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Abstract. Tusnády’s inequality is the key ingredient in the KMT/Hungarian
coupling of the empirical distribution function with a Brownian Bridge. We
present an elementary proof of a result that sharpens the Tusnády inequality,
modulo constants. Our method uses the beta integral representation of Bino-
mial tails, simple Taylor expansion, and some novel bounds for the ratios of
normal tail probabilities.

1. Introduction

In one of the most important probability papers of the last forty years, Komlós,
Major, and Tusnády (1975) sketched a proof for a very tight coupling of the stan-
dardized empirical distribution function with a Brownian Bridge, a result now often
referred to as the KMT, or Hungarian, construction. Their coupling greatly sim-
plifies the derivation of many classical statistical results—see Shorack and Wellner
(1986, Chapter 12 et seq.), for example.

The construction has taken on added significance for statistics with its use by
Nussbaum (1996) in establishing asymptotic equivalence of density estimation and
white noise models. Brown, Carter, Low, and Zhang (2003) have somewhat simpli-
fied and expanded Nussbaum’s argument using our Theorem 2, via inequality (5).

At the heart of the KMT method (with refinements as in the exposition by
Csörgő and Révész 1981, Section 4.4) lies the quantile coupling of the Bin(n, 1/2)
and N(n/2, n/4) distributions, which may be defined as follows. Let Y be a random
variable distributed N(n/2, n/4). Find the cutpoints −∞ = β0 < β1 < · · · < βn <
βn+1 = ∞ for which

P{Bin(n, 1/2) ≥ k} = P{Y > βk} for k = 0, 1, . . . , n.

When βk < Y ≤ βk+1, let X take the value k. Then X has a Bin(n, 1/2) distribu-
tion.

It is often more convenient to work with the the tails of the standard normal
Φ̄(z) = P{N(0, 1) > z}, and the standardized cutpoint zk = 2(βk − n/2)/

√
n,

thereby replacing P{Y > βk} by Φ̄(zk).
Symmetry considerations show that βn−k+1 = n − βk, so that it suffices to

consider only half the range for k. More precisely, when n is even, say n = 2m,
the interval (βm, βm+1) is symmetric about n/2, so we have only to consider k ≥
m + 1 = (n + 2)/2. When n is odd, say n = 2m + 1, the interval (βm, βm+2) is
symmetric about n/2 = βm+1, so we have only to consider k ≥ m + 2 = (n + 3)/2.
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The usual normal approximation with continuity correction suggests that βk ≈
k − 1/2, which, if true, would bound |X − Y | by a constant that does not change
with n. Of course, such an approximation for all k is too good to be true, but results
almost as good have been established. The most elegant version appeared in the
unpublished dissertation (in Hungarian) of Tusnády (1977), whose key inequality
may be expressed as the assertion

k − 1 ≤ βk ≤ 3n

2
−

√
2n(n − k) for n/2 ≤ k ≤ n.(1)

As explained by Csörgő and Révész (1981, Section 4.4), Tusnády’s inequality im-
plies that |X − n/2| ≤ |Y − n/2| + 1 and |X − Y | ≤ 1 + Z2/8, where Z denotes
the standardized variable (2Y − n)/

√
n. They also noted that Tusnády’s proof of

inequality (1) was “elementary”, but “not at all simple”. Bretagnolle and Massart
(1989, Appendix) published another proof of Tusnády’s inequality—an exquisitely
delicate exercise in elementary calculus and careful handling of Stirling’s formula
to approximate individual Binomial probabilities. With no criticism intended, we
note that their proof is quite difficult. More recently, Dudley (2000, Chapter 1)
and Massart (2003) have reworked and refined the Bretagnolle/Massart calcula-
tions. Clearly there is a continuing perceived need for an accessible treatment of
the coupling result that underlies the KMT construction.

With this paper we offer another approach, which actually leads to an improve-
ment (modulo constants) of the Tusnády inequality. In fact, the Tusnády upper
bound greatly overestimates βk for moderate to large k. (See below.) Our method
differs from that of Bretagnolle and Massart, in that we work directly with the
whole tail probability. Our method is closer to that of Peizer and Pratt (1968),
who suggested a Cornish-Fisher expansion of the Binomial percentiles—but, as
noted by Pratt (1968, Sections 5 and 8), a rigorous proof by this method is dif-
ficult. To avoid the difficulty, Molenaar (1970, Section III.2) made a more direct
calculation starting from the representation of the Binomial tail as a beta integral,

P{Bin(n, 1/2) ≥ k} =
n!

(k − 1)!(n − k)!

∫ 1/2

0

tk−1(1 − t)n−k dt.(2)

He indicated that his expansion would be valid provided |k−n/2| = O(
√

n). Pratt
seemed to be claiming validity for his expansion for the range |k−n/2| = o(n), but
we believe extra work is needed for |k − n/2| large.

We should point out that Peizer and Pratt, and Molenaar, were actually con-
cerned with normal approximations to distributions more general than the Bin(n, 1/2)
case needed for the KMT construction. We have specialized their results to this
case.

Our method also starts from the integral representation (2), to derive an approx-
imation via Laplace’s method for integrals (de Bruijn 1981, Section 4.3) using only
Taylor’s theorem and Stirling’s formula (Feller 1968, Section II.9),

n! =
√

2π exp
(
(n + 1

2 ) log n − n + λn

)
with (12n + 1)−1 ≤ λn ≤ (12n)−1.(3)

In fact (Komlós, Major, and Tusnády 1975, page 130), the KMT construction
only needs a result like the Tusnády inequality for values of k in a range where
|2k−n| ≤ ε0n for some fixed ε0 < 1. For that range, a suitable bound can be derived
from classical large deviation approximations for Binomial tails. For example, in an
expanded version of the argument sketched in the 1975 paper, Major (2000) used
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the large deviation approximation

P{X ≥ k} = Φ̄(ε
√

n) exp (An(ε)) where ε = (2k − n)/n,

with

|An(ε)| = O
(
nε3 + n−1/2

)
uniformly in 0 ≤ ε ≤ ε0 < 1.

Mason (2001) derived the KMT coupling from an analogous approximation with

An(ε) = nε3λ(ε) + O
(
ε + n−1/2

)
uniformly in 0 ≤ ε ≤ ε0 < 1,

where λ(·) is a power series whose coefficients depend on the cumulants of the
Binomial distribution. Such an approximation follows from a minor variation on
the general method explained by Petrov (1975, Section 8.2). Symmetry of the
Bin(n, 1/2) makes the third cumulant zero; the power series ε3λ(ε) starts with a
multiple of ε4.

Our method gives a sharper approximation to the Bin(n, 1/2) tails over the range
n/2 < k ≤ n − 1 (which, by symmetry, actually covers the range 0 < k < n). Only
at the extreme, k = n, does the calculation fail.

Theorem 1. Let X have a Bin(n, 1/2) distribution, with n ≥ 28. Define

γ(ε) =
(1 + ε) log(1 + ε) + (1 − ε) log(1 − ε) − ε2

2ε4
=

∞∑
r=0

ε2r/(2r + 3)(2r + 4),

an increasing function with γ(0) = 1/12 and γ(1) = −1/2 + log 2 ≈ 0.1931. Define
ε = (2K −N)/N where K = k−1 and N = n−1. Define λn as in (3). Then there
is a constant C such that

P{X ≥ k} = Φ̄(ε
√

N) exp (An(ε))

where

An(ε) = −Nε4γ(ε) − 1
2 log(1 − ε2) − λn−k + rk and − C log N ≤ Nrk ≤ C

for all ε corresponding to the range n/2 < k ≤ n − 1.

Notice that the λn−k can be absorbed into the error terms, and that log(1− ε2)
is small compared with Nε4 + O(n−1), when ε ≤ ε0 < 1.

A very precise approximation for the cutpoints βk follows from inequalities (see
Section 3) for the tails of the normal distribution Theorem 1.

Theorem 2. Let zk = 2(βk − n/2)/
√

n and ε = (2K − N)/N . Let S(ε) =√
1 + 2ε2γ(ε) for γ(ε) as in Theorem 1. Then, for some constant C ′ and n ≥ 28,

zk = ε
√

NS(ε) +
log

(
1 − ε2

)
+ 2λn−k

2ε
√

NS(ε)
+ θk

with −C ′
(
ε
√

N + 1
)

≤ Nθk ≤ C ′
(
ε
√

N + log N
)

for all ε corresponding to the
range n/2 < k ≤ n − 1.

For example, the Theorem implies βk − k + 1/2 = o(1) uniformly over a range
where |k − n/2| = o(n2/3). Also, when ε ≤ ε0 < 1/2 the log term can be absorbed
into the O(ε/

√
n) errors. Even when k gets close to n− 1, the log term contributes
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only a O(n−1/2 log n) to the approximation. More precisely, if k = n−B for a fixed
B ≥ 1, our approximation simplifies to

βn−B =
1 + c

2
n − 1 + 2B

4c
log n + O(1) where c = S(1) ≈ 1.177,(4)

which agrees up to O(1) terms with the result obtained by direct calculation from

P{X ≥ n − B} =
((

n

0

)
+ · · · +

(
n

B

))
2−n =

nB

B!2n
(1 + o(1))

and the well known approximation for normal percentiles,

Φ̄−1(p) = y − log y

y
+ O(1/y) as p → 0, where y =

√
2 log(1/p).

By contrast, the upper bound for βn−B from (1) is about 0.088n too large.
It is also an easy consequence of Theorem 2 that there exist positive constants

Ci for which

− C1√
n

+ C2
|k − n/2|3

n2
≤ βk − k + 1

2 ≤ C3 log n√
n

+ C4
|k − n/2|3

n2
(5)

for n/2 ≤ k ≤ n and all n. For the quantile coupling between an X distributed
Bin(n, 1/2) and a Y = n/2 +

√
nZ/2 distributed N(n/2, n/4), it follows that there

is a positive constant C for which∣∣∣X − n

2

∣∣∣ ≤ C +
∣∣∣Y − n

2

∣∣∣ and |X − Y | ≤ C +
C

n2

∣∣∣X − n

2

∣∣∣3 .

Using the fact that |X − n/2| ≤ n/2, we could also write the upper bound for
|X−Y | as a constant multiple of 1+Z2 (1 ∧ |Z|/√n), which improves on Tusnády’s
1 + Z2/8, modulo multiplicative constants. (We have made no attempt to find the
best constants, even though, in principle, explicit values could be found by our
method.)

2. Outline of our method

As in Theorem 1, write ε = (2K −N)/N where K = k−1 and N = n−1. Then
K/N = (1 + ε)/2 and the range n/2 < k < n corresponds to

1 − 2
N

≥ ε =
2K

N
− 1 ≥

{
N−1 when n is even
2N−1 when n is odd.

(6)

Define 2H(t) = (1 + ε) log t + (1 − ε) log(1 − t) for 0 < t < 1. Representation (2)
can then be rewritten as

P{X ≥ k} =
nN !

K!(N − K)!

∫ 1/2

0

exp
(
K log t + (N − K) log(1 − t)

)
dt

=
nN !

K!(N − K)!

∫ 1/2

0

eNH(t)dt.

By Stirling’s formula (3),

N !
K!(N − K)!

=
1
N

√
4N

2π(1 − ε2)
exp (Λ − NH(K/N)) where Λ := λN − λK − λN−K .
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Thus the beta integral equals

n

N
exp

(
Λ − 1

2 log(1 − ε2) − NH(K/N)
) √

4N

2π

∫ 1/2

0

eNH(t) dt.

The function H(·) is concave on (0, 1). It achieves its global maximum at K/N ,
which lies outside the range of integration. On the interval (0, 1/2] the maximimum
is achieved at 1/2. On the range of integration, H(t) − H(K/N) is never greater
than

H(1/2) − H(K/N) = − 1
2 (1 + ε) log(1 + ε) − 1

2 (1 − ε) log(1 − ε) = − 1
2ε2 − ε4γ(ε).

The concave function h(s) := H((1 − s)/2) − H(1/2) achieves its maximum value
of zero at s = 0 and

P{X ≥ k} = e∆

√
N

2π

∫ 1

0

eNh(s)−Nε2/2 ds

where ∆ = log(1 + N−1) + Λ − 1
2 log(1 − ε2) − Nε4γ(ε).

(7)

The ∆ contributes O(1/n) − λn−k − 1
2 log(1 − ε2) − Nε4γ(ε) to the An(ε) from

Theorem 1. Taylor expansion of h(s) about s = 0 and concavity of h(·) show that
the exponent Nh(s) drops off rapidly as s moves away from zero. Indeed,

h(s) = −εs − 1
2s2 + 1

6s3h′′′(s∗) with 0 < s∗ < s

≈ 1
2ε2 − 1

2 (s + ε)2 for s near zero.
(8)

See Section 4 for the more precise statement of the approximation.
Most of the contribution to the integral (7) comes from s in a small neighborhood

of 0. Ignoring tail contributions to the integral, we will then have

P{X ≥ k} ≈ e∆

√
N

2π

∫ ∞

0

exp
(
− 1

2N(s + ε)2
)

ds = e∆Φ̄
(
ε
√

N
)

,(9)

as asserted by Theorem 1.
To derive Theorem 2 we perturb the argument ε

√
N slightly to absorb the fac-

tor exp(An(ε)). We seek a y for which

Φ̄(ε
√

N + y) ≈ exp (An(ε)) Φ̄(ε
√

N) = Φ̄(zk).

That is, we need

Φ̄(ε
√

N + y)/Φ̄(ε
√

N) ≈ exp
(
−Nε4γ(ε) − 1

2 log(1 − ε2)
)
.

As shown in the next Section, the ratio of normal tail probabilities Φ̄(x + y)/Φ̄(x)
behaves like exp(−xy−y2/2), at least when x is large. Ignore the logarithmic term
for the moment. Then the heuristic suggests that we choose y to make ε

√
Ny +

y2/2 ≈ Nε4γ(ε), that is,

y ≈ −ε
√

N+
√

Nε2 + 2Nε4γ(ε) and hence zk ≈ ε
√

N+y ≈ ε
√

N
√

1 + 2ε2γ(ε)

For the rigorous proof of Theorem 2 we need to replace these heuristic approx-
imations by inequalities giving upper and lower bounds for Φ̄(zk), then invoke the
inequalities for normal tails derived in the next Section.
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3. Tails of the normal distributions

The classical tail bounds for the normal distribution (cf. Feller 1968, Sec-
tion VII.1 and Problem 7.1) show that Φ̄(x) behaves roughly like the density φ(x):(

1
x
− 1

x3

)
φ(x) <Φ̄(x) <

1
x

φ(x)

Φ̄(x) < 1
2 exp

(
−x2/2

) for x > 0(10)

The first upper bound is good for large x, the second for x ≈ 0. For the proofs
of both Theorem 1 (in Section 4) and Theorem 2 (in Section 5) we will need to
bound the ratio Φ̄(x + y)/Φ̄(x). It is possible to derive suitable bounds directly
from (10), but we have found it easier to work with inequalities that interpolate
smoothly between the different cases in (10). We express our results in logarithmic
form, using the function Ψ(x) := − log Φ̄(x) and its derivative

ρ(x) =
d

dx
Ψ(x) = φ(x)/Φ̄(x).

To a first approximation, the positive function ρ(x) increases like x. By inequal-
ity (10), the error of approximation, r(x) := ρ(x) − x, is positive for x > 0 and,
for x > 1,

r(x) <
x

x2 − 1
= O(1/x) as x → ∞.

In fact, as shown by the proof of the next lemma, ρ(·) is increasing and r(·) is
decreasing and positive, on the whole real line.

Lemma 1. The function ρ(·) is increasing and the function r(·) is decreasing, with
r(∞) = ρ(−∞) = 0 and r(0) = ρ(0) = 2/

√
2π ≈ .7979. For all x ∈ R and δ ≥ 0,

the increments of the function Ψ(x) := − log Φ̄(x) satisfy the inequalities
(i) δρ(x) ≤ Ψ(x + δ) − Ψ(x) ≤ δρ(x + δ),
(ii) δr(x + δ) ≤ Ψ(x + δ) − Ψ(x) − 1

2 (x + δ)2 + 1
2x2 ≤ δr(x),

(iii) xδ + 1
2δ2 ≤ Ψ(x + δ) − Ψ(x) ≤ ρ(x)δ + 1

2δ2.

Proof. Let Z be N(0, 1) distributed. Define M(x) = Pe−x|Z|, a decreasing function
of x with log M(x) strictly convex. Notice that

1/ρ(x) =
√

2π exp
(
x2/2

) ∫ ∞

0

φ(z+x) dz =
∫ ∞

0

exp
(
−xz − z2/2

)
dz =

√
π

2
M(x).

Thus − log M(x) − log
√

π/2 = log ρ(x) = Ψ(x) − x2/2 − log
√

2π is a concave,
increasing function of x with derivative ρ(x) − x = r(x). It follows that r(·) is a
decreasing function, because

r′(x) = − d2

dx2
log M(x) < 0 by convexity of log M(x).

Inequality (i) follows from the equality

Ψ(x + δ) − Ψ(x) = δΨ′(y∗) = δρ(y∗) for some x < y∗ < x + δ,

together with the fact that ρ(·) is an increasing function. Similarly, the fact that
d

dy

(
Ψ(y) − 1

2y2
)

= ρ(y) − y = r(y) which is a decreasing function

gives inequality (ii). Inequality (iii) follows from (ii) because δr(x + δ) ≥ 0 and
xδ + r(x)δ = ρ(x)δ.
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Reexpressed in terms of the tail function Φ̄, the three inequalities from the lemma
become

(i) exp (−δρ(x)) ≥ Φ̄(x + δ)/Φ̄(x) ≥ exp (−δρ(x + δ)),
(ii) exp (−δr(x + δ)) ≥ exp

(
xδ + δ2/2

)
Φ̄(x + δ)/Φ̄(x) ≥ exp (−δr(x)),

(iii) exp
(
−xδ − δ2/2

)
≥ Φ̄(x + δ)/Φ̄(x) ≥ exp

(
−ρ(x)δ − δ2/2

)
.

Less formally,

P{Z ≤ x + δ | Z ≤ x} = 1 − Φ̄(x + δ)/Φ̄(x) ≈ δρ(x) for small δ,

which corresponds to the fact that ρ is the hazard rate for the N(0, 1) distribution.

4. Details of the proof for Theorem 1

To make the proof rigorous, we need to replace the approximation in the Taylor
expansion (8) by upper and lower bounds involving the third derivative

h′′′(s) =
1 − ε

(1 + s)3
− 1 + ε

(1 − s)3
= −6s + 2s2 + ε(2 + 6s2)

(1 − s2)3
.

The derivative of this function is negative for all s. Thus

h′′′(s) ≤ h′′′(0) = −2ε for 0 < s < 1

and
h(s) ≤ 1

2ε2 − 1
2 (s + ε)2 for 0 < s < 1.

The right-hand side of the approximation (9) is actually an upper bound, because
the integrand is nonnegative on (1,∞). That is,

P{X ≥ k} ≤ e∆Φ̄
(
ε
√

N
)

,

which gives the upper bound for An(ε) stated in the Theorem.
For the lower bound, for some small positive η discard the contribution to the

integral in (7) from the range (η, 1), and bound h′′′ from below by h′′′(η) on the
range (0, η), then integrate to get

P{X ≥ k} ≥ e∆

√
N

2π

∫ η

0

exp
(
− 1

2N(s + ε)2 + 1
6Nηs2h′′′(η)

)
ds

= e∆

√
N

2π

∫ η

0

exp
(
− 1

2Nκ2(s + ε/κ2)2 + 1
2Nε2/κ2 − 1

2Nε2
)

ds

=
e∆

κ
exp

(
1
2Nε2/κ2 − 1

2Nε2
) (

Φ̄(ε
√

N/κ) − Φ̄(ε
√

N/κ + κη
√

N)
)

where
κ2 = 1 − 1

3ηh′′′(η) ≤ 1 + 6η(η + ε) if η ≤ 1
2 .

From Lemma 1, parts (iii) and(ii),

Φ̄(ε
√

N/κ + κη
√

N) ≤ Φ̄(ε
√

N/κ) exp(−Nεη − 1
2Nκ2η2)

and
exp

(
1
2Nε2

)
Φ̄(ε

√
N) ≤ exp

(
1
2Nε2/κ2

)
Φ̄(ε

√
N/κ).

Thus

P{X ≥ k} ≥ exp(∆ − log κ)Φ(ε
√

N)
[
1 − exp(−Nεη − 1

2Nκ2η2)
]
.(11)

We need log κ = O(�N ), where �N = N−1 log N , for otherwise the asserted in-
equality −C log N ≤ rk would be violated. As log κ ≤ 6(η2 + ηε), this requirement
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suggest that we take η as a solution to the equation 1
2η2 + ηε = �N , that is,

η := −ε +
√

ε2 + 2�N . We would then have κ2 ≤ 1 + 12�N and η ≤ 1/2, at least
for n ≥ 28. Also, the exponent −Nεη − 1

2Nκ2η2 is smaller than − log N , which
ensures that the final, bracketed term in (11) only contributes another O(N−1) to
the An(ε) from Theorem 1.

5. Details of the proof for Theorem 2

Written using the Ψ function from Lemma 1, the assertion of Theorem 1 implies
that

Ψ(zk) = Ψ(ε
√

N) + Bn(ε) + τk

where, for some constant C,

Bn(ε) = Nε4γ(ε) + 1
2 log(1 − ε2) + λn−k and − CN−1 ≤ τk ≤ C�N

for ε corresponding to the range n/2 ≥ k ≤ n − 1. That is, for 0 ≤ ε ≤ 1 − 2N−1.
Define

wk = ε
√

NS(ε) +
log

(
1 − ε2

)
+ 2λn−k

2ε
√

NS(ε)
.

We need to show that there is a constant C ′ for which zk = wk + θk, with
−C ′

(
ε
√

N + 1
)

≤ Nθk ≤ C ′
(
ε
√

N + log N
)

for 0 ≤ ε ≤ 1 − 2N−1. Consider
two cases.

5.1. Suppose ε ≤ C0/
√

N , for some constant C0. Uniformly over that range,
Bn(ε) = O(N−1) and wk = ε

√
N + O(N−1). From Lemma 1(i), for all nonegative

δ1 and δ2,

Ψ(x) + δ1ρ(x) ≤ Ψ(x + δ1) and Ψ(x − δ2) + δ2ρ(x − δ2) ≤ Ψ(x).

With x equal to ε
√

N and C1 a large enough constant, deduce that

Ψ(ε
√

N − C1N
−1) < Ψ(zk) < Ψ(ε

√
N + C1�N )

and hence

wk − O(N−1) − C1N
−1 < zk < wk + O(N−1) + C1�N

5.2. Suppose C0/
√

N ≤ ε ≤ 1− 2N−1. Write x for ε
√

N and β for Bn(ε) + τk =
Ψ(zk)−Ψ(x). For all ε in this range, if C0 is large enough we have β > 0 and r(x) ≤
2/x. The function h(t) = t −

√
t2 + 2β is negative, increasing and concave, with

h′(t) ≤ 2β/t2. The positive numbers δ1 = −h(x) and δ2 = −h(ρ(x)) are roots of
two quadratic equations, δ1x + 1

2δ2
1 = β = δ2ρ(x) + 1

2δ2
2 . From Lemma 1(iii),

Ψ(zk) − Ψ(x) = xδ1 + 1
2δ2

1 ≤ Ψ(x + δ1) − Ψ(x),

Ψ(x + δ2) − Ψ(x) ≤ ρ(x)δ2 + 1
2δ2

2 = Ψ(zk) − Ψ(x),

which imply that x+ δ2 ≤ zk ≤ x+ δ1. These bounds force zk to lie close to x+ δ1:

0 ≤ x + δ1 − zk ≤ δ1 − δ2 = h(ρ(x)) − h(x) ≤ r(x)h′(x) ≤ 4β/x3 = O(ε/
√

N).
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And x + δ1 lies close to wk:

x + δ1 =
√

Nε2 + 2β

= ε
√

N S(ε)

(
1 +

log
(
1 − ε2

)
+ 2λn−k + τk

Nε2S(ε)2

)1/2

= wk +
τk

2ε
√

N S(ε)
+ O

(√
N�2N

)
.

The assertion of Theorem 2 follows.
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