
NONLINEAR LEAST-SQUARES ESTIMATION

DAVID POLLARD AND PETER RADCHENKO

ABSTRACT. The paper uses empirical process techniques to study the asymp-

totics of the least-squares estimator for the fitting of a nonlinear regression

function. By combining and extending ideas of Wu and Van de Geer, it es-

tablishes new consistency and central limit theorems that hold under only

second moment assumptions on the errors. An application to a delicate

example of Wu’s illustrates the use of the new theorems, leading to a nor-

mal approximation to the least-squares estimator with unusual logarithmic

rescalings.

1. INTRODUCTION

Consider the model where we observe yi for i = 1, . . . , n with

yi = fi(θ) + ui where θ ∈ Θ.(1)

The unobserved fi can be random or deterministic functions. The unobserved errors ui

are random with zero means and finite variances. The index set Θ might be infinite di-

mensional. Later in the paper it will prove convenient to also consider triangular arrays of

observations.

Think of f(θ) = (f1(θ), . . . , fn(θ))′ and u = (u1, . . . , un)′ as points in R
n. The

model specifies a surface MΘ = {f(θ) : θ ∈ Θ} in R
n. The vector of observations
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y = (y1, . . . , yn)′ is a random point in R
n. The least squares estimator (LSE) θ̂n is defined

to minimize the distance of y to MΘ,

θ̂n = argminθ∈Θ |y − f(θ)|2,

where | · | denotes the usual Euclidean norm on R
n. Many authors have considered the

behavior of θ̂n as n → ∞ when the yi are generated by the model for a fixed θ0 in Θ.

When the fi are deterministic, it is natural to express assertions about convergence of θ̂n

in terms of the n-dimensional Euclidean distance κn(θ1, θ2) := |f(θ1) − f(θ2)|. For ex-

ample, Jennrich (1969) took Θ to be a compact subset of R
p, the errors {ui} to be iid with

zero mean and finite variance, and the fi to be continuous functions in θ. He proved strong

consistency of the least squares estimator under the assumption that n−1κn(θ1, θ2)
2 con-

verges uniformly to a continuous function that is zero if and only if θ1 = θ2. He also gave

conditions for asymptotic normality.

Under similar assumptions Wu (1981, Theorem 1) proved that existence of a consistent

estimator for θ0 implies that

κn(θ) := κn(θ, θ0) → ∞ at each θ �= θ0.(2)

If Θ is finite, the divergence (2) is also a sufficient condition for the existence of a consistent

estimator (Wu 1981, Theorem 2). His main consistency result (his Theorem 3) may be

reexpressed as a general convergence assertion.

Theorem 1. Suppose the {fi} are deterministic functions indexed by a subset Θ of R
p.

Suppose also that supi var(ui) < ∞ and κn(θ) → ∞ at each θ �= θ0. Let S be a bounded

subset of Θ\{θ0} and let Rn := infθ∈S κn(θ). Suppose there exist constants {Li} such that

(i) supθ∈S |fi(θ) − fi(θ0)| ≤ Li for each i;

(ii) |fi(θ1) − fi(θ2)| ≤ Li|θ1 − θ2| for all θ1, θ2 ∈ S;

(iii)
∑

i≤n L2
i = O(Rα

n) for some α < 4.

Then P{θ̂n /∈ S eventually } = 1.
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Remark. Assumption (i) implies
∑

i≤nL2
i ≥ κn(θ)2 → ∞ for each θ in S, which

forces Rn → ∞.

If Θ is compact and if for each θ �= θ0 there is a neighborhood S = Sθ satisfying the

conditions of the Lemma then θ̂n → θ0 almost surely.

Wu’s paper was the starting point for several authors. For example, both Lai (1994)

and Skouras (2000) generalized Wu’s consistency results by taking the functions fi(θ) =

fi(θ, ω) as random processes indexed by θ. They took the {ui} as a martingale difference

sequence, with {fi} a predictable sequence of functions with respect to a filtration {Fi}.

Another line of development is typified by the work of Van de Geer (1990) and Van de

Geer and Wegkamp (1996). They took fi(θ) = f(xi, θ), where F = {fθ : Θ} is a set of

deterministic functions and the (xi, ui) are iid pairs. (In fact they identified Θ with the index

set F .) Under a stronger assumption about the errors, they established rates of convergence

of κn(θ̂n) in terms of L2 entropy conditions on F , using empirical process methods that

were developed after Wu’s work.

The stronger assumption was that the errors are uniformly subgaussian. In general, we

say that a random variable W has a subgaussian distribution if there exists some finite τ

such that

P exp(tW ) ≤ exp
(

1
2
τ 2t2

)
for all t ∈ R.

We write τ(W ) for the smallest such τ . Van de Geer assumed that supi τ(ui) < ∞.

Remark. Notice that we must have PW = 0 when W is subgaussian because the lin-

ear term in the expansion of P exp(tW ) must vanish. When PW = 0, subgaussianity is

equivalent to existence of a finite constant β for which P{|W | ≥ x} ≤ 2 exp(−x2/β2)

for all x ≥ 0.

In our paper we try to bring together the two lines of development. Our main motivation

for working on nonlinear least squares was an example presented by Wu (1981, page 507).

He noted that his consistency theorem has difficulties with a simple model,

fi(θ) = λi−µ for θ = (λ, µ) ∈ Θ, a compact subset of R × R
+.(3)
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For example, condition (2) does not hold for θ0 = (0, 0) at any θ with µ > 1/2. When

θ0 = (λ0, 1/2), Wu’s method fails in a more subtle way, but Van de Geer (1990)’s method

would work if the errors satisfied the subgaussian assumption. In Section 4, under only

second moment assumptions on the errors, we establish weak consistency and a central

limit theorem.

The main idea behind all the proofs—ours, as well as those of Wu and Van de Geer—is

quite simple. The LSE also minimizes the random function

Gn(θ) := |y − f(θ)|2 − |u|2 = κn(θ)2 − 2Zn(θ)

where Zn(θ) := u′f(θ) − u′f(θ0).
(4)

In particular, Gn(θ̂n) ≤ Gn(θ0) = 0, that is, 1
2
κn(θ̂n)2 ≤ Zn(θ̂n). For every subset S of Θ,

P{θ̂n ∈ S} ≤ P{∃θ ∈ S : Zn(θ) ≥ 1
2
κn(θ)2} ≤ 4P sup

θ∈S
|Zn(θ)|2/ inf

θ∈S
κn(θ)4.(5)

The final bound calls for a maximal inequality for Zn.

Our methods for controlling Zn are similar in spirit to those of Van de Geer. Under her

subgaussian assumption, for every class of real functions {gθ : θ ∈ Θ}, the process

X(θ) =
∑

i≤n
uigi(θ)(6)

has subgaussian increments. Indeed, if τ(ui) ≤ τ for all i then

τ
(
X(θ1) − X(θ2)

)2

≤
∑

i≤n
τ(ui)

2
(
gi(θ1) − gi(θ2)

)2

≤ τ 2|g(θ1) − g(θ2)|2.

That is, the tails of X(θ1)−X(θ2) are controlled by the n-dimensional Euclidean distance

between the vectors g(θ1) and g(θ2). This property allowed her to invoke a chaining bound

(similar to our Theorem 2) for the tail probabilities of supθ∈S |Zn(θ)| for various annuli

S = {θ : R ≤ κn(θ) < 2R}.

Under the weaker second moment assumption on the errors, we apply symmetrization

arguments to transform to a problem involving a new process Z◦
n(θ) with conditionally

subgaussian increments. We avoid Van de Geer’s subgaussianity assumption at the cost

of extra Lipschitz conditions on the fi(θ), analogous to Assumption (ii) of Theorem 1,
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which lets us invoke chaining bounds for conditional second moments of supθ∈S |Z◦
n(θ)|

for various S.

In Section 3 we prove a new consistency theorem (Theorem 3) and a new central limit

theorem (Theorem 4, generalizing Wu’s Theorem 5) for nonlinear LSEs. More precisely,

our consistency theorem corresponds to an explicit bound for P{κn(θ̂n) ≥ R}, but we state

the result in a form that makes comparison with Theorem 1 easier. Our Theorem does not

imply almost sure convergence, but our techniques could easily be adapted to that task.

We regard the consistency as a preliminary to the next level of asymptotics and not as an

end in itself. We describe the local asymptotic behavior with another approximation result,

Theorem 4, which can easily be transformed into a central limit theorem under a variety of

mild assumptions on the {ui} errors. For example, in Section 4 we apply the Theorem to

the model (3), to sharpen the consistency result at θ0 = (1, 1/2) into the approximation

(
�1/2
n (λ̂n − 1), �3/2

n (1 − 2µ̂n)
)

=
∑

i≤nuiζ
′
i,n + op(1)(7)

where �n := log n and

ζi,n = i−1/2�−1/2
n

⎛⎝ 2 −6

−6 24

⎞⎠ ⎛⎝ 2

�i/�n

⎞⎠ .

The sum on the right-hand side of (7) is of order Op(1) when supi var(ui) < ∞. If the {ui}
are also identically distributed, the sum has a limiting multivariate normal distribution.

2. MAXIMAL INEQUALITIES

Assumption (ii) of Theorem 1 ensures that the increments Zn(θ1)−Zn(θ2) are controlled

by the ordinary Euclidean distance in Θ; we allow for control by more general metrics. Wu

invoked a maximal inequality for sums of random continuous processes, a result derived

from a bound on the covering numbers for Mθ as a subset of R
n under the usual Euclidean

distance; we work with covering numbers for other metrics.
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Definition 1. Let (T, d) be a metric space. The covering number N(δ, S, d) is defined

as the size of the smallest δ-net for S, that is, the smallest N for which there are points

t1, . . . , tN in T with mini d(s, ti) ≤ δ for every s in S.

Remark. The definition is the same for a pseudometric space, that is, a space where

d(θ1, θ2) = 0 need not imply θ1 = θ2. In fact, all results in our paper that refer to metric

spaces also apply to pseudometric spaces. The slight increase in generality is sometimes

convenient when dealing with metrics defined by Lp norms on functions.

Standard chaining arguments (see, for example, Pollard 1989), give maximal inequalities

for processes with subgaussian increments controlled by a metric on the index set.

Theorem 2. Let {Wt : t ∈ T} be a stochastic process, indexed by a metric space (T, d),

with subgaussian increments. Let Tδ be a δ-net for T . Suppose:

(i) there is a constant K such that τ(Ws − Wt) ≤ Kd(s, t) for all s, t ∈ T ;

(ii) Jδ :=
∫ δ

0
ρ(N(y, S, d)) dy < ∞, where ρ(N) :=

√
1 + log N .

Then there is a universal constant c1 such that

1

c1

√
P supt |Wt|2 ≤ KJδ + ρ(N(δ, T, d)) maxs∈Tδ

τ(Ws).

Remark. We should perhaps work with outer expectations because, in general, there

is no guarantee that a supremum of uncountably many random variables is measurable.

For concrete examples, such as the one discussed in Section 4, measurability can usually

be established by routine separability arguments. Accordingly, we will ignore the issue

in this paper.

Under the assumption that var(ui) ≤ σ2, the X process from (6) need not have sub-

gaussian increments. However, it can be bounded in a stochastic sense by a symmetrized

process X◦(θ) :=
∑

i≤nεiuigi(θ), where the 2n random variables ε1, . . . , εn, u1, . . . , un are

mutually independent with P{εi = +1} = 1/2 = P{εi = −1}. In fact, for each subset S

of the index set Θ,

P supθ∈S |X(θ)|2 ≤ 4P supθ∈S |X◦(θ)|2.(8)
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For a proof see, for example, van der Vaart and Wellner (1996, Lemma 2.3.1). The pro-

cess X◦ has conditionally subgaussian increments with

τu

(
X◦

θ1
− X◦

θ2

)2

≤
∑

i≤n
u2

i

(
gi(θ1) − gi(θ2)

)2

.(9)

The subscript u indicates the conditioning on u.

Corollary 1. Let Sδ be a δ-net for S and let X be as in (6). Suppose

(i) Pui = 0 and var(ui) ≤ σ2 for i = 1, . . . , n

(ii) there is a metric d for which Jδ :=
∫ δ

0
ρ(N(y, S, d)) dy < ∞

(iii) there are constants L1, . . . , Ln for which

|gi(θ1) − gi(θ2)| ≤ Lid(θ1, θ2) for all i and all θ1, θ2 ∈ S

(iv) there are constants b1, . . . , bn for which |gi(θ)| ≤ bi for all i and all θ in S.

Then there is a universal constant c2 such that

P sup
θ∈S

|Xθ|2 ≤ c2
2σ

2 (LJδ + Bρ(N(δ, S, d)))2

where L :=
√∑

i L
2
i and B :=

√∑
i b

2
i .

Proof. From (9),

τu(X
◦
θ1
− X◦

θ2
) ≤ Lud(θ1, θ2) where Lu :=

√∑
i≤nL

2
i u

2
i

and

τu(X
◦
θ ) ≤ Bu :=

√∑
i≤nb

2
i u

2
i

Apply Theorem 2 conditionally to the process X◦ to bound Pu supθ∈S |X◦
θ |2. Then invoke

inequality (8), using the fact that PL2
u ≤ σ2L2 and PB2

u ≤ σ2B2.
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3. LIMIT THEOREMS

Inequality (5) and Corollary 1, with gi(θ) = fi(θ) − fi(θ0), give us some probabilistic

control over θ̂n.

Theorem 3. Let S be a subset of Θ equipped with a pseudometric d. Let {Li : i =

1, . . . , n}, {bi : i = 1, . . . , n}, and δ be positive constants such that

(i) |fi(θ1) − fi(θ2)| ≤ Lid(θ1, θ2) for all θ1, θ2 ∈ S

(ii) |fi(θ) − fi(θ0)| ≤ bi for all θ ∈ S

(iii) Jδ :=
∫ δ

0
ρ

(
N(y, S, d)

)
dy < ∞

Then

P{θ̂n ∈ S} ≤ 4c2
2σ

2
(
Bρ

(
N(δ, S, d)

)
+ LJδ

)2

/R4,

where R := inf{κ(θ) : θ ∈ S}, and L2 =
∑

i L
2
i , and B2 :=

∑
i b

2
i .

The Theorem becomes more versatile in its application if we partition S into a countable

union of subsets Sk, each equipped with its own pseudometric and Lipschitz constants. We

then have P{θ̂n ∈ ∪kSk} smaller than a sum over k of bounds analogous to those in the

Theorem. As shown in Section 4, this method works well for the Wu example if we take

Sk = {θ : Rk ≤ κn(θ) < Rk+1}, for an {Rk} sequence increasing geometrically.

A similar appeal to Corollary 1, with the gi(θ) as partial derivatives of fi(θ) functions,

gives us enough local control over Zn to go beyond consistency. To accommodate the

application in Section 4, we change notation slightly by working with a triangular array:

for each n,

yin = fin(θ0) + uin, for i = 1, 2, . . . , n,

where the {uin : i = 1, . . . , n} are unobserved independent random variables with mean

zero and variance bounded by σ2.

Theorem 4. Suppose θ̂n → θ0 in probability, with θ0 an interior point of Θ, a subset of R
p.

Suppose also:
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(i) Each fin is continuously differentiable in a neighborhood N of θ0 with derivatives

Din(θ) = ∂fin(θ)
/
∂θ.

(ii) γ2
n :=

∑
i≤n |Din(θ0)|2 → ∞ as n → ∞.

(iii) There are constants {Min} with
∑

i≤n M2
in = O(γ2

n) and a metric d on N for which

|Din(θ1) − Din(θ2)| ≤ Mind(θ1, θ2) for θ1, θ2 ∈ N .

(iv) The smallest eigenvalue of the matrix Vn = γ−2
n

∑
i≤n Din(θ0)Din(θ0)

′ is bounded

away from zero for n large enough.

(v)
∫ 1

0
ρ

(
N(y,N , d)

)
dy < ∞

(vi) d(θ, θ0) → 0 as θ → θ0.

Then κn(θ̂n) = Op(1) and

γn(θ̂n − θ0) =
∑

i≤n
ξi,nuin + op(1) = Op(1).

where ξi,n = γ−1
n V −1

n Din(θ0).

Proof. Let D be the p × n matrix with ith column Din(θ0), so that γ2
n = trace(DD′) and

Vn = γ−2
n DD′. The main idea of the proof is to replace f(θ) by f(θ0)+D′(θ−θ0), thereby

approximating θ̂n by the least-squares solution

θn := θ0 + (DD′)−1Du = argmin
θ∈Rp

|y − f(θ0) − D′(θ − θ0)|.

To simplify notation, assume with no loss of generality, that f(θ0) = 0 and θ0 = 0. Also,

drop extra n subscripts when the meaning is clear. The assertion of the Theorem is that

θ̂n = θn + op(γ
−1
n ).

Without loss of generality, suppose the smallest eigenvalue of Vn is larger than a fixed

constant c2
0 > 0. Then

γ2
n = trace(DD′) ≥ sup|t|≤1 |D′t|2 ≥ inf |t|≤1 |D′t|2 = c2

0γ
2
n,

from which it follows that

c0|t| ≤ |D′t|/γn ≤ |t| for all t ∈ R
p.(10)
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Similarly, P|Du|2 = trace
(
DP(uu′)D′

)
≤ σ2γ2

n, implying that |Du| = Op(γn) and

θn = γ−2
n V −1

n Du = Op(γ
−1
n ).

In particular, P{θn ∈ N} → 1, because θ0 is an interior point of Θ. Note also that

P|
∑

i≤nξiui|2 ≤ σ2trace(
∑

i≤nξiξ
′
i) = σ2trace(V −1

n ) < ∞.

Consequently
∑

i≤nξiui = Op(1).

From the assumed consistency, we know that there is a sequence of balls Nn ⊆ N
that shrink to {0} for which P{θ̂n ∈ Nn} → 1. From (vi) and (v), it follows that both

rn := sup{d(θ, 0) : θ ∈ Nn} and Jrn =
∫ rn

0
ρ

(
N(y,N , d)

)
dy converge to zero as

n → ∞.

The n × 1 remainder vector R(θ) := f(θ) − D′θ has ith component

Ri(θ) = fi(θ) − Di(0)′θ = θ′
∫ 1

0

Di(tθ) − Di(0) dt.(11)

Uniformly in the neighborhood Nn we have

|R(θ)| ≤ |θ|
( ∑

i≤n
M2

in

)1/2

rn = o(|θ|γn),

which, together with the upper bound from inequality (10), implies

|f(θ)|2 = |D′θ|2 + o(γ2
n|θ|2) = O(γ2

n|θ|2) as |θ| → 0.(12)

In the neighborhood Nn, via (11) we also have,

|u′R(θ)| ≤ |θ| sups∈Nn
|
∑

i
ui

(
Di(s) − Di(0)

)
|.

From Corollary 1 with gi(θ) = Di(θ) − Di(0) deduce that

P sups∈Nn
|
∑

i
ui

(
Di(s) − Di(0)

)
|2 ≤ c2

2σ
2J2

rn

∑
i
M2

in = o(γ2
n),

which implies

|u′R(θ)| = op(γn|θ|) uniformly for θ ∈ Nn.(13)
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Approximations (12) and (13) give us uniform approximations for the criterion functions

in the shrinking neighborhoods Nn:

Gn(θ) = |u − f(θ)|2 − |u|2

= −2u′f(θ) + |f(θ)|2

= −2u′D′θ + |D′θ|2 + op(γn|θ|) + op(γ
2
n|θ|2)

= |u − D′θn|2 − |u|2 + |D′(θ − θn)|2 + op(γn|θ|) + op(γ
2
n|θ|2).

(14)

The uniform smallness of the remainder terms lets us approximate Gn at random points

that are known to lie in Nn.

The rest of the argument is similar to that of Chernoff (1954). When θ̂n ∈ Nn we have

Gn(θ̂n) ≤ Gn(0), implying

|D′(θ̂n − θn)|2 + op(γn|θ̂n|) + op(γ
2
n|θ̂n|2) ≤ |D′θn|2.

Invoke (10) again, simplifying the last approximation to

c2
0|γnθ̂n − γnθn|2 ≤ Op(1) + op

(
|γnθ̂n| + |γnθ̂n|2

)
.

It follows that |θ̂n| = Op(γ
−1
n ) and, via (12),

κn(θ̂n) = |f(θ̂n)| = Op(1).

We may also assume that Nn shrinks slowly enough to ensure that P{θn ∈ Nn} → 1.

When both θ̂n and θn lie in Nn the inequality Gn(θ̂n) ≤ Gn(θn) and approximation (14)

give

|D′(θ̂n − θn)|2 + op(1) ≤ op(1).

It follows that θ̂n = θn + op(γ
−1
n ).

Remark. If the errors are iid and max |ξi,n| = o(1) then the distribution of
∑

i≤nξi,nuin

is asymptotically N
(
0, σ2V −1

n

)
.
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4. ANALYSIS OF MODEL (3): WU’S EXAMPLE

The results in this section illustrate the work of our limit theorems in a particular case

where Wu’s method fails. We prove both consistency and a central limit theorem for the

model (3) with θ0 = (λ0, 1/2). In fact, without loss of generality, λ0 = 1.

As before, let �n = log n. Remember θ = (λ, µ) with a ∈ R and 0 ≤ µ ≤ Cµ for a

finite constant Cµ greater than 1/2, which ensures that θ0 = (1, 1/2) is an interior point of

the parameter space. Taking Cµ = 1/2 would complicate the central limit theorem only

slightly. The behavior of θ̂n is determined by the behavior of the function

Gn(γ) :=
∑

i≤ni
−1+γ for γ ≤ 1,

or its standardized version

gn(β) := Gn(β/�n)/Gn(0) =
∑

i≤n

(
i−1/Gn(0)

)
exp

(
β�i/�n

)
,

which is the moment generating function of the probability distribution that puts mass

i−1/Gn(0) at �i/�n, for i = 1, . . . , n. For large n, the function gn is well approximated by

the increasing, nonnegative function

g(β) =

⎧⎪⎨⎪⎩(eβ − 1)/β for β �= 0

1 for β = 0
,

the moment generating function of the uniform distribution on (0, 1). More precisely, com-

parison of the sum with the integral
∫ n

1
x−1+γ dx gives

Gn(γ) = �ng(γ�n) + rn(γ) with 0 ≤ rn(γ) ≤ 1 for γ ≤ 1.(15)

The distributions corresponding to both gn and g are concentrated on [0, 1]. Both func-

tions have the properties described in the following lemma.

Lemma 1. Suppose h(γ) = P exp(γx), the moment generating function of a probability

distribution concentrated on [0, 1]. Then

(i) log h is convex
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(ii) h(γ)2/h(2γ) is unimodal: increasing for γ < 0, decreasing for γ > 0, achieving its

maximum value of 1 at γ = 0

(iii) h′(γ) ≤ h(γ)

Proof. Assertion (i) is just the well known fact that the logarithm of a moment generating

function is convex. Thus h′/h, the derivative of log h, is an increasing function, which

implies (ii) because
d

dγ
log

(
h(γ)2

h(2γ)

)
= 2

h′(γ)

h(γ)
− 2

h′(2γ)

h(2γ)
.

Property (iii) comes from the representation h′(γ) = P
(
xeγx

)
.

Remark. Direct calculation shows that g(γ)2/g(2γ) is a symmetric function.

Reparametrize by putting β = (1 − 2µ)�n, with (1 − 2Cµ)�n ≤ β ≤ �n, and α =

λ

√
Gn(β/�n). Notice that |f(θ)| = |α| and that θ0 corresponds to α0 =

√
Gn(0) ≈

√
�n

and β0 = 0. Also

fi(θ) = ανi(β/�n) where νi(γ) := i−1/2 exp(γ�i/2)/
√

Gn(γ),

and

κn(θ)2 = Gn(0)
(
λ2gn(β) − 2λgn(β/2) + 1

)
.(16)

We define νi := supγ≤1 νi(γ).

Lemma 2. For all (α, β) corresponding to θ = (λ, µ) ∈ R × [0, Cµ]:

(i) κn(θ) −
√

Gn(0) ≤ |α| ≤ κn(θ) +
√

Gn(0)

(ii)
∑

i≤nν
2
i = O

(
log log n

)
(iii) |dνi(β/�n)/dβ| ≤ 1

2
νi(β/�n)

(iv) |fi(α1, β1) − fi(α2, β2)| ≤
(
|α1 − α2| + 1

2
|α2||β1 − β2|

)
νi

(v) |fi(θ) − fi(θ0)| ≤ i−1/2 + |α|νi

Proof. Inequalities (i) and (v) follow from the triangle inequality.
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For inequality (ii), first note that ν2
1 ≤ 1. For i ≥ 2, separate out contributions from three

ranges:

ν2
i = max

(
sup

1≥γ≥1/�n

νi(γ)2, sup
|γ|<1/�n

νi(γ)2, sup
γ≤−1/�n

νi(γ)2

)
.

For γ ≥ 1/�n, invoke (15) to get a tractable upper bound:

νi(γ)2 ≤ i−1 exp(γ�i)

�ng(γ�n)
≤ i−1γ

exp(γ�i)

exp(γ�n) − 1
≤ i−1

exp
(
log γ + γ log(i/n)

)
1 − e−1

.

The last expression achieves its maximum over [1/�n, 1] at

γ0 :=

⎧⎪⎨⎪⎩1/ log(n/i) if 1 ≤ i ≤ n/e

1 if n/e ≤ i ≤ n
,

which gives

sup
1≥γ≥1/�n

νi(γ)2 ≤ (e − 1)−1

n
H

(
i ∧ (n/e)

n

)
where H(x) := 1/

(
x log(1/x)

)
.

(17)

Similarly, if −1 < γ�n < 1,

νi(γ)2 ≤ exp(γ�i)

i�ng(γ�n)
≤ exp(�i/�n)

i�ng(−1)
≤ e/g(−1)

i�n

.

The last term is smaller than a constant multiple of the bound from (17). Finally, if −γ =

δ ≥ 1/�n and i ≥ 2 then

νi(γ)2 ≤ i−1δ
exp(−δ�i)

1 − exp(−δ�n)
≤ i−1

exp
(

log δ − δ�i

)
1 − e−1

≤ e−1/(1 − e−1)

i�i

.

In summary, for some universal constant C,

ν2
i ≤ C max

(
n−1H

(
i ∧ (n/e)

n

)
,

1

i log i

)
if 2 ≤ i ≤ n.

Bounding sums by integrals we thus have

C−1

n∑
i=2

ν2
i ≤

∫ 1/e

1/n

H(x) dx + H(1/e)/n +

∫ n

2

(
x log x

)−1

dx = O
(

log log n
)

.



NONLINEAR LEAST-SQUARES ESTIMATION 15

For (iii) note that

2
d

dβ
νi(β/�n) = 2

d

dβ
exp

(
1
2
β�i/�n

) (
Gn(0)gn(β)

)−1/2

=

(
�i

�n

− g′
n(β)

gn(β)

)
νi(β),

which is bounded in absolute value by νi(β) because 0 ≤ g′
n(β) ≤ gn(β).

For (iv)

|fi(α1, β1) − fi(α2, β2)| ≤ |(α1 − α2)νi(β1/�n)| + |α2||νi(β1/�n) − νi(β2/�n)|
≤ |(α1 − α2)|νi + |α2||(β1 − β2)|12νi,

the bound for the second term coming from the mean-value theorem and (iii).

Lemma 3. For ε > 0, let Nε = {θ : max
(
|λ − 1|, |β|

)
≥ ε. If ε is small enough, there

exists a constant Cε > 0 such that inf{κn(θ) : θ /∈ Nε} ≥ Cε

√
�n when n is large enough.

Proof. Suppose |β| ≥ ε. Remember that Gn(0) ≥ �n. Minimize over λ the lower

bound (16) for κn(θ)2 by choosing λ = gn(β/2)/gn(β), then invoke Lemma 1(ii).

κn(θ)2

�n

≥ 1 − gn(β/2)2

gn(β)
≥ 1 − max

(
gn(ε/2)2

gn(ε)
,
gn(−ε/2)2

gn(−ε)

)
→ 1 − g(ε/2)2

g(ε)
> 0.

If |β| ≤ ε and ε is small enough to make (1 − ε)eε/2 < 1 < (1 + ε)e−ε/2, use

κn(θ)2 =
∑

i≤ni
−1

(
λ exp(β�i/2�n) − 1

)2

.

If λ ≥ 1 + ε bound each summand from below by i−1((1 + ε)e−ε/2 − 1)2. If λ ≤ 1 − ε

bound each summand from below by i−1(1 − (1 − ε)eε/2)2.

4.1. Consistency. On the annulus SR := {R ≤ κn(θ) < 2R} we have

|a| ≤ KR := 2R +
√

Gn(0)

|fi(θ1) − fi(θ2)| ≤ KRνidR(θ1, θ2)

where dR(θ1, θ2) := |α1 − α2|/KR + 1
2
|β1 − β2|

|fi(θ) − fi(θ0)| ≤ bi := i−1/2 + KRνi.

Note that∑
i≤n

(
i−1/2 + KRνi

)2

= O(�n + K2
R log �n) = O(K2

RLn) where Ln := log log n.
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The rectangle {|α| ≤ KR, |β| ≤ c�n} can be partitioned into O(y−1�n/y) subrectangles

of dR-diameter at most y. Thus N(y, SR, dR) ≤ C0�n/y
2 for a constant C0 that depends

only on Cµ, which gives ∫ 1

0

ρ
(
N(y, SR, dR)

)
dy = O

(√
Ln

)
.

Apply Theorem 3 with δ = 1 to conclude that

P{θ̂n ∈ SR} ≤ C1K
2
RL2

n/R
4 ≤ C2(R

2 + �n)L2
n/R

4.

Put R = C32
k(�nL2

n)1/4 then sum over k to deduce that

P{κn(θ̂n) ≥ C3(�nL2
n)1/4} ≤ ε eventually

if the constant C3 is large enough. That is κn(θ̂n) = Op

(
(�nL2

n)1/4
)

and, via Lemma 3,

|λ̂n − 1| = op(1) and 2�n|µ̂n − µ0| = |β̂| = op(1).

4.2. Central limit theorem. This time work with the (λ, β) reparametrization, with

fi(λ, β) = λi−1/2+β/2�n

Di(λ, β)′ =
(

∂fi(λ,β)
∂λ

, ∂fi(λ,β)
∂β

)
=

(
1/λ, �i/2�n

)
fi(λ, β)

and θ0 = (λ0, β0) = (1, 0). Take d as the usual two-dimensional Euclidean distance in

the (λ, β) space. For simplicity of notation, we omit some n subscripts, even though the

relationship between θ and (λ, β) changes with n.

We have just shown that the LSE (λ̂n, β̂n) is consistent.

Comparison of sums with analogous integrals gives the approximations

∑
i≤ni

−1�p−1
i = �p

n/p + rp with |rp| ≤ 1 for p = 0, 1, 2, . . . .(18)

In consequence,

γ2
n =

∑
i≤n

|Di(λ0, β0)|2 =
∑

i≤n
i−1

(
1 + �2

i /4�
2
n

)
= 13

12
�n + O(1)
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and

Vn = γ−2
n

∑
i≤ni

−1

⎛⎝ 1 �i/2�n

�i/2�n �2
i /4�

2
n

⎞⎠ = V + O(1/�n) where V = 1
13

⎛⎝12 3

3 1

⎞⎠ .

The smaller eigenvalue of Vn converges to the smaller eigenvalue of the positive definite

matrix V , which is strictly positive.

Within the neighborhood Nε := {max
(
|λ − 1|, |β|

)
≤ ε}, for a fixed ε ≤ 1/2, both

|fi(λ, β)| and |Di(λ, β)| are bounded by a multiple of i−1/2. Thus

|Di(θ1) − Di(θ1)| ≤
∣∣∣λ−1

1 − λ−1
2

∣∣∣ |fi(θ1)| + 3|fi(θ1) − fi(θ2)| ≤ Cεi
−1/2d(θ1, θ2).

That is, we may take Mi as a multiple of i−1/2, which gives
∑

i≤nM
2
i = O(�n).

All the conditions of Theorem 4 are satisfied. We have√
�n(λ̂n − 1, β̂n) = 12

13

∑
i≤nuii

−1/2�−1/2
n (1, �i/2�n)V −1 + op(1).
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