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1. Introduction

If {Xn} is a discrete-time ^-irreducible Markov chain on a measure space (#*, 3?)
[4; p. 4], with «-step transition probabilities P"(x, A), it has been shown in [5] that
there exists a subset ^R of 3F with the property that, for every Ae^R and 0-almost
all x € W, the power series J^Pn(x, A)z" have the same radius of convergence R.
Moreover, there is a countable partition of 2£ all of whose elements belong to f̂R.

If all the power series diverge for z = R, and {X,,} is aperiodic, then there is a
second subset (€L of $F such that for any A e #L, lim P"(x> A)Rn = n(x, A) < oo

n-»oo

exists for almost all xe%. The state space % can again be countably partitioned into
elements of #L.

In this paper we assume that a topology exists on <X, and investigate continuity
conditions on the transition probabilities of {X,,} which will ensure that compact
elements of fF lie in either (gR or #L. A condition sufficient for both these desirable
attributes is given in §3, and in §4 we consider weakening this condition. Examples are
given to show that under the weaker condition compact sets may or may not belong
to (€R or #L, and some auxiliary conditions on 2£ are found which make the weaker
continuity conditions sufficient for compact sets to belong to ̂ R and # t .

2. Preliminaries

We assume as usual that Pn(x, A) = Pr{Xn € A \ Xo = * } , A e J5", x e SC, is for
each x a probability measure on J5" and for each A e fF a measurable function on 2£.
We write

G2(x,A)= £ Pn{x,A)zn

n = l

for the generating functions of these probabilities. We also assume that {Xn} satisfies

CONDITION I: There exists a non-trivial finite measure M on $F such that

(i) {X,,} is M-irreducible; that is, whenever M(A) > 0, then G^x, A) > 0 for all
XE°I\

(ii) whenever M(A) = 0, then M{y : G±(y,A) > 0} = 0.

It is shown in [5] that this assumption is equivalent to 0-irreducibility for some </>.
We use M to denote a fixed measure satisfying Condition I, and unless otherwise
qualified, such phrases as " almost everywhere " will refer to M-measure. We write
^ + ={AeS?,M(A)>0}.

The following results are proved in [5].
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THEOREM A. There exists a real number i?"1 < 1 (the convergence norm of
{Xn}), a null set NeS?, and a subset ^Rof^+ such that

(i) for every x$N and A e ^R, the radius of convergence of Gz(x, A) is R.

(ii) There is a countable partition (K(j),j = 1,2, ...) of % with K(J)G^R for
each j .

(iii) Either GR(x, A) = oo for every x$N and A e ^R, and {Xn} is called R-recurrent;
or GR(x, A) < oo for every such x and A, and {X,,} is called R-transient.

If {Xn} is K-recurrent, then its behaviour mimics closely that of ordinary recurrent
chains, and the theory of recurrent chains is often subsumed in that of .R-recurrent
chains. . One aspect so subsumed is the existence of subinvariant measures and
functions. For general r > 0, an r-subinvariant measure for {Xn} is a c-finite, non-
trivial measure pi on SF satisfying, for every Ae!F,

); (2.1)

an r-subinvariant function for {Xn} is a non-negative, measurable function g on #",
with {y : g(y) > 0} e#" + , satisfying, for almost all xe%,

g(x)>r j P{x,dy)g(y). . (2.2)

THEOREM B. / / {Xn} is R-recurrent, then there exist a unique (up to constant
multiples ) R-subinvariant measure Q, which is R-invariant (satisfies (2.1) with equality
for every A) and is equivalent to M, and a unique (up. to constant multiples and definition
on null sets) R-subinvariant function f, which is R-invariant (satisfies (2.2) with equality
for almost all x).

We shall use Q and / exclusively to denote the unique i?-invariant measure and
function for {Xn} when {Xn} is /^-recurrent. lfN/l) is the set where/fails to satisfy
(2.2), and N/2) = {y : G±(y, N/l)) > 0}, we write Nf = N/l)

 KJN/2): from
Condition I (ii) and Theorem B, M(Nf) = 0.

THEOREM C. If {X,,} is R-recurrent and aperiodic [4; p. 15], then there exists a
subset # L £ ^ + such that

(i) for A e #L, there exists NA with M(NA) = 0 such that

n(x, A) = lim Pn(x, A)Rn

n~*oo

exists and is finite for all x$NA.

(ii) There is a countable partition of SC each of whose elements is in #L.

(iii) The set NA can be chosen so that for x$NA,

n(x,A) =f(x)Q(A) I (f(y)Q(dy). (2.3)
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(iv) Either
j f(y)Q(dy)< co,
X

in which case n(x, A) > 0 for all x$NA and Ae^L, and {Xn} is called R-positive; or

a:

and n(x, A) = 0, x$NA, Ae^L, when {Xn} is called R-null.

Neither <&R nor ̂ L is uniquely defined by the above theorems. Let us call a subset
# of <^+ an R-system if it satisfies Theorem A and an L-system if it satisfies Theorem
C, and a set AE^+ an R-set if it is contained in an K-system and an L-set if it is
contained in an L-system. If A is an L-set, we use NA to denote the null set in Theorem
C, and always assume that NA contains both {j;: G±(y, NA) > 0} and Nf. The
following propositions give explicit constructions for R-systems and L-systems which
will be much used in the sequel.

PROPOSITION 2.1. Suppose fi is an R-subinvariant measure for {Xjj. Then any
AetF+ such that pi{A) < co is an R-set, and {AES^+ : fi(A) < co} is an R-system.

Proof. In the nomenclature of [5], an R-set is an fl-recurrent set if {Xn} is R-
recurrent and an /^-transient set if {Xn} is /^-transient. The first statement is thus
merely a rephrasing of Proposition 10.3 of [6] and its corollary, and the second
follows since jit is cr-finite.

PROPOSITION 2.2. Suppose {Xn} is R-recurrent, with R-invariant measure Q and
function f. Then any set Ae^ such that

0<Q(A)<oo (2.4a)

inf{/(;c), jce A\NA} > 0 (2.4b)

is an L-set, and the set of elements of 2F satisfying (2.4) is an L-system.

Proof. Since Q is equivalent to M, and a-finite, (2.4a) implies that
and there is a partition of 3C on each element of which (2.4) holds.

In the K-positive case, the sufficiency of (2.4) is implicit in the proof of Theorem 6
of [5]. In the K-null case, the proof given of that theorem needs the assumption that
A satisfies (2. 4b) and, rather than (2. 4a), the finiteness condition

Q(dy)f(y) < oo.

This condition (stronger than (2.4a) when (2.4b) holds) can be removed by imitating
directly the proof of Theorem 7.3 of [4], to prove that if A satisfies (2.4), and {Xn}
is R-nu\\, then R" P"(x, A) -» 0 for almost all x.

Save mentioning that (2.4a) is needed to assume the analogue of (7.6) in [4],
whilst (2.4b) enables one to prove the i?-theoretic analogue of the Corollary to
Theorem 5.1 in [4] (in a manner similar to its use in the proof of Theorem 6 in [5]),
we omit the details.
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3. The sufficiency of strong continuity

From now on we shall assume that the set #" is equipped with a topology STy

and shall seek conditions which ensure that ^"-compact sets are .R-sets or L-sets.
We shall write Jf for the set of compact elements of #"+.

The set of transition probabilities {P(x, •), x e #"} will be called strongly continuous
if, for any fixed A, P(x, A) is a continuous function of x: that is, for every net {xa} of
points in 2£ converging to a point xe$C, we have

P{xa, A) -+ P(x, A), all A e &. (3.1)

Let D(#") be the set of bounded measurable functions on 2£, and let C(#") be the set
of continuous functions in D(#"). It is well known that (3.1) is equivalent to

x
that is, the map

J P(xa, dy)g(y) - J P(x, dy)g(y), all ge D(<T); (3.2)

j P(-,dy)g(y)

takes D(3Q into C(#"). A chain satisfying (3.2) is often called strongly Feller (cf.
[2; p. 58]).

In this section we prove

THEOREM 1. Suppose {P(x, •)} is strongly continuous. Then every K e X is both
an R-set and an L-set.

The proof of Theorem 1 consists in verifying the conditions of Propositions 2.1 and
2.2. We give these verifications as a sequence of propositions.

PROPOSITION 3.1. If{P(x, •)} is strongly continuous, then so is {G0(x, -)},for any
0 < 1.

Proof. Suppose inductively that {P"(x, •)} is strongly continuous. For any

SPn+i(-,dy)g(y) = lP{-,dw) [\P"{w,dy)g{y)]eC{%),

since $P"(-,dy)g(y)eC(%y^ D(#T) and {P(x, •)} is strongly continuous. Therefore
for all n the set {P"(x, •)} is strongly continuous.

Suppose 9 < I, and let x be the ,^-limit of {xa}. Then for all A e &

lim G0(xa) A) = £ 0" lim P"(xa, A)
x n = 1 a

= £ 6>nP"(A-,A)

the first equality by the uniform convergence of the series for Ge(-, A), the second
from the result above. Thus {Ge(x, •)} is strongly continuous.



if-THEORY FOR MARKOV CHAINS ON A TOPOLOGICAL STATE SPACE I 393

PROPOSITION 3.2. If Ke Jiff, then n(K) < oo for any R-subinvariant measure //,
when {P(x, •)} is strongly continuous. Hence K is an R-set.

Proof. Iterating (2.1) gives, for each n and any Ae2F,

pL{dy)P*{ytA).

Multiplying this by /?", with ft < R'1, and summing, gives

J ft{dy)GRp(y,A)

n(dy)GRp(y,A)

y,A). (3.3)Rp(y)
yeK

In (3.3), choose A to be any set in «^r+ with n(A) < oo. From Proposition 3.1, if
(3 < R~l the function GRp(y, A) is continuous, and hence attains its infimum on
compact sets; since A e ̂ + and Condition I imply that GRp(y, A) > 0 for all y, this
gives

infGR,(y,A) = 6K>0 (3.4)
yeK

when K e jf. Putting (3.4) in (3.3) gives

(3.5)
1-p 3K

and the proposition holds on applying Proposition 2.1.

The existence of a constant PK which bounds fj.(K)/ii(A) for fixed A, as indicated
in (3.5), is of interest in the potential theory of /^-transient chains, and if iX is a-
compact this proposition enables us to assume that the partition $) occurring
throughout [6] can be replaced by any partition consisting of compact sets in ^+

when {P(x, •)} is strongly continuous.
Suppose now that {Xn} is 7?-recurrent and aperiodic, with /^-invariant measure Q

and function/, and that {P(x, •)} is strongly continuous. Since Q is equivalent to M,
any K e Jf has both Q(K) > 0 (since Jf £ #"+) and Q(K) < oo (as a corollary to the
previous proposition). To prove that such a K is an L-set, we thus need only verify
that K satisfies (2.4b).

If/is i?-invariant, and Nf is defined as in §2, we define Sf = {y e S£ : P(y, Nf) > 0}.
Since Sf £ Nf, M(Sf) = 0; also, Sf is the continuous inverse image of the open set
of real numbers (0, oo), and hence Sf is open. Thus, if K e X, K\Sf is also a
compact set, and M(K\Sf) = M(K) > 0; hence K\Sf is again in X.

Define/* : # " \ S / -> (0, oo] by

f*(x) = R j P(x,dy)f(y)
a:

= R | P{x,dy)f{y) (3.6)
%\N,
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since P(x,Nf) = 0, x<fc.Sf. Notice that i?-invariance of/ ensures that f*(x) > 0
for all xe&\Sf, and tha t /* = / on 3?\Nf. We prove that /* is lower semi-
continuous on %\Sf(cf. [1; A6]). Set A(j) = {xe%\Nf :f(x) ^j}: by definition,
A(j) T &\Nf as j -> oo. Let {xa} be a net on ̂ "\Sy converging to x (which must
itself be in &\Sf> since ^XSy is closed.) We have

J P(xa,dy)f(y)

^liminf* j P(xa,dy)f(y)
A(j)

= R J P(x,dy)f(y)
AU)

P(d)f()sj-+co

= /*(*), (3.7)

the equality in the third line being due to the strong continuity of {P(x, •)} and the
boundedness of/on A{j).

Now (3.7) implies that /* is lower semi-continuous on %\Sf. If KeX, then
K\Sf e X, and so (since lower semi-continuous functions attain their infimum on
compact sets [1; A6], and/*(x) > 0 on %\Sf),

0 < inf f*(y)
y e K\sf

< inf f*(y)
ye K\Nf

= inf f(y). (3.8)
yeK\Nf

We have thus proved

PROPOSITION 3.3. / / {P(x, •)} is strongly continuous and {X,,} is aperiodic and
R-recurrent, then any KeX satisfies inf f(x) > 0. Thus K satisfies (2.4b), since

xeK\N/
NK 2 Nf.

This completes the proof of Theorem 1. It is important to note that there are
non-trivial cases when {P(x, •)} is actually strongly continuous.

Example 1. Let {Xn} be a random walk on the real line U, with a density h(x);
that is,

P(x,A)= J h{y-x)dy.
A

Let geL™ = D(R); then

J P{x,dy)g{y) = J h(y-x)g(y)dy

(3-9)
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where * denotes convolution. Since $h(x)dx — 1, (3.9) is the convolution of an L1

with an L°° function, which is actually uniformly continuous on U [3; p. 398]. Thus
from (3.2), {P(x, •)} is strongly continuous.

4. Results on weak continuity

A weaker assumption on {P(x, •)} than strong continuity is weak continuity:
this means that \P(x, dy) g(y) is a continuous function on 3C only for all continuous
bounded functions g. It demands that, whenever xa -> x in &~,

P(xndy)g(y)-* J P(x,dy)g(y)

whenever ^eC(f) ; that is, the map #-> $P(-,dy)g(y) takes continuous bounded
functions to continuous bounded functions.

Examining the proof of Proposition 3.1 shows that it continues to hold with
weak in place of strong continuity: however, weak continuity is not enough to carry
through the remainder of the arguments of §3, and, as the following example shows,
we need some extra assumptions if we are to conclude even that compact sets are
/{-sets.

Example 2. Let SC be any state space, with {X,,} on 3C a chain with convergence
norm R~l < 1. Endow 3C with the trivial topology, whose only open sets are 0 and
SC. Then for any pair (x, y) the sequence (x, x, ...) tends to y, and so the only con-
tinuous functions are constant on #". Hence, since P(x, SC) = 1 for all x, {P{x, •)} is
weakly continuous. However, 2C itself is a compact set, and Y,P"(x, ££) = oo, so 9£
is not an jR-set. Note that {P(x, •)} is not strongly continuous, since for each pair
(x, y) this would require the sequence (P(x, A), P(x, A), ...) to approach P(yt A),
for every A: this can only happen if, for some probability measure n,

P(x, A) = P(yt A) = n(A),

which in turn means that n is a 1-invariant probability measure for {Xn}, and hence
that {Xn} is 1 -positive. This contradicts R > 1.

In order to make weak continuity a useful assumption, therefore, we need the
space 9£ and the cr-field #" to be considerably more compatible with the topology ST.
In particular, we need the space C{2£) to be rather richer than in Example 2.

We need the notation

C+(%) = {geC{%): g{x) > 0 and M{y : g(y) > 0} > 0};

C V ) = {geC+(%) : g(y) = 0,
for the set of non-negative elements of C(2£) which are not almost surely zero, and
the set of elements of C+(&) with support in A.

The results which follow are based on the use of the results of §2, in the manner
of §3. We begin by giving explicitly

PROPOSITION 4.1 . If{P{xt •)} is weakly continuous, so is {Ge(x, -)}for any 9 < 1.

Using this we prove
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THEOREM 2. Suppose {P(x, •)} is weakly continuous, and let

: C+(A) is non-empty}.

(i) Every K e Jf is an R-set if si contains at least one element of finite ^-measure,
where fi is R-subinvariant for {Xn}.

(ii) / / {Xn} is R-recurrent and aperiodic, then every Kerf is an L-set if (i) holds
and s# also contains at least one element A such that f is bounded away from zero on
A\Nf.

Proof Choose Aes/to satisfy (i). Then for 6 < 1, g e C+(A),

Ge(x,dy)g(y)I
is positive for all x, and so bounded from zero on any compact set K. Choose
g€C+(A) with g(x) ^ 1 for all x. Since /( is .R-subinvariant, and A has finite fi-
measure by assumption, for /? < R~l

oo >

J n{dw) J GRP(w,dy)g(y)

H{K) inf
weK

J GRp(w,dy)g(y) (4.1)

so that if Ke tf, it follows from (4.1) and the preceding remarks that fi(K) < oo,
and so, from Proposition 2.1, K is an i?-set.

Now suppose {X,,} .R-recurrent and aperiodic. If (i) holds, it must be for n = Q,
the unique .R-subinvariant measure, and the first part of the proof shows that Q(K) < oo
for every K e JfT. We now prove, therefore, that / is bounded from zero on K\Nf,
Kerf, and the desired result follows from Proposition 2.2, since NK 2 Nf.

To prove this, choose Aes? satisfying (ii). For x$Nf, /J-invariance of/gives,
for any fi < R~l, and geC+(A) with g(x) ^ 1,

= J Gm{x,dy)f(y)
X\Nj

\ inf f(y)]inf f(y)]GRp(x,A)

inf
ye A\Nf

j GRP(x, dy) g(y) (4.2)

The first term on the right in (4.2) is bounded from zero by assumption, and the



^-THEORY FOR MARKOV CHAINS ON A TOPOLOGICAL STATE SPACE I 397

second is bounded from zero for x in compact K by weak continuity: hence/(A-) is
bounded from zero on K\Nf, and the result follows.

This theorem makes explicit just how rich in continuous functions the topology
needs to be to allow our methods to work. Note that Example 2 violates (i), because
it has only constant continuous functions; if one of these satisfied (i), it would mean
Hffl) < oo, which would in turn imply both R = 1 and {X,,} 1-positive (cf. [5; §4]).

Various other criteria for elements of Jf to be R-sets could be formulated in a
similar vein: for example, it suffices that there exists geC + (&) such that

itidy) g(y) < oo
for some /?-subinvariant f.i, as can be seen from the first part of the proof of the theorem.

Using Theorem 2, we can now find a second set of conditions which will imply
that sets in Jf have the desired properties under the weak continuity hypothesis. Let
B denote the Baire cr-field on SC (that is, the smallest cr-field containing g~l{U) for
every U in the Borel cr-field of the real line and every real-valued continuous function
on #"). The cr-field B is generated by the class of zero sets of 2£\ that is, by the closed
sets of the form g~l{§) for some g e C ( i ) . We denote by (% the class of those open
Baire sets in #"+ which are complements of zero sets.

THEOREM 3. Suppose {P(x, •)} is weakly continuous, and that / 2 B . Then

(i) every KeJf is an R-set if & contains a set of finite ji-measure, where fi is an

R-subinvariant measure for {Xn}; and

(ii) if{X,,} is R-recurrent and aperiodic, every KGX is an L-set if (i) holds, and 08
also contains an element on which f(x) is bounded from zero.

Proof Since M is totally finite, any Be0& can be inner approximated by a zero
set B' in B so that M(B') > M(B)-s, [7; p. 171]. Further, there exists an element
of C($") which is zero on Bc and unity on B' [7; p. 168]. This suffices to show that
C+(B) # 0 ; that is, S& <=, s# as defined in Theorem 2. The theorem then follows from
Theorem 2.

The theorems of this section are not as satisfactory as Theorem 1, since they
depend on being able to ascertain some at least of the sets on which i?-subinvariant
measures and functions behave well.* The difficulty with the weak continuity condition
is that, whilst it seems exactly right to establish the vital Proposition 4 .1 , which leads
to the desired lower bound on the right-hand side of (4.1), it fails, without some
extra conditions, to give any sort of upper bound on the left-hand side of (4.1); and
similarly it fails to give a lower bound on the right-hand side of (4.2) without some
extra conditions.

It should be noted that in the probabilistically interesting case R = 1, we have
f(x) = 1 and so either Theorem 2(i) or Theorem 3(i) is sufficient to ensure that
K e X is both an K-set and an L-set. If R > 1 and {Xn} is /^-positive, on the other
hand, we have, [5; Theorem 7], that $Q(dx)f(x) < oo, and hence/cannot be bounded
from zero on 3C (since Q(^~) < oo violates R > 1, as we have seen before). Hence
we do need the second condition of our Theorems to use Proposition 2.2 and ensure
that sets in X" are L-sets.

* Added in proof: In a sequel, we improve this situation considerably.
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5. A weakly continuous example

Finally, we give the following example, which is both a non-trivial case where
weak continuity holds but strong continuity does not, and also an illustration that
weak continuity can, with no explicit assumptions on (#", &~) other than that it can
support some strongly continuous chain (a condition violated by Example 2), be
sufficient for compact sets to be both R-sets and L-sets. This shows that strong
continuity is not necessary for either of these to be possible.

Example 3. Let {Yn} be a Markov chain satisfying Condition I with transition
probabilities Q(x, A), such that {Q(x, •)} is strongly continuous, and with convergence
norm RQ~* < 1. Define the chain {Xn} by the transition probabilities

P(x, A) = <xQ{x, A) + P5{X,A), «, fi > 0, a + 0 = 1.

It can be verified inductively that

and so

P"(x, A)= ± (
* o \ k

5(x,A) + Gr(x,A)= Z r" £ 7 ak j8""* Q\x, A)
n=0 k=f

= I («r)kQ\x,A)X
k=0 n=k

CM)[£ (
Now using

S («r)kQk(x,
k = 0

we obtain for |/?r| < 1

Gr(x,A)+5(X,A)=

m)(x,A) (5.1)

where

From (5.1) it is clear that {Xn} satisfies Condition I when { Yn} does. The binomial
expansion used to get (5.1) is only valid if |/?r| < 1; however, since

Pn+m(x, A) ^ p" am Qm(x, A),
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we have

and if M(A) > 0 the radius of convergence R of Gr(x, A) is no more than fT1. Hence
to find R explicitly we only need consider r such that |/?r| < 1, and so we can use (5.1).

It follows immediately from (5.1) that

R = sup {r:ocrl(l-Pr)^RQ}.

But if rfi < 1, ar/(l-Pr) < RQ is equivalent to r < RQ/(<x + pRQ). Hence

However, a > 0, and so (3RQ < a + fiRQ, so we find

. (5.2)

Notice that this implies that R < RQ.
From (5.1) and (5.2) we deduce immediately that if A is an RQ-set for { Yn} then

A is an 7?-set for {Xn}, and so the strong continuity of {Q(x, •)} ensures from Theorem
1 that all compact K e X are .R-sets. Also if { Yn} is i?Q-recurrent, {Xn} is /^-recurrent,
and conversely. Suppose {Yn} is i?Q-recurrent and aperiodic, and let/G be the unique
/?e-invariant function for {Yn}: we wish to find the unique /^-invariant function for
{Xn} in order to use Proposition 2.3. This is the solution to

/(*) = * I P(x,dy)f(y)

«Q(x,dy)f(y) + pf(x)

rearranging this gives

= RQJQ(x,dy)f(y),

and so by uniqueness / = fQ. Similarly, the unique .R-invariant measure for { n̂} is
identical with the unique i?G-invariant measure for {Yn}. Using the strong continuity
of {Q(x, •)} and this identification, Propositions 3.2 and 3.3 imply that any KeJf
satisfies (2.4), and hence is an L-set for {Xn}; and in fact for every A satisfying (2.4),
and for almost every X,

lim #" P"(x, A) = lim RQ" Q"(x, A)
n-»oo n-»oo

from Theorem C.
Finally, the chain {Xn} has {P(x, •)} weakly continuous but not strongly continuous;

for if g e D(#") and xa -> x

and although the first term tends to aJQ(x, dy)g(y) from the strong continuity of
{Q(x> ")}> the second tends to Pg(x) if and only if x is a continuity point of g.
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