to the one
here can still be carried out (see, e.g., Remark 2.6 in
Andersen, Giné, Ossiander and Zinn, 1988). Rhee and
Talagrand (1988) show how this more refined chaining
method can be of practical interest. They obtain a
precise maximal inequality for an empirical process in
a concrete situation with implications in bin packing
by constructing the appropriate majorizing measure.
More applications of majorizing measures to empirical
processes, in connection with bracketing, can be found
in Andersen, Giné, Ossiander and Zinn (1988).

Given the wealth of results available for Gaussian
processes, notably deviation and concentration in-
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equalities, integrability, comparison theorems, and, of

. course, the already mentioned maximal inequalities,

direct and converse (for references see, e.g., Pisier,
1986; Giné and Zinn, 1986), it is sometimes effective
to hypothesize Gaussian properties for . either in-
stead of, or in conjunction with, more analytical con-
ditions such as entropy. As a very naive instance, here
is a Gaussian definition of manageable class weaker
than Definition 4.3 and which does essentially
the same job. Let # be a class of functions with
envelope F. For @ = ¥ a6, € %#(S), the set of
probability measures on S with finite support, define
the Gaussian process Wy(f) = 3 a’gif (s:)/(QF?)Y?,
where g; are iid. N(0, 1), and let Wy(f, g) =
[E(Wq(f) — Wo(g))?]"/2. Then say that # is manage-
able if

(i) supgesys) Ell Wolls < and
(i) lim;_o supgess) E | W ll 576,wq = 0

where 77(6, Wo) = {f—g8:f, 8 € F, Wo(f, g) < 6}.
Stability properties and results similar to Theorems
4.5 and 4.7 still hold for such classes. For instance, a
proof of (a weaker form of) Corollary 4.6 goes as
follows: using property (i) together with symmetriza-
tion and Jensen’s inequality as in the text, we have

Elv.lls<2E | n7'2 i o:f (Xi) "
i=1 F
<V2rE | n2 § &f (X;) H
i=1 5

= 2r E[(P,F?)?E, | Wp, || 5] =< C(PF?~.

The proof of Theorem 4.7 would use (ii) and a
comparison theorem of Fernique (1985). If & =
{fu: | fnllo = 0(1/(log n)'/?)} then ¥ is manageable in
this weaker sense but not necessarily in the sense of
Definition 4.3. For more details on these classes of
functions, see Giné and Zinn (1989).

In the applications presented by Pollard, error terms
in Taylor expansions are controlled by the size of
[ v. ||, the sup of the empirical process over a class
of functions &, and therefore probability inequalities
for || v, || &, i.e., maximal inequalities, yield the desired
results. Other types of possible applications of empir-
ical processes would relate to the construction of
asymptotic confidence regions and tests of hypotheses
based on the statistics | P, — Plls = n™Y?|| v, | 5.
These would require knowledge of the limiting distri-
bution of || v, || & or, in general, of the limiting law of
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the processes {r,(f)): f € &} regarded as random
elements with values in the space #*(%) of bounded
functions on &. As indicated in Section 6 of Pollard’s
article, much effort has been devoted to proving limit
theorems for v,. There are, however, some stumbling
blocks for this type of application to materialize which
are already encountered in the multidimensional
Kolmogorov-Smirnov case; particularly, that the lim-
iting Gaussian process G» depends on the law P of the
data which, after all, is unknown. The bootstrap is a
way around this difficulty; see, e.g., Beran and Millar
(1986) for confidence regions based on .# = {the half
spaces of R%. Let X2, j =1, ---, n, n €N, be iid
with the law of the empirical measure P¢, and set
va(f) = n 2 S0 [f(Xs;) — P(F)]. It can be shown
that, under measurability conditions, the processes
{vn} converge weakly to Gp for almost every w if and
only if v, converges weakly to Gp and PF? < o (actually
PF? < o is not required if convergence of »¢ takes
place not w-a.s., but in w-probability) (Giné and Zinn,
1988). Then the distribution of || Gp| s is approxi-
mated by that of || v4| s w-a.s. and the latter can be
computed up to any degree of approximation by Monte
Carlo methods. We should point out that in the proof
of the bootstrap central limit theorem for empirical
processes we use several results and techniques from
Probability in Banach spaces other than chaining.
Among the most useful ones are a lemma on Poisson-
ization by Le Cam (1970) and an inequality by
Hoffman-Jgrgensen (1974) that is basic for integra-
bility of sums of independent random vectors. For a
larger list of useful results see the introduction in
our paper.

Pollard (1981) introduced Rademacher randomiza-
tion (i.e., considering n™" ¥, 0;0x, instead of P, — P)
in the context of empirical processes and since then
symmetrization has played an important role in this
theory. Jain and Marcus (1975), as well as Hoffmann-
Jgrgensen and Pisier (1976), motivated by Kahane’s
(1968) book, used it in the related subject of the CLT
in Banach spaces. However Gaussian randomization
(i.e., considering n™' Y1, g;0x, instead of P, — P) took
a little more time to come into the subject essentially
- because (a) it does not add to randomization with
+1’s for proving (the sufficiency part of) limit theo-
rems since chaining works for sub-Gaussian proc-
esses equally well and (b) although it is obvious that
| X1 g6x,/n'?|s dominates |~ 0:0x,/n'?| s,
the “almost” converse, which is due to Fernique and
Pisier, is less obvious and was not published until 1984
(Giné and Zinn). It is in this converse direction that
Gaussian randomization is essential: used in con-

junction with strictly Gaussian theory (e.g., Sudakov’s
inequality), it allows one to prove that certain suffi-
cient conditions for P to satisfy the CLT or the LLN
uniformly in % are also necessary. A previous case in
point is the proof in Marcus and Pisier (1981) that
certain entropy conditions are necessary and sufficient
for a.s. uniform convergence of random Fourier series,
with Rademacher series used for sufficiency and
Gaussian series for necessity.

Regarding history of recent research on empirical
processes directly related to chaining, we would like
to mention the works of Talagrand (1987b) and Le-
doux and Talagrand (1989) where P-Donsker classes
of functions # are characterized (up to measurability)
in a random-geometric way: their decomposition of
into a Gaussian or L, part and a part where sign
cancellation plays no role, which is based on chaining,
captures in our view the essence of P-Donsker classes.
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Comment

Ron Pyke

I have greatly enjeyed reading this paper by David
Pollard. It is a further example of his fine expositing
skills. By focusing on two particular problems, he
underlines for statisticians the practical values that
are intrinsic to the subject of weak convergence of
empirical processes.

It is slightly more than 60 years since Harald
Cramér introduced the idea of an empirical distribu-
tion function for real random variables and suggested
its use in statistics (Cramér, 1928). Shortly thereafter,
the Glivenko-Cantelli-Kolmogorov result of 1931
showed that the empirical distribution function was a
strongly consistent estimator of the population distri-
bution function. This was followed for about 25 years
by a virtual explosion of applied and theoretical activ-
ity on distribution-free nonparametric procedures:
Kolmogorov-Smirnov and Cramér-von Mises type sta-
tistics: one-sided and two-sided; one-sample and two-
sample; weighted and unweighted; asymptotic and
exact results; with tables of critical values provided
for most.

Forty years ago, in the midst of this activity, J. L.
Doob proposed a result that would enable one to
obtain the asymptotic behavior of most of the proce-
dures that had been, or would ever be, proposed from
an appropriate limiting Gaussian process, a tied-down
Brownian motion. (Cf. Doob, 1949). Out of this
heuristic beginning, a vast literature has emerged
concerning the asymptotic behavior of empirical proc-
esses. Throughout this research, the central and ena-
bling property of the empirical measure of a sample
of iid observations X, X,, -- -, X, has been its basic
structure as a sample average of iid objects, namely,

Pn = n_1(6X1 + 6)(2 + .-+ BX")

where 0, is the degenerate probability measure that
puts probability 1 at x. Because of this structure, it is
natural that the asymptotic distributional, or weak
convergence, results are referred to as central limit
theorems (CLT) for empirical processes. (It also sug-
gests interest in other sample average limit laws for
P,, such as the SLLN and LIL.) Shortly before (1),
Pollard states that, “In some asymptotic sense, the
process v,f(-, t) is approximately Gaussian.” This is
as close as the author gets to mentioning a CLT for
empirical processes. This brief sentence encompasses
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an enormous literature that pertains to the asymptotic
distribution of empirical processes.

Although the setting for these CLT’s is much more
general than for the classical CLT and the technical
aspects are accordingly more complex, their much
greater applicability to statistics makes their study
worthwhile. In fact, I view any CLT for empirical
processes as a conveniently packaged collection of
many individual limit theorems of importance to stat-
isticians. For exposition purposes to statisticians, I
prefer to define convergence in law of empirical proc-
esses (i.e., when a CLT holds) to mean precisely the
convergence in law of all statistics that are continuous
functions of the empirical process. (Cf. Pyke and
Shorack, 1968). From this viewpoint, CLT’s for em-
pirical processes are powerful tools that statisticians,
or their consulting probabilists, can check out of
our Asymptotic Methods’ Toolroom. Often, however,
these tools need to be individually customized to han-
dle statistics that are only approximately continuous,
and this is the situation with the two examples pre-
sented here by David Pollard; the simple substitution
of X for t in the first problem is unfortunately one
complication that requires technical care to justify the
natural Taylor-expansion heuristics, while the ques-
tion of asking for the location of a min or max as in
the second problem is in and of itself another compli-
cation. Regardless of the excellent quality of exposi-
tion, the level of this complexity cannot be hidden.
The important message, however, is that applications
of this type can be handled by the theory, regardless
of whether or not the particular methodology is under-
stood or even fully appreciated by the user.

Major advances in the theory of statistics are driven
ultimately by applications. In 1978, I felt that rather

" complete results about all three major types of limit

theorems for empirical processes were available;
namely, for the CLT or weak convergence, Dudley
(1978); for the SLLN or Glivenko-Cantelli result,
Steele (1978); and for the LIL, Kuelbs and Dudley
(1980; a preprint was available in 1978). I therefore
used my 1978 IMS Special Invited Lecture to survey
the 50 years since Cramér (1928) and to encourage
that the rather complete theory then available be
brought to bear on applications of empirical process
involving multidimensional data. The considerable
theoretical advances of the last decade clearly indicate
that the subject’s theory and methodologies were far
from complete in 1978. Many major advances have
occurred since then, and along with these have come
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several fine monographs and survey papers, including
the one under discussion. These expositions make the
theory and its application much more accessible today
for study and implementation, even though much
more can still be done to improve the formulation of
results so as to facilitate their applicability. Ironically,
it is the applications that point the way to such
improvements.

Since 1978, relatively few researchers have ventured
in the direction of proposing and evaluating empirical
process applications, particularly ones concerning in-
ferences involving multidimensional data. David Pol-
lard has been one of the most successful through his
contributions to applications involving kernel density
estimators, U-statistics, econometrics, regression,
k-means clustering, and location estimators.

In the present paper, both problems used by Pollard
to illustrate aspects of these asymptotic methods in-
volve statistics that are expressible in terms of the
translates of a fixed function h; i.e., f(x, t) = h(x — t)
where in the first problem, A(y) = |y|, and in the
second problem, h(y) = min{l, |y |2%}. (As an aside, I
wonder if h(y) = |y|%/(1 + |y|? is a reasonable
smooth substitute, or even h(y) = 1 — exp(—|y|?);
this is of course not an implied criticism, since criti-
cism was forestalled by the legitimate caveat stated in
the introduction of the second problem!) Although the
family of all functions that can be obtained as trans-
lates of a fixed function might seem to be rather
restrictive and uninteresting, it might be well to
emphasize that in many natural cases it is actually
full enough to determine the underlying probability
measure itself. Let me elaborate.

Procedures based on empirical processes can be
thought of as goodnéss-of-fit procedures; P, — P is
indeed the difference between the observed and the
expected. In particular, if A is a subset of the sample
space, P,(A) — P(A) is in fact the difference between
the observed proportion of observations in A and its
expected value under P. Similarly, for an integrable
function f, P,(f) — P(f) is the difference between the
observed sample average n'(f(x,) + - - - +f(X,)) and
its expectation Ef (x). If the sample space were to be
partitioned into a finite number of sets A, the classical
Chi-square statistic would give one measure of the
distance between P, and P. If the data is Euclidean,
other distance measures can be considered, including
the usual Kolmogorov-type distance

Dn = sup I Pn((_w’ x]) - P((—W, x]) l
and the Cramér-von Mises distance

W?l = f an((—OO, x]) - P((—OO, x]) |2 dP(x)~

Each of these involves the family of lower orthants
and this family is simply the family of sets one gets

by translating a particular orthant, say (—», 0]. If we
write || P, — P||., for the supremum over A € & of
| P,(A) — P(A) |, then D, is just this sup-metric when
& is the family of lower orthants. However, in multi-
dimensional situations, orthants are far from natural,
and other more attractive possibilities exist. The
Cramér-Wold result states that || P, — P | is a dis-
tance when .7 is the family of half-spaces; this family
is formed from a single half-space by making all trans-
lations and rotations. Recent work by Beran and
Millar (1986) shows the applicability and value of this
family for obtaining confidence sets for multidimen-
sional distributions.

Less well known is the fact due to Sapogov (1974)
(cf. Pyke, 1984) that the collection of all translates of
a fixed bounded set of positive Lebesgue measure is
also a determining class; that is, if two probability
measures agree on the class, they must be equal. For
example, if two probability distributions agree on
every ball of radius 1, then the two distributions are
equal. In such cases, | P, — P |+ would again be an
appropriate Kolmogorov-type statistic for measuring
the goodness-of-fit of P to the data represented by P,.
A fairly extensive simulation study of tests based on
these “scanning” statistics has been reported in Pyke
and Wilbour (1988).

By identifying sets with their indicator functions, a
family of sets formed by the translates of a fixed set
becomes a special case of the class of translates of a
given function. Suppose h is a given real valued func-
tion defined on R¢ and let 9}, = {h(- — x): x in R% be
the family of all of the translates of h. For many useful
functions h, these translation or scanning families are
determining classes in the sense that knowledge of all
of the expectations determines the underlying distri-
bution. Here is an example: If h is non-negative and
its Fourier transform, namely,

h(u) = [ exp(iu - x)h(x) dx,

is nonzero for a dense set of u in R?, then whenever X

- and Z are any two r.v.’s in R? for which

Eh(X — x) = Eh(Z — x) for all x in R®,

we have that X and Z are identically distributed.

To prove this, simply multiply both sides of the
identity by exp(iu - x) and integrate over x. This gives
the Fourier transform of a convolution and results in
the identity

h(—uw)E(e™Y) = h(—u)E(e™ %), for all u in R

Thus when the assumption about A holds, we can
factor it out and conclude, as desired, that Y and Z
have the same characteristic function, and hence the
same distribution.

Translation families of functions arise, for example,
in kernel function density estimation, in which the
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kernel is often a density function itself (e.g., the nor-
mal kernel) that satisfies the assumption in the above
proposition. One should also note that the translations
of h(x) = min(1, | x |2), used in Pollard’s second prob-
lem, form a determining class. This can be seen by
applying the above proposition to 1 — h; the constant
function is invariant, under translation. In fact, Pol-
lard’s problem seems to be easier to describe in terms
of g(x) =1 — h(x) = max(0, 1 — |x|?) as a sort of
“shell game.” The function g is a parabolic shell and
the game is to move it over the data in the plane until
one finds the place where the score (the sum of the
heights of the shell above the data) from the points
covered by the shell, is a maximum. Pollard assumes
that P is such that the expected score is itself approx-
imately a parabola. By weak convergence, the differ-
ence between the observed and expected scores is
approximately n~*/? times a Gaussian process. So as
the observed score hugs the parabola-shaped expected
score, the maximum observed score will appear near
the place where the maximum expected score occurs,
namely 0, and the difference between the two locations
will depend on the behavior of the Gaussian process
in the neighborhood of 0.

The example is exceptionally good. There are sev-
eral approaches that can be used to obtain limiting
distributions of statistics which are defined explicitly
in terms of empirical processes. Different approaches
are best in different situations; the more techniques
one knows the better. One useful approach is to
replace weak convergence by strong convergence but
this approach also has its problems in this case. As
more general weak convergence results (CLT’s) for
empirical processes have evolved, results showing that
“weak implies strong” have kept pace. These results
enable one to replace weak convergence by strong
(pointwise) convergence, a substitution that has the
effect of replacing many problems of a probabilistic
nature with more standard problems in analysis.
However, in this example, even though the non-
zero part of g has a Taylor’s expansion, g(x — t) =
g(x) — tVg(x) + remainder, in which most of the time
the gradient, Vg(x), and the remainder are elementary
functions, namely, —2x and |t|? respectively, the
problem is far from straightforward. If the mark of a
good example is the degree to which it probes the
applicability of theory and leads to reformulations
that either expand or facilitate this applicability, then
high marks are indeed in order here.

At the end of the paragraph preceding (3), the
author “explains in part why traditional methods have
difficulty with this (second) problem.” I sense an
implicit challenge here. Write g(x) = (1 — | x|%™* and

dnp(x) = n'2{g(x — n7%) — g(x)}.

The minimizing of H,(t) over ¢ is equivalent to the

maximizing over b of
L.() = n{H.(0) — H,(bn'?)}
= n{H,(0) — H(0) + H(0) — H(bn™'7?)
+ H(bn™"?) — H,(bn""?)}
= (v, + n'?P) d,;.

The author postulates that the second part is a quad-
ratic, namely, n'?Pd,,, = —%|b|%(1 + o(1)). If we
also assume with the author that it suffices to consider
the maximization over |b| < M for each M, we can
partition the sample space into

B, =[|x| <1-n""2M],

B, =[|x|>1+ n"2M]
and

B;=[|1- |x]|| = n "?M].

When |b| <M,d,, =00onB,,=2x - b+ n"2|b|?
on B, and is bounded by 4M on the annulus B; whose
probability converges to P[| X | = 1] = 0. Thus

L.(b) = 2Y, - b— |b]|%/2 + o(1)
where
Y, = v,(xls) — Y, a N0, EX?1x<y) r.V.,

and where the remainder is uniform for |b] < M.
Thus b,, the value for which L,(b) is maximized,
and 2Y,, the value for which the quadratic Q(b) =
2Y, - b — | b|?/2 is maximized, converge to the same
limit, as desired. I leave to the reader the challenge of
identifying where further details are needed and which
traditional methods could be invoked, making use of
direct analysis of d,, ;.

Let me be quick to emphasize that the value of the
second example did not lie in its inability to be solved
by traditional methods, but rather in the ease with
which it can be handled by the new methods discussed
in the paper; c.f. the short conclusion in (5.4). The
value is really much greater since the particular prob-
lem is intended only to provide a simple illustration
of the newer methods’ broad applicability.

When h is such that the translation family .7, is
a determining class of functions, a metric on the
space of probability measures can be defined in terms
of the sup-norm over .9, namely, |P — Q| s, =
sup{| (P — Q)f|: f € F»}. This in turn enables one to
consider the Kolmogorov-type statistic

D,(h, P) := | P, — P|s, = Sl:pl (P, — P)h(- — )|
as a measure of the distance between P, and P. As

an example, let me phrase the author’s second prob-
lem more explicitly as an estimation problem for a
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translation parameter 6, and make use of the Kolmo-
gorov-type statistic D, (g, P) based on the shell func-
tion g(x) = (1 — |x|®)™. Let 2 = {P’: § € R?} be the
translation family of probability measures defined by
P°(A) = P(A — 0). Suppose one wishes to estimate 0
by the minimum distance estimator, 6,, defined as
that value of § € R¢ which minimizes the distance

D.(g, P’) = sup | Prg(- —t) — Pg(- —t = 0)].

Under the assumption that the true parameter is 6, =
0, it appears that the asymptotic distribution of 4,
may be the same as that for Pollard’s estimate, 7,, the
value of ¢ at which P,g(- — t) is maximized, even
though the minimization problems are different. Let
me offer as a third test of the author’s methodology
the question of determining the limiting distribution
of n'/2,. This type of problem is similar to one con-
sidered by Blackman (1955), except that he used a
Cramér-von Mises distance rather than a Kolmogorov
one; in Pyke (1970) this simpler problem was used to
illustrate the applicability of the “weak implies strong”
methodology mentioned above.

Although I have directed my comments on the paper
towards statisticians as users of this theory, I would
stress that the paper is also of great value to those
doing research in the area. From both viewpoints I

Comment

Miklés Csorgo and Lajos Horvath

It is a pleasure to congratulate David Pollard on his
masterly glimpse into the theory of empirical proc-
esses. His artful development here of the technique of
Gaussian symmetrization, of the resulting maximal
inequalities for Gaussian processes and their applica-
tion in the empirical process context leaves us no
room for comment on his methods, which extend the
concept of a Vapnik-Cervonenkis class of sets. He
"demonstrates the efficiency of these methods by use
of ‘two motivating, nontrivial asymptotic problems
and succeeds very well in conveying the look and feel
of a powerful tool of contemporary mathematical
statistics.
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versity of Utah, Salt Lake City, Utah 84112.

greatly appreciate the efforts of David Pollard for
preparing this valuable exposition.
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There are also other powerful contemporary tools
available for tackling asymptotic problems of mathe-
matical statistics. The ones we have in mind are strong
and weak approximations (almost sure and in proba-
bility invariance principles) for empirical and partial
sum processes based on various forms of the Skorohod
embedding scheme, or on various forms of the Hun-
garian construction. The quoted book of Shorack and
Wellner (1986) is also an excellent source of infor-
mation on these methods. For further references on
the methods and their applications, we mention the
books of Csorgé and Révész (1981), Csorgdé (1983),
and Csorgd, Csorgoé and Horvath [CsCsH] (1986). For
an insightful overview of strong and weak approxi-
mations we refer to Philipp (1986) (cf. also the review
of Csorgd (1984)). Concerning Hungarian construc-
tions, for those who are really interested, the papers
of Bretagnolle and Massart (1989), and Einmahl
(1989) are most recommended readings.

Here we make use of the first problem discussed by
David Pollard to illustrate what we mean by strong
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and weak approximation methods and by their direct,
straightforward application to this problem. Let X,
X,, --- be independent, identically distributed ran-
dom variables with distribution function F on the real
line. Let

F,x) =n""#l<isn: X; < x}
and
an(x) = n*(F,(x) — F(x)), x €R,

be the empirical distribution function and the empirical
process, respectively, of the first n of these random
variables. Let us first take it for granted that we
have constructed a sequence of continuous Gaussian
processes {B,(t), 0 = t < 1} on a probability space
(Q, &, P) on which X;, X,, ---, and B, live to-
gether so that P{X;, < x} = F(x), B, is a Brownian
bridge for each n = 1, 2 --., ie., a real valued,
mean zero Gaussian process with covariance function
EB,(s)B,.(t) = min(s, t) — st (thus, for each fixed t €
(0, 1), B,(t) is a N(0, t(1 — t)) random variable) and,
as n — o, we have

(1) sup | an(x) — B.(F(x))| = op(1),

—o<< x<<00
and, on assuming that EX? = [%, x? dF(x) < o, we
have also

(2) J:w | an(x) — B,(F(x)) | dx = op(1).

The statements (1) and (2) are examples of what
we mean by weak approximation (invariance principle
in probability). They are conceptually simpler than
the notion of weak convergence (functional central
limit theorem). Also, (1) actually is a stronger form of
Donsker’s theorem; it implies the corresponding clas-
sical Donsker functional theorem. From the point of
view of this remark, which may very well coincide with
that of the statistician in general, it is irrelevant how
exactly the construction leading up to (1) and (2) is
carried out. For details we may refer to Chapters 2
and 3 of CsCsH (1986), and for (2) in particular
to Lemma 3.2 of the latter monograph. Here we
will simply use them as if one were using a central
limit theorem, only more directly however, as
building blocks in the process of obtaining our
weak approximations.

As in the Pollard exposition, for ¢t € R we let

Gn(t)=n_12|Xt_t|=f Ix_tlan(x)’
i=1 —

G(t)=j: |x—t|dF(x)

and define, what he calls the standardized difference,

B by
Bn(t) =n*(G,.(t) — G(t))

=J: |x—t] do,(x).

The statistic G,(X,) = n"' Y%, | X; — X,.| is the first
of the two problems discussed in Section 2 of Pollard’s
work. Going at it from the weak approximation point
of view, the definition of (8, and (1) immediately
suggest that for large n the process 3,(t) in t € R
should be close to the sequence of Gaussian processes

I (t) =J: |x—t|dB.(F(x)), tER,

which have the same distribution for each n. Indeed,
we have the following simple invariance principles in
probability. With all due respect to many in statistics
who cannot stand theorem-proof like presentations,
we have found it most economical to summarize our
view exactly that way.

Proposition 1. If EX? < «, then as n — o« we have

(3 sup | Ba(¢) — Ta(t) | = op(1).

—o<t<<oo

Proof. Integrating by parts, using the assumption
EX2? < oo, we have, writing sup; for SUp_w<;<cw,

= sup f Jx=t]d(an(x) = Bu(F())) !

t

=sup J:w (an(x) =B (F(x))) d|x—¢|

t

=sup J: (an(u+t)—Bu(F(u+t)))d|ul

t

0
=sup —j: (a(u+t)—B,(F(u+t))) du

t

+f (an(u+t)—B,(F(u+t)))du
V]
=sup {J: | an(x) — Bn(F(x)) | dx

+f I an(x) _Bn(F(x)) | dx}

= J:w | an(x) — Bn(F(x)) | dx =0p(1),

on account of (2), where the equality obtained by
integrating by parts holds with probability one for
each n.
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The result of (3) for each fixed ¢t rhymes with Pollard
saying that if F has a finite variance, the standardized
difference 3, is asymptotically normal, for each fixed
t, namely

@ B STE) = f _lx—t|dB(F()),

where B is a Brownian bridge. Of course (3) implies
also a weak convergence version of the latter conver-
gence in distribution result.

We can write X, = [ x dF,(x), and similarly to
Proposition 1, (2) implies
(5) nl/Z(Xn—ﬂ)—f xdB,(F(x)) | =0p(1),
where p = EX, = [Z, x dF(x).

One of the points made in Pollard’s work is, of
course, the asymptotic normality of nY*(G,(X,) —
G(u)). In terms of our weak approximation language,
the latter reads and easily established as follows.

Proposition 2. If EX? < o and F is continuous in a
neighborhood of u, then as n — o we have

n'2(G,(X,) — G(w)

6) — {Fn(u) + (2F(w) — 1) j:w x dBn(F(x))} '

= Op ( 1 ) ’
and hence also

n%(Gn(X,) — G(uw)

(7 @ =
— I'(p) + (2F(p) — 1) Iw x dB(F(x)).

Proof. An elementary calculation yields
(€)) G'(t) = 2F(t) — 1.
We write
n'*(Gn(X,) — G(u)
= Bn(Xn) + n"A(G(X,) = G(n)).

It is easy to see that I',(t) is almost surely continuous
at u for each n (cf. (17)), and therefore (3) and (5)

yield

9

l Bn()_{n) - Pn(ll’) I
=OP(1)9

ie., B.(X,) = nY*G.(X,) — G(X.)) has the same
limiting normal distribution as 8,(x) = nY?(G, () —
G(u)), namely 8,(X,) = I'(x). Now the mean value
theorem, the assumed continuity of F around g, (5),

and (8) result in

n2(G(X,) — G(w)

(11) =
- (@2F() - 1) J:w x dB,(F(x)) = op(1).

A combination of (9), (10), and (11) implies the result
in (6).

We note that (11) spells out exactly what the con-
tribution of n'/?(X,, — ) is to the limiting distribution
of nV3(G,(X,) — G(r)) in (6). This asymptotic contri-
bution of nY%(X, — u) vanishes if F(u) = %, i.e., if u
were also a median of F, for then 2F(u) — 1 = 0. This
brings us to the natural proposition of replacing X,
by the sample median m,, or by any other consistent
sequence of estimators of a population median m of F.
This is also mentioned of course in Pollard’s work,
who notes also that the choice of m, for the centering
leads to another measure of spread, inf, G,(t), for the
sample. In this particular example the solution is easy.
Indeed, arguing as in the proof of Proposition 2 we
have the next, obvious from the weak approximations
point of view, result.

Proposition 3. If EX? < « and F is continuous in a
neighborhood of m and m, — m = 0p(1), i.e., m, is a
weakly consistent sequence of estimators for m, then
as n — o we have

12) | nY%G,(m,) — G(m)) — Ta(m) | = 0p(1),
and hence also
(13) n%(G,(m,) — G(m)) —> T'(m).

Next, in addition to (1) and (2), let us take it for
granted that, on an appropriate probability space, as
n — oo, we have already established

L) = B.(Fx) |
o (F(x)(1 = F(x))) 2~

_JOp(n™% log n), if v =1,
“ 10p(n™), if0<v<ih

This is Lemma 7 in Cs6érgé and Horvath (1988a), and
it is based on earlier versions in Csorgd, Csoérgd,
Horvath and Mason (1986), Csérgd and Horvath
(1986) and Mason and van Zwet (1987). Given (14)
and some slight conditions on F, we can restate our
invariance principles in probability so far with rates of
convergence attached this time around, and watch how
new conditions present themselves in a most natural
way for the job at hand.

(14)

Proposition 1*. If

J(L>:=J\ (F(x)(1=F(x)))Y* " dx <o
1-2v —co
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for some v € (0, 1), then as n — ®

(15)  sup_|Ba(t) = Tu(®)] = Op(n™).

Proof. First we note that J(2/(1 — 2v)) < o implies
E|X;|”"® < » for some v € (0, %), a stronger
moment condition than that of Proposition 1. This
follows from extending the discussion in the Appen-
dix of Hoeffding (1973). Hence EX? < o and, on
integrating by parts we get, as in the proof of Propo-
sition 1,

sup | Ba(t) — Talt) |

J:m (an(x) = Ba(F(x))) d|x — ¢ |

= sup
t

= ‘[w |an(x) _Bn(F(x)) l dx

<sup l an(x) _Bn(F(x)) |
T s (F(x)(1—=F(x)*

. J: (F(x)(1 = F(x))) ">~ dx,
and hence (14) implies (15).

We note that by the Appendix of Hoeffding (1973)
it is easy to give a sufficient moment condition for the
finiteness of J(2/(1 — 2v)) of Proposition 1*. For
example, if

E{]1 X, |7 (log(1 + | X1 1))} <o,

then J(2/(1 — 2v)) < x (cf. also Section 3 of CsCsH
(1986) for related material).

Proposition 2*. If J(2/(1 — 2»)) < o for some v €
(0, %) and F possesses a bounded density f in a
neighborhood of u, then as n — «

nV%(G,(X,) — G(w)

(16) - {I‘,,(u) + (2F (u) — l)f den(F(x))} '

= Op(n_").

Proof. First, along the lines of the proof of Proposi-
tion 1, we observe that we have with probability one
for each n and all ¢

I‘n('t)=_[ Bn(F(x))dxff B, (F(x)) dx.

Hence we have with probability one for each n and
all s, t :

(A7) | Ta(t) = Tals) | =2|t—s|sup|B,(F(x))|,

and note also that, instead of (5), we now have

=0p(n™),

n1/2(Xn - ﬂ) - I X dBn(F(x))

(18)
v € (0, %),

similarly to Proposition 1* by (14). With an eye on
(9), from (15), (17) and (18) we conclude

I ﬁn()_{n) - Fn(ﬂ) l
= | 6n()_(n) - Pn()_(n) l + l Fn()_(n) - Fn(ﬂ) l
+2 l Xn_ﬂ | Supan(F(x)) l
=0p(n™)+0p(n™?) =0p(n™),
while a two-term Taylor expansion gives
(20) n"*(G(X,) — G(w)
=Q2F(u) = Dn"*(X,—p) +f(£)nVA( X, — p)?,

where min(X,,, ) < £, < max(X,, u). Hence by (18)
and the assumed boundedness of f around u we get

n2(G(X,) — G(w)

(21) - @F@-1 f _ % dB(F(x)) ’

= 0p(n™) + Op(n™'?)
= Op(n_”).

On account of (9), (19) and (21) we now have also
(16).

For the sake of a similar version of Proposition 3
we estimate the median m of F by the sample median

m, := inf{x: F,(x) = %}.

Proposition 3*. If J(2/(1— 2v)) < o for some v €

(0, %), and F possesses a density f in a neighborhood

of m and f is positive and continuous at m, then
(22) |nY%(Gn(m,) — G(m)) — Tp(m)| = Op(n™).

Proof. 1t is well known (cf., e.g., Csorgo (1983, Sec-
tion 1.5) or Serfling (1980, Section 2.3.3)) that under
the given conditions on f we have, as n — ,

23)  nY(m, — m) > N(0, 1/(4f*(m))).
As in (9)
n'*(G,(m,) — G(m))

= Bu(m,) + n(G(m,) — G(m)),

and a two-term Taylor expansion gives (compare

(24)
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with (20))
(25) n'A(G(m,) — G(m)) = f(g,)n"*(m, — m)?,

where min(m,, m) < 5, < max(m,, m). By (15), (17)
and (23) we get, as in (19),

(26) | Ba(mn) — Tr(m) | = Op(n™),
while (23) and (25) combined yield

(27) n'*(G(m,) — G(m)) = Op(n™"?).
Now (24), (26) and (27) result in (22).

This also concludes what we wish to say about quick
and easy applications of weak approximation methods
(invariance principles in probability) to the first prob-
lem discussed by Pollard. There are of course similar-
ities between the two approaches taken. Pollard too
uses approximation arguments, but to make them
precise he puts the onus on probabilistic bounds on
the oscillations of the empirical process in shrinking
neighborhoods of a point (like u or m above), while
we work with approximating the whole empirical proc-
ess instead (as in (1), (2) and (14)), and then use the
approximating Gaussian sequences as building blocks
in the process of replacing the empirical parts by
Gaussian ones and thus piecing together asymptotic
representations (identifications in the limit) for the
sample processes at hand.

As to the nature of the results of the above propo-
sitions, they are similar to those obtained for the
empirical process with parameters estimated (cf.
Burke, Csorgd, Csorgé and Révész, 1979; Durbin,
1973a, b) in that they are also asymptotically distri-
bution dependent. Hence computations for the desired
asymptotic distribution functions are difficult to come
by. These results, however, can be bootstrapped by
resampling the data. For tools of bootstrapping em-
pirical functionals, we refer to Bickel and Freedman
(1981), CsCsH (1986, Chapter 17), and for a successful
execution of bootstrapping the empirical process when

the underlying parameters are estimated we refer to

Burke and Gombay (1988).

We have also promised to illustrate strong approxi-
., mation methods on the above discussed first problem

of Pollard. Let {K(y,t);0 =y=<1,0<t<x}bea
Kiefer process, that is, a real valued, mean zero, two-
parameter Gaussian process, with covariance function
EK(y, t)K(u, s) = min(t, s)(min(y, u) — yu) (thus in
t, K(y, t) is like a Brownian motion, and it is like a
Brownian bridge in y), which we accept to have been
constructed for a, on an appropriate probability space
so that, as n — oo, )

sup | an(x) — n”V?2K(F(x), n)|

(28) —00 < x <00
: £ 0((log n)?/n').

This is an example of strong approximation (strong
invariance principle) and a famous one at that (cf.
Komlés, Major and Tusnady (1975) for the original
result, or Theorem 4.4.3 in Csorgé and Révész (1981)).
The empirical process a,(x) is approximated almost
surely (a.s.) as a two-parameter process in x and n by
a single two-parameter Gaussian process K(F(x), n).
In addition to weak laws, via (28) «,(-) inherits also
strong laws, like for example the law of the iterated
logarithm (LIL), from K(-, -). Here, using (28) along
the lines of the proofs of Propositions 2* and 3%,
combined with appropriate LIL laws like Theorem
1.15.1 of Csorgd and Révész (1981), under the respec-
tive conditions of Propositions 2* and 3* one easily
obtains immediate respective LIL laws as follows:

n—o

1/2
. n 4
0 < lim sup (m) | G.(X,) — G(w) |

< ®© a.s.

and

n—o

1/2
. n
0 < lim sup (m) | Go(m,) — G(m) |

<o a.s.

For multivariate generalizations of (1) and (28) with
rates, and with an arbitrary distribution function F
on R¢ d = 2, we refer to Philipp and Pinzur (1980),
Borisov (1982), and Csorgé and Horvath (1988b).
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Rejoinder

David Pollard

I find myself in the position of a man who has just
pointed out how one can balance a checkbook using a
high-powered graphics workstation. Professor Dudley
responds by suggesting some further applications in
the same spirit. Professors Giné and Zinn point out
that one can also use the machine for high speed
interactive graphics. Professor Pyke mentions other
uses more suited for a piece of high technology, while
suggesting (perhaps tongue in cheek) that my par-
ticular checkbook might also be balanced using a
hand-held calculator. Professors Csorgé and Horvath
demonstrate that their super parallel processor can
also balance checkbooks.

In large part I agree with, and welcome, the com-
ments of this distinguished group of discussants. But
to maintain the correct atmosphere of contrariness
and provocation, I will find some way to disagree with
all of them. )

Professor Dudley suggests that Fréchet differentia-
bility, with the right choice of norm, should be used
in preference to compact differentiability. As he has
convincingly argued in his 1989 preprint, this new
viewpoint does free Fréchet differentiability from the
uncomfortable constraint of distribution functions on
the real line. However, compact differentiability (with
derivative A,) of a functional T.is enough to imply

Vn [T(x + 2,/Vn) — T(x)] = A, - 2, + 0(1)

for each convergent sequence {z,}, a property that is
ideally suited to application of Dudley’s (1985) almost
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uniform representation theorem. Gill (1987) has ex-
plored this aspect of compact differentiability.

Dudley also suggests substitution of the smooth
convex p(x) for | x|, to eliminate the problems caused
by nondifferentiability of | x | at the origin. As a device
to simplify the asymptotic theory this is unnecessary
(Pollard 1989a); Tchebychev’s inequality, the CLT for
bounded (vector-valued) summands, and an elemen-
tary convexity argument can handle the estimator,
even for ¢ = 0.

Professors Giné and Zinn quite properly point out
some of the beautiful general theory—in particular,
the work of Talagrand—that I failed to mention. I feel
that conditions expressed in terms of limiting Gauss-
ian processes will not appeal to many potential users
of empirical process theory, even though there are
excellent theoretical reasons for preferring their ap-
proach. At this stage in the history of the world, I feel
it is more important that potential users be enticed by
small examples of empirical process ideas rather than
be impressed and intimidated by the full force and
elegance of the latest theory. Times will change. More
papers along the lines of Giné and Zinn (1988) will
convince us all that sample path properties of abstract
Gaussian processes are relevant, even for popular top-
ics such as the bootstrap.

Jain and Marcus (1975, inequality 2.30) did use the
idea of dominating a process involving Rademachers
by a related Gaussian process, but Giné and Zinn are
right concerning the role of the inequality in the
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reverse direction and the role that Gaussian symme-
trization plays in the modern theory.

Professor Pyke seems to regret that I omitted the
full statement of the CLT for the empirical process
v,. That was one of the topics sacrificed in order to
simplify the general presentation. My experience has
been that very often one does not need the full force
of a CLT. The approximation property represented
by stochastic equicontinuity (or uniform tightness),
which is the main ingredient in the empirical CLT, is
often all that one needs. My Theorem 4.7 (when
applied to classes of differences of functions from a
fixed .#) can be reinterpreted as an assertion of sto-
chastic equicontinuity; it is a much streamlined form
of the argument I used to prove my 1982 empirical
CLT.

One could handle the applications by setting up a
formal empirical CLT as a functional limit theorem
for stochastic processes (interpreted in the Hoffmann-
Jorgensen sense mentioned by Dudley). One could
then appeal, for example, to Dudley’s almost uniform
representation to approximate a version of v, by a
version of the Gaussian limit process. Then the uni-
form approximation arguments in the illustrative
examples would be replaced by continuity arguments
for the sample paths of the Gaussian process. This
approach was discussed in more detail in Pollard
(1989b).

Pyke recognizes the intent of my second example to
illustrate how off-the-shelf empirical process methods
make short work of a typical sort of multidimensional
estimation problem. Nevertheless he can’t resist the
temptation of trying to handle the same example using
more traditional methods. I approve fully, since my
instincts also push me towards the method of mini-
mum machinery. I would suggest, however, that the
contribution from the annulus B; could prove trouble-
some when one tries to establish bounds uniformly
over a range of vector-valued parameters b.

To find the asymptotic distribution of the 6, that
minimizes Pyke’s D,(g, Pys) one can use empirical

process methods (Pollard, 1980, Theorem 7.2). I do"

not think that it has the same normal limit distribu-
tion as 7,.
. Professors Csorgd and Horvath advertise an ap-

proximation technology that has much to recommend
it. As I have already noted in my response to Pyke,
the empirical process oscillation argument in my paper
can be recast into the form of an almost uniform
representation of an abstract empirical CLT. The
paragraph following their equation (27) summarizes
only the particular approach that I took in this partic-
ular paper; it is not a complete description of the
abstract empirical process theory that has grown from
Dudley’s 1978 paper.

I regret that Csorgd and Horvath chose to illustrate
their approximation methods with the one-dimen-
sional form of the first example from my paper. For
me, at least, the application to vector-valued ¢, as
treated briefly at the end of Example 5.5, would have
been more instructive. In higher dimensions the clas-
sical empirical distribution function—the empirical
process indexed by orthants—is not as useful as its
one-dimensional analog. It is not as easy to reduce
multiparameter processes via an integration by parts
to this classical process. The very fine almost sure
approximations for multidimensional empirical distri-
bution functions are not the right tools for many
interesting multiparameter problems; the construc-
tions of Dudley and Philipp (1983) or Massart (1989)
are more appropriate.

I thank all the discussants for their comments.
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