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w I. Introduction 

This paper continues the investigation begun in [4]. We consider a discrete time 
irreducible Markov chain {X,} on a measure space (Y', ~) ,  with stationary 
transition probabilities P(x, "). Writing G~(x, A) for the generating function 

~z"P"(x, A) of the n-step transition probabilities, we follow Tweedie [6] in using 
1 

the following form of irreducibility: there is a probcbility measure M on g for 
which M(A)>0 implies that G~(x,A)>O for all x~g, and M(A)=0 implies 
M{y: G~(y,A)>O}=O. We denote {A~,~: M(A)>0} by Y+;  "almost all x"  
shall henceforth be with respect to this M. 

Tweedie [6] has proved the following solidarity results for such a chain 
(cs Theorems A and C of [4]): 

(i) There is an R > I  and a class ~ R ~ Y  + such that for each A6CgR the radius 
of convergence of Gz(X, A) is R, for almost all x. Members of cg R are called R-sets; 
~' can be partitioned into countably many R-sets. 

(ii) If {X,} is aperiodic, then there is a class cg L_~ cg R (the class of L-sets) such 
that for every A~C~L and almost all x~W, lim R~P"(x, A)=~(x, A) exists and is 

n ~ o o  

finite, and Y" can be partitioned into countably many L-sets. Either re(x, A)=0 
a.e. for every A~CgL (the R-null case) or ~r(x, A)>0 a.e. for every AefgL (the R- 
positive case). 

It is of interest to be able to identify specific R-sets or L-sets. In [4] we showed 
that for a strongly continuous chain on a topological space ~r (i.e. when P(x, A) 
is a continuous function of x for every A ~ )  every compact member of Y +  
is both an R-set and an L-set. We also showed by example that by itself weak 
continuity of the transition probabilities would not suffice to draw the same 
conclusion, but we found auxiliary conditions on the chain which were sufficient 

~' Supported by an Australian National University Ph.D. scholarship. 
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when combined with weak continuity. In this paper we improve these weakly 
continuous results by replacing these restrictions on {X,} with restrictions on the 
irreducibility measure M. (Our proofs can also be adapted to simplify the argu- 
ments given in [4] in the strongly continuous case.) A more general form of weak 
continuity will be used: we assume that P(x, g) (=SP(x, dy) g(y)) is a lower semi- 
continuous (l.s.c.) function of x for every bounded ls.c. function g. This is obviously 
equivalent to P(x, h) being upper semi-continuous (u.s.c.) for every bounded u.s.c. 
function h. It implies that P(x, f )  is a continuous function of x for every bounded 
continuous f and is in fact equivalent to this when ~r is a completely regular space 
and each P(x, ") is z-smooth (see [5]). Also, if Y" is locally compact and the P(x, ") 
are Radon measures, then our weak continuity is equivalent to P(x, f )  being 1.s.c. 
for every continuous f of compact support, or vanishing at infinity; so our as- 
sumption is weaker than, for example, 1.1 of [9]. Other similar equivalent conti- 
nuity conditions can be derived from Theorem 8.1 of [5]. 

We also need the concepts of support, second category and regularity. The 
support of M (written supp M) is defined to be the closed subset of • consisting 
of those points for which every open neighbourhood is in o~+; we assume that 
M(supp M)=  1, which is automatically true for example if M is z-smooth [5], 
or if Y" is a separable metric space. A space is said to be of second category if it 
cannot be expressed as a countable union of sets whose closures have empty 
interiors; M is regular if M(A)=sup {M(F): A ~closed F} for every A ~ - .  

It is always assumed that ~ is the Borel o-field of Y'. 
Our two main results are: 

Theorem 1. I f  the Markov chain is weakly continuous, and if M is regular and the 
support of M is of second category (under the relativised topology) then every 
relatively compact A ~ ~ + is c'n R-set. 

Theorem 2. I f  {X,} and M satisfy the conditions of Theorem 1 and if {X,} is also 
aperiodic, then every relatively compact A 6 ~ +  is an L-set. 

These are clearly improvements over [4] since the conditions do not involve 
quantities whose existence depends upon the deeper properties of the chain viz. 
R-subinvariant measures as in Theorem 2 of [4]. Also we immediately deduce that 
for weakly continuous chains on locally compact spaces with regular irreducibility 
measure, or complete metric spaces, every relatively compact Y +  set is an R-set, 
and an L-set if the chain is aperiodic. This is so since closed subsets of such spaces 
are always of second category under their relative topologies. For the metric 
space, the regularity of M is also automatic. 

The proofs of these theorems, and related results, are given in the next two 
sections. In the final section we show that even the weak continuity assumption 
on P(x, ") can be relaxed: it suffices to have P(x, .) merely bounding a weakly 
continuous family of transition measures for our conclusions to hold. 

It is interesting to note that Cogburn [1] has also found weak continuity and 
a second category assumption on supp M to be natural conditions for showing 
that compact sets have other solidarity properties, rather different from those of 
being R-sets and L-sets. 
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w 2. R-Sets 

The radius R in (i) is defined by R = s u p  {r>0:  Gr(x, A ) < ~  for some xe~" and 
A~Y+}.  If GR(x, A)<oo for some x ~ f  and A e J  ~ +  then we say that the chain 
is R-transient, and we take cg R as the class of those A e Y  + for which GR(X, A)< oo 
for some x e f  (and hence almost all x [-6]). Otherwise we call {3;',} R-recurrent, 
and cg R is taken to consist of all those A s Y  + for which G~(x, A) has radius of 
convergence R for some x6Y{" (and hence again for almost all x). It is non-trivial 
to show that ~fR 4: ~ in the R-recurrent case (cf. Lemma 2 below). 

The class ~R enjoys the following properties, which we shall employ in the 
sequel: 

RI :  I f A ~  -+ and A ~ B  for some Be~R, then Aer 

R2: If A, C e ~  + differ only by an M-null set and C ~ B  for some B~r 
then A ~ cg~o 

The second property holds because M(A "-. C)= 0 implies P"(x, A "-. C)= 0 for 
all n and almost all x. 

To prove that a relatively compact A ~  + is an R-set, we observe from R1 
that it suffices to show there is some Ber which contains A. Since A is contained 
in a compact set (the closure A, if f is Hausdorfl) we need only cover the space f 
with an increasing sequence of open R-sets. The following lemma shows that it 
is enough to find a single open R-set; we also give the analogous result for closed 
sets, which will be needed later. 

Lemma 1. Suppose the chain is weakly continuous. 

(i) I f  there exists an open R-set U then there is a sequence of open R-sets U.T f 
(ii) If  there exists a closed R-set F then there is a sequence of closed R-sets F,'f ~. 

Proof As in [4] it is easy to prove that Go(x, g) is a l.s.c, function of x for every 
bounded 1. s. c. g and 1 > 0 > 0. Also Go(x, f )  is continuous (in fact constant), hence 
Go(x,h) is u.s.c, for bounded u.s.c.h. Thus U,={y:  6~(y, U )>n  -1} defines a 
sequence of open sets, and F,,={y: G~(y,F)>n -t} a sequence of closed sets, 
Since M(U)>0,  G~(y, U)>0  for every y ~ '  and hence U, TW. As a consequence 
M(Un)'FM(W) so that U n ~  -+ for large enough values of n. Similar results hold 
for the F,. 

The Chapman-Kolmogorov identity shows that, for any m, n > 1 and r, 0 > 0, 

Omr"+mP"+m(X, B)=[, r"P"(x, dy) rmO'W(y, B). 
Summing this over n gives 

0 m G~tx, B) > 0 m ~, r" +rap, + m(x ' B) = ~ Gr(x, dy) (r 0)" pro(y, B) 
n=l  

and a second summation over m leads to the following inequality, valid for 0 < 0 < 1 
and r > 0 :  

0 ( 1 - 0 )  -~ a~(x, B) > ~ G~(x, d y) Qo(Y, B). (2.1) 

If l < r < R  take 0=(2r)  -z, B = U  and then choose x so that the left hand side is 
finite (possible since U is an R-set). Then the right hand side is bounded below 
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by n-tGr(x, U,,) for every n. It follows that U,,e(gg eventually, and similarly for 
the F,. [~ 

In general proving the existence of even one open R-set is difficult, being 
equivalent to seeking an R-set whose interior belongs to @+. However the next 
lemma shows that it is relatively easy to find a closed R-set. 

Lemma 2. If  M is regular then there exists a closed R-set. 

Proof Suppose there exists an R-set A. Since M is regular we can choose a closed 
F ___ A with F e ~ +. This is the required closed set, from R 1. 

In the R-transient case the existence of the R-set A is trivial, but not so for 
the R-recurrent case. We give a constructive proof for this, as an alternative to 
the non-constructive proof given in [6]. 

Choose a sequence rkTR. We construct inductively a decreasing sequence 
{Ak} in J +  for which M(Ak\Ak+I)<=2-(k+t)M(At) and Grk(X, Ak)<Oo for 
almost all x. Suppose At, ..., Ak-1 have been so constructed. By definition of R 
we can find B s ~  + for which Gr~(x,B)<oo for almost all x. Define B , =  
{y: G~(y, B)>n-1}. Since B,~Y" and Grk(x, B,)<oo for almost all x by (2.1), we 

r  

have only to set Ak=Ak-1 c~B, for a large enough value of n. Let A =  ~ Ak. Then 
k = l  oO 

M(A)=M(AO- ~ M(Ak\Ak+I)>�89 Thus A ~ Y + ;  and since Gz(x, A) 
k=l 

has radius of convergence greater than or equal to R for almost all x by construc- 
tion, it follows that A is an R-set. 

With these two lemmas we can now find conditions for the existence of an 
open R-set. 

Lemma 3. If M is regular and supp M is of second category there exists an open 
R-set. 
Proof. Let F be the closed R-set given by Lemma 2. Then from Lemma 1 (ii) 
there is a sequence of closed R-sets F~ $ ~. 

Now the second category set suppM can be expressed as the countable 

union of closed sets U (supp M~F~); hence we can find an N such that 
n = l  

supp M~F~ contains an interior point in the space supp M. Thus there is an 
open subset U of ~r for which ~ ~= U c~ supp M___ supp M c~ F N. As M(U \ supp M) 
=0,  and U contains a support point of M, U is an open R-set, by R2. 
We now have enough for 

Proof of Theorem 1. Since M is regular and supp M is of second category, 
Lemma 3 and Lemma 1 (i) imply that 5f has a countable cover of increasing 
open R-sets U,. If A ~  + is contained in some compact set K, then A~_K~_ U, 
for one of the members of this open cover. Thus A is an R-set, from R 1. [l 

w 3. L-Sets 

In this section we assume that {X,} is aperiodic and R-recurrent. This is the 
only case we need consider; for if the chain is R-transient, then we can take 
cgL = ~gR and Theorem 2 follows from Theorem 1. 
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We shall make use of the R-invariantfunction f which satisfies 

f (x)  = R S P(x, dy)f(y) for almost all x (3.1) 

and the R-invariant measure Q which satisfies 

Q(A)=R ~ Q(dy)P(y, A) for all A ~ .  (3.2) 

Under the assumption of R-recurrence, Theorems 3 and 4 of [6] prove that 
(up to constant multiples and definition on a null set) f is the unique non- 
negative ~-measurable function satisfying (3.1) for which ~fdM>O (in fact 
f (x)  > 0 for almost all x), whilst Q is the unique (up to constant multiples) non- 
trivial a-finite measure on Y satisfying (3.2); Q is equivalent to M. 

From Proposition 2.2 of [4] we have the following sufficient condition 
involving this f and Q for identifying L-sets: for an aperiodic R-recurrent chain, 
A ~ is an L-set if 

ess inf {f(x):  x ~ A} > 0 (3.3) 

and 

0<Q(A)<oo.  (3.4) 

The first condition means that there is a 8 >0  such that M {x~A: f(x)<cS} =0. 
In the R-recurrent case we shall write cg}. for the class of sets satisfying (3.3) 

and (3.4). Note that cg~_cc~L; in general the inclusion is strict. The class cg L has 
the following closure properties, analogous to R 1 and R2: 

L I :  I f A ~ Y  + and A c B  for some B~C~, then A~Cg;~; 

L2: If A, C e ~  -+ differ only by an M-null set and C o B  for some BeCgL, 
then A ~ cg~. 

Lemma 4. Suppose {X,} is weakly continuous. 

(i) If  there is an open set U in (g;. then there is a sequence of open sets U, T X, 
with each U, ~ C6'L. 

(ii) If  there is a closed set F in Cg'L then there is a sequence of closed sets F, "[ 32, 
with each F,~'L. 

Proof Define U,, F, as in Lemma 1. Upon iterating (3.1) and (3.2) we obtain for 
any 0 < 0 < 1 ,  as in the proof of (2.1), 

0 ( 1 - O ) - l f ( x ) =  ~ GRo(X, dy)f(y) for almost all x (3.5) 
g- 

and 

O(1-O)-~Q(A)= ~Q(dy)GRo(y,A) for all A~f f .  (3.6) 
f 

So taking 0=(2R) -1 in (3.5) we obtain, for almost all xEU, 

f (x )> ~ G~(x, dy)fO') 
U 

> n -1.  ess inf {f(y): y~ U} 
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so that (3.3) is satisfied for all n. Similarly, from (3.6) we obtain 

oo > ~ Q(dy) C~(y, c;) 
U ~  

> n  -1 '  Q(U.) 

so that (3.4) is satisfied for large enough n (notice that M(U.)>O is equivalent 
to Q(U,) > 0). 

The same argument holds for the sequence {F,}. B 

Having proved this lemma, which shows that it suffices merely to find one 
open set in cg~ in order to cover ~r with an increasing sequence of such open 
L-sets, we can proceed easily with 

Proof of Theorem 2. We first show that the regularity of M implies the existence 
of a closed set in ~L. 

Since Q is a-finite there is a sequence of ~ sets B,~'Y" with Q(B,)<oo. Also, 
since f > 0 a.e., the sequence of ~ sets A, = {x: f (x)> n -1 } T ~r \ N where N is an 
M-null set. Thus M(A,c~B,)~M(~Y). Hence from regularity we can find an n 
and a closed set Fc_A.~B.  for which M(F)>=�89 It follows from 
L1 that F~cg~. 

Now from Lemma 4 (ii), there is a sequence F, TSf with each F. closed and 
in ~ .  As in the proof of Lemma 3, supp M being of second category implies 
that we can find an N and an open set U such that ;~ ~= U c~ supp M ~_ supp M c~ F N. 
Since M ( U \ s u p p M ) = O  and U contains a support point it follows from L2 
that UeC~. From Lemma 4 (i) there is a sequence U, of open sets in cg~ such 
that U , ~  c. 

Finally, since any relatively compact set in i f +  is contained in some compact 
set, which in turn must be contained in one of these U.'s, another application of 
LI  shows that the theorem holds. [3 

w 4. The Second Category Assumption 

In proving Theorems 1 and 2 we showed that if a weakly continuous chain with 
a regular M of second category support is not R-positive then there is a sequence 
{Uk} of open sets covering ~g for which lim R"P"(x, Uk)----O. In this section we 

n ~ o o  

show the importance of the category assumption by exhibiting a weakly con- 
tinuous chain which is not 1-positive, whose regular M measure has suppor~ which 
is not of second category, and for which 

lim inf P" (x, U) > 0 (4.1) 
n ~ G O  

for every non-empty open U and x e ~ .  Thus no open set is an L-set, and the 
method of proof for Theorems 1 and 2 breaks down. We have not been able to 
construct a relatively compact set which is not an L-set though, so the assertion 
of Theorem 2 may still be true in this case without the category assumption. 

We take as the space f the set ~ of "rat ional  points" in ~,  the circle of unit 
circumference, and give ~ the usual relative topology. Let {ti} be an enumeration 
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of & and {p j} be any discrete probability distribution for which p j > 0  for all j. 
Define a random walk on ~ by the transition probabilities P(x, x + t j) = pj. 

This random walk on ~ does not admit an irreducibility measure. However 
we note that P(x, 2) = 1 when x~q,  so that ~ is stochastically closed in ~.  Also, 
since p~>0 for each j, the random walk restricted to ~ is irreducible with M as 
any probability measure equivalent to counting measure on ~q. As 

supp M = ~ = ~) {t~} 
j= l  

and each singleton {t j} is closed with empty interior, supp M is not of second 
category. 

The random walk on ~ is weakly continuous; for ifg is any bounded continuous 
function on & and if xj ~ x in ~q then 

P(x i, dy) g (y) = ~ P(x~, xj + tk) g (xj + tk) 
~2 k 

=ZPkg(Xj+tk) 
k 

~ pgg(X + tg) 
k 

= f P(x, dy)g(y) 

by dominated convergence. (The random walk on ~ is of course similarly weakly 
continuous, but we do not use this fact.) 

To prove that the random walk on ~ is not 1-positive, it suffices to show that 

lim P'(x, s)=0, x, s ~  (4.2) 

since ~ is countable and each singleton is in ~ + .  We prove both (4.1) and (4.2) 
(and hence that no open set is an L-set) by using known results for the random 
walk on the whole of ~.  

Let h be any bounded uniformly continuous real function on & and write 
for its unique continuous extension to ~.  For the random walk on ~ itself it is 
known [2, p. 274] that for any x ~ 

lim ~ P"(x, dy)h(y)= ~ h(y) dy. (4.3) 

Now if x e &  the fact that P'(x, ") is concentrated on ~ means that 

P"(x, dy)h(y)= ~ P"(x, dy)h(y) 

and so from (4.3) 

lim ~ n'(x, dy)h(y)= ~ h(y)dy. (4.4) 
n ~  

For any s e 2  and e>0  there is a bounded uniformly continuous non-negative 
function h~ with h~(s)= 1 such that ~ h~(y)dy<e. Hence (4.2) follows from (4.4), 

and the random walk on ~q is indeed not 1-positive. 
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On the other hand, for any non-empty open subset U of ~ we can find a non- 
zero uniformly continuous h with 0 < h _< 1 v, and so again from (4.4) 

lira inf P"(x, U) > lim inf P"(x, h) 
n ~ o o  R ~ o o  

= S h(Y) dy 

>0.  

w 5. Weakly Continuous Components 

Examining the proofs of Sections 2 and 3 it becomes evident that the only 
points at which weak continuity of the P(x, ') was applied were in the proofs 
of Lemmas 1 and 4. More specifically, the weak continuity was only used to 
prove that G~(x, A) is 1.s.c. if A is open, and u.s.c, if A is closed. Another point 
to notice is that the crucial relations (2.1), (3.5) and (3.6) were only needed to 
put one sided bounds on various quantities. These observations lead us to the 
following useful concept. 

We say that P(x, ") has a weakly continuous component if there is a family of 
measures r(x, ") for which 

(i) P(x, ")>r(x, ")>0 for each xsY'. 
(ii) T(x, ") is a weakly continuous function of x (i.e. T(x, g) is 1.s.c. for each 

bounded l:s.c, g). 
(iii) T(x, ") is irreducible in the sense that M(A)>0 implies H~(x, A)>0 for 

oo 

every xeY', where we write Hz(x, A) for the generating function ~ z"T"(x, A). 
n = l  

Notice that T(x, YO need not be constant, although it is a continuous function 
of x because of (ii). 

It is a very simple matter to modify the proofs of Theorems 1 and 2 to obtain 
the stronger versions 

Theorem 1'. If the chain has a weakly continuous component, and f M is regular 
and the support of M is of second category, then every relctively compact member 
of ~ + is an R-set. 

Theorem 2'. If  the chain satisfies the conditions of Theorem 1' and is aperiodic, 
then every relatively compact member of ~+ is an L-set. 

We shall not prove these theorems but merely note that in Lemmas 1 and 4 
we should consider U;={y: Hi(y, U)>n  -1} and F~={y:H~(y,F)>n-1}. Com- 
bined with the modified form of (2.1) 

0 (1-0)  -1Gr(x, 13)> 5 G,(x, dy)Hro(y, B) 

and similar inequalities to replace (3.5) and (3.6), the proofs then carry through 
with very little change. 

In [7] the idea of continuous components is exploited. It is also clear, although 
we did not realize it at the time, that Example 3 of [4] works because the chain 
constructed there has a strongly continuous component. That example illustrates 
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the behaviour we envisage of a chain with a well-behaved component; and in 
general, it is easy to see that if {X,} is irreducible in the sense of the introduction, 
and has a transition law that can be written as 

P(x, . ) =  ~ (x)Pl(X, ") + [1 - c,(x)] ~ (x ,  .), 

where {Pl(x, ")} is irreducible, weakly continuous and e(x) is a continuous 
(O,1]-valued function of x, then T(x, ")=a(x)Pl(x, ") is irreducible and so is a 
weakly continuous component of P(x,.). 

We conclude with easy examples to show that even when M has all the desired 
properties one still needs some continuity condition on {P(x,-)} to achieve the 
desired results. 

Example I. Let {X,} be a renewal-type chain on 2F1={0; 1,2,! �89 ...}; that is, 
Pr {X,+I = ( j +  1)-11X, = j - l }  = ~ j =  1 - Pr {X,+I =0[ X , = j  -1} for j =  1, 2,... and 
Pr{X,+l=l]X,=O}=ao=l-Pr{X,+i=O]X,=O}, where l > e j . > 0  for all j. 
Equipping s with the relativised topology from the real line makes it compact, 
as also is each of K , ,=  {0;j -1 :j>m}. Each K,, is also recurrent in the classical 
sense in that Gl(x, K,,)=oo for any x. Further, the irreducibility measure M1 
defined by M1 {0} =~ and Mi {j-~} = 2  -u+l) is regular and has the whole of s 1 
as support. Thus supp M1 is of second category (since ~ is compact). 

By a suitable choice of {aj} though, the chain can be made to have any desired 
radius of convergence greater than or equal to one (cf. Section 5 of [8]), which 
means that there will be compact sets which are not R-sets or L-sets. Notice 
that this means the chain cannot have a weakly continuous c o m p o n e n t - a  result 
which can also be proved directly. 

Example 2. To see that irreducibility of the weakly continuous component is vital 
in Theorems 1' and 2', we construct another chain from the {Xn} of Example 1 
and a second chain {Z,} which is a random walk on the left half line; that is, the 
transition law of {Z,} is described by taking a probability measure # on the real 
line (which we assume equivalent to Lebesgue measure) and defining for 
A___(- oe, 0) and x < 0  

Pr {Z~+ 1 eA] Z,  =x} =p(A-x) 

and 

Pr {Z,+I =O]Z,=x}=#[-x, oo). 

The chain {Z.} can easily be shown to be weakly (and in fact, strongly, cf. Example 1 
of [4]) continuous. 

Now form a chain {W.} on Y" = 2/'~ u 5~z, where Y'I is as in Example I and 
~ z = ( - 0 %  0], by putting for a measurable B G ~  

Pr{W,+aeBIW,=j-~}=Pr{X,+leBC~YfllX,=j -a} for j =  1, 2, ..., 

Pr{W,,+teBI W,=x} =Pr{Z,+aeB~XzJZ,=x } for x < 0 ,  

and 

Pr (W~+t eBJ W~=O} =�89 Pr (Z.+ieBn3F2IZ.=O } +�89 Pr(X.§ 
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A suitable irreducibility measure for this chain is 

M(B) =�89 MI(Bc~fl) +�89 p(~r2)- ~ g(B c~ ~r2). 

The only possible weakly continuous component for this chain is that part of 
the transition probabilities due to the {Z.}. Even though this is weakly continuous 
it is not a weakly continuous component of { W.} since it is not irreducible with 
respect to M: from any x < 0  it is impossible to reach ~ ~ B o = { 1 , ~ , ~ ,  ...} by transi- 
tions of {Z,}. Consequently, although relatively compact subsets of ~r z have the 
"correct" R-theoretic properties, one can assert nothing about subsets of Bo 
from Theorem 1' or 2'. Indeed Bo is recurrent in the classical sense, although we 
can again make R >  1 for the chain {l/V,}. So removing the irreducibility of the 
continuous component makes the conclusions of Theorems 1' and 2' false. 

Finally we refer the reader to [3] where the ideas of this paper are utilised, 
and where we give practical examples of chains which are weakly continuous, or 
which have weakly continuous components. 
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