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Abstract
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§1. Introduction

Many problems in non-parametric asymptotic theory can be reduced to
applications of limit theorems for empirical processes indexed by classes of
functions. Two such theorems are proved in this paper. They are k‘app]ied (Section
4) to problems in density estimation and non-parametric regression, leading.to
sharp uniform almost-sure convergence results. The method of proof extends the
well-known empirical process technique of symmetrization followed by a one-step
approximation, which produces uniform exponential bounds involving random
covering numbers. _The novelty in the methods is the generélization; of an idea
introduced by Breiman et a%. (1984, Chapter 12) to prove the empirical processes
results needed for their tree‘-structured classification and regression procedures.

The theorems concern the ‘behaVior of the empirical measures (P,} generated
by an independent sample ¢£,,£5,... from a fixed probability measuré P.. For
each P-integrable function f the difference Ppf - Pf between thé expected
values with respect to P, dand P converges to zero almost surely. The
theorems give weight functions, which depend on f , such that thé weighted
differences converge almost surely to zero, uniformly over classes én .
Infox'n;ally, Theorerﬁ 2.1 gives conditions on %, and a sequence of bositive
constants {yp} that ensure IPLf - Pfl is eventually small comparéd with
Pp!fl + PIf} + vy, for all f in %, . Theorem 2.4 replaces tﬁe L' weight
function by an analogous [? weight function, (Pnf)% + (Pf2)4 + 7nl . In
particular cases these étrange weights simplify to produce uniform limit theorems
for ratiog of Pnf to Pf. For example, if all the functions are non-negative, and
if either Pnf or Pf is bigger than Yn for every .f in %, , then Th_eorem
2.1 implies that 1Pgf - Pfl is uniformly small compared with Ppf + Pf ,

eventually, More formally, the theorem reduces to
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In
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in this case. Precise statements of the theorems and a number of c;)nsequences of
this type appear in Section 2. |

The key concept underlying both theorems is that of a coveringéntnnber. 1f
% is a class of functions with envelope F (that is, Ifl < F for z;ll f in 3),
and if Q 1is a measure on the space where the functions live, the ;t‘(Q) covering
number N,(:,Q,3) is defined as the smallest number of 1'(Q) ball% of radius
tQF , with centers in %, needed to cover % . (Note: This definition differs.
slightly from the definition in Section II.5 of Pollard (1984), but it aj"grees with the
usage. of Nolan & Pollard (1986).) That is, it is the smallest n for;thch there
exists a collection 3*¥ of n members of ¥ such that: to each f in ¥ there
is an ¥ in 3* with

| QIf - f¥1 < ¢ QF
Of course the definition has content only when QF < » . The LZ(Q) covering
numbers N,(z,Q,3) are defined by substitution of 1?(Q) nofms fo;' £'(Q) norms;
the corresponding inequalities for 3* are | |
QIf - f¥12 ¢ c’Q(.F‘)

The notation does not record the dependence of both N, and N,  on the
envelope F . That disguises one subtlety in the role of F . It is'lnot élwéys
desirable to choose F as supgl!fl , the smallest enQe]ope possiblef Indeed one
would usually want u)lnékeit as large as possﬂﬂe subject to some fﬁﬁteness
cb.nstraint.' on a moment Pg(F) . Theorem 2.1 shows why. Further discussiqn of
the advantages of a large F appears in Section 3. |

The theorems depend upon the exkneﬁcé of good bounds for thé random

covering numbers N,(',Pn,¥n) and N,(-,Ph,¥n) . Adequate bounds‘gare most



readily available for those classes that Nolan and Pollard (1986) have dubbed
Euclidean. '

(1.2) Definition. A class ¥ 1is said to be Euclidean(A,V) for the envelope F

if for 0 < £ ¢ 1 there is a uniform bound on the covering numbers,

N, (¢,Q,3) < AE_V N 0

If ¥ is Euclidean there is a similar polynomial bound on its )t'2 covering
numbers, because

Na(5,Q3) € N, (5:2,Qp,9)
where Qp denotes the measure with density F with respect to Q .

Nolan and Pollard (1986, Section 5) have listed several of the propérties that
make the concept tractable and useful. For example, if K(*) is 'a function' of
bounded varigtion on the real line then the class of all functions ft,,o(X.) =
K((t-x)/e) , with t e R andv ¢ > 0, is Euclidean for every envelope. This class
"and its higher dimensional analogues figure prominently in the applications to
density estimation and non-parametric regression in Section .4. The_re is more about
Euclidean classes in Section 3.

The rate of growth in tﬁe random covefing numbers determines. how fast the
constants {yp} can converge to zero. For example, if each In is
Euclidean(A,V) and if - Pg(F) ¢ « for a g - satisfying mild conditions, then (1.1)
will allow any (yp} that decreases more slowly than g~'(n)n~'log n. (Here
g-'(n) refers to the inverse function, not the reciprocal of g(n) ) In the
limiting‘case of a bounded F , where g could be made Lo increase arbitrarily
rapidly, the g~'(n) factor drops away, leaving the familiar n~!log n as the
lower bound where uniform limit theorems begin to_fail. |

Questions of measurability are pushed into the background for most of the

paper. A regularily condition known as permissibility takes care of the difficulties



that might arise from the manipulation of suprema over uncountable classes of
functions. AThe words "permissible class” éppear in the statement of resulis as a
reminder of the need for some measurability condition, but precise definition of the

concept and a discussion of why it is needed are postponed until Sjjection 6.



§2. Statement of the results

The applications in Section 4 require the following theorems only for the
.special of Euclidean classes. Nevertheless the theorems are stated hére in greater
generality, in order to emphaéize that the rate of convergence for [! weightings
is determined by ! .covering numbers, and for [L? weightings by t" covering
numbers., For eaéier comprehension of Theorem 2.1 the reader migh‘t restrict 3,
to a single Euclidean class 3, and hold ¢p fixed. The series cc;ndition is then
almost equivalent to: nyp/g~'(n) increases faster than log n . For Theorem 2.4
think of t,? as a fixed large multiple of n™! log n and 7y, decreasing like
n-K for some large constant K .

(2.1) Theorem

For each n let ¥, be a permissible class with envelope F . Let g() be
a non-negative increasiﬁg function for w}lich l

(i) Pg(F) <o

(ii) g(x)/x is increasing for x > 0

1f {¢n} and {yp} are sequences of positive numbers for which

T PL1 A Ny(enynsPnFn)exp(-nen2yn/g 1 (n))] ¢ o

n=1 .
then
'Pf - PFI o .
P{;up PoTEl 7 PIET * 7 > Cep infinitely often} = 0
n .
for the constant C = 8(1 + 3PF) . . : : a

(2.2) Corollary

For each | n let 3, be a permissible class of non-negative functions tth
satisfies the conditions of Theorem 2.1. For C as above, if ZC.tn £ % eveht-.unlly
then

IP{ sup E’-‘—f - 1' > 8Ce, infinitely often] =0

“Fn(rn) pf

. where 3p(rn) = (f € 3 ¢ Ppf + PE 2 7yl . : . 8]



The first step in the proof of Theorem 2.1 will be a truncation ‘of f(¢;) to
zero outside the set where g(F(£{;)) < i . That will be where the factor g~'(n)
comes from. If F i3 bounded the truncation is superfluous; the g~ '(n) can be
discarded. For ease of later application the next C.orollary records this fact in a

slightly modified form.

(2.3) Corollary
For each n let 3%, be a permissible class with constant envelope apn . If

{en} and {yp) are sequences of positive numbers for which

[ ]
I P[1 A N, (tu7n/n,Pn,%n)exp(-neprp/an)] < o
n=t

then .

P '{sup |Ppf - PfI > 32z, . infinitely often] =0 0

3y Pnif! + PITT ¥ 00

Theorem 2.1 and its corollaries work best for functions with Pf ® y, . For
larger values of Pf the natural [2? weighting seems to give a better bound.

(2.4) Theorem

For each n let 3, be a permissible class with envelope F for which

PF?2 ¢ o . If (e} and {yp} are sequences of positive numbers such that

T P[1 A N2(5n7ﬁapn,?n)EXP(_n5g)] (@

n-=1
then
Pisup (Paf)% + (PID)% + 7 > Cep  infinitely often} = 0
In ' .
where C = 1 + 19(PF2)% . 0

If 0<f<s 1 for all f ‘the assertion of the theorem is close to the
convergence results obtainable by means of Le Cam’s (1983) square-root technique.
Indeed, that technique works because it manages to conjure up an éxtra‘factor

. like (Pnf’)’g (see the argument leading up to line 3 on page 33 of . Pollard (1984)).



.ezl- '

When specialized to uniformly boundA Eucli_dean classes the theox‘ém does not
quite include all the results of Alexander (1985). His Corollaries 1.6 and 1.7 work
for vn down near n~! , whereas my results need it to decrease ﬁo faster than
n~'log n . This reflects the crudeness of the one-step approxhnaﬁon that will be
used in my proofs to get the maximal inequality. [t seems that improvement could
come only by means of a chaining argument, wﬁich is the technique that produced
Alexander’s inequalities, -

The assertion of the Theorem 2.4 would be more satisfactory if ﬁhe féctor
(Pnf’)x were not present in the denominator. Intuitively, it should be possible to
absorb iLinto.the other terms in the denominator because one would expect
Ppf? * Pf2 if Pf? were n;)t too small. A rigorous argument to thi§ effect may be ‘

based on Theorem 2.1 applied to the classes
32 = (£ : f e %)
with envelope F2. The £!(Q) covering numbers- for ?:1 are related to the 1?(Q)

covering numbers for 3, by the inequality

Ny (22,Q,%n) € Na(2,Q,%n)

because '

QIF? - £21 < QIfy, - F,1(1F, 1 + 1f,1) € (Q(Ff, = £3)2 Q(4F2))%

To illustrate how Theorems 2.1 and 2.4 can be combined, suppose each 3I, is

Euclidean(A,V) for a constant envelope 1. Invoke Corollary 2.3 with;zn = 1/64
and 7; equal to a suitably iarge multiple of Ap = n7! log n . With probability
one it is eventually true that

IPaf? - PF21 < %(Pyf? + Pf2 + 0(Al))  for all £ in %,
which implies

Paf? < 3PF2 4 O(A) for all f in 9p



Combine this bound with the assertion of Theorem 2.4, for th
suitably large multiples of X, , to get
'pnf - Pf‘

)%+ o(nky

%

(2.5) sup = 0(Ap) | almost surely

%, (Pf2

and 7; equal to

A special case shows how tight the bound is. Take P as the uniform distribution

on (0,1) and let each 3%, consist of all indicator functions of intervals. With

probability one, the longest interval containing no sample points has length of

order Ap . Take f equal to the indicator function of this interv!al to see that

- %
the supremum corresponding to the lefthand side of (2.5) is at least of order Xﬁ .

i



§3. - Euclidean Classes

There are two properties that make the Fuclidean concept. wortbw}ﬁkx they érc
stable under several aigebraic and boolean operations; and there ar'l'e-simple criteria
for identifying non-trivial Euclidean classes.

It is easy to show that the Euclidean property is preserved if the envelope is
increased, and that it is inherited by éubc]nsses. The property is also stable
under the formation of pointwise sums, pointwise products, pointwise maxima, and
pointwise minima. That is, if % is Euclidean for the envelope F and $ is
Euclidean for the envelope G then: |

(1) (f +g:f€ 3 ge 3} is Buclidean for the envelope F +a :

(ii) {fg : f € 3 gce S'} is BEuclidean for the envelope FG ;

() (fvg:fec3 gey) and (Eag:fed ges aro both

Euclidean for the envelope F v G .
These are all straightforward consequences of inequalities for integfa]s. For
exanuﬂe,to establish (ii) fix an ¢ > 0 and a measure Q . Deﬁne-iQp’ as the
measure with density F with respect to Q . Define Qg analo_gopsly. “Let 3%
and $¥ be the finite subclasses for which

>mi2 Q! f - t¥1 ¢ £Qq(F)  for all f in 3
3

mig Qrlg - g*! < £Qp(Q) for all g in $
$ 4 )

Then, for each f in ¥ and g in § and their corresponding £¥  and 'g* R

Qifg - fXg*t < QIf - Xligl + Qig-g¥I1eXy

IA

Qg f-f¥1 + Qplg-g*!

1728

2¢ Q(FG)
Thus

N,(ZL‘,Q,?'S) < Nl(apQG;?) Nl(ayQFr?J)
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where 79 is a temporary notation for the sel of all products in i(ii). The
Eucrlidean property follows immediately. The arguments for (i) and (iii) are similar.

Nolan and Pollard (1986) have collected together some facts aboul covering
numbers. that imply other stability properties for Euclidean classes;.

The mlain point of departure for the cénstruction of Euclidenn classes is a
combinétoriai property named after Vapnik and Cervonenkis. Recail that a class of
subsets U of a set S is said to be a VC class (or a polynomiél class in the
terminology of Sect.ion I1.4 of Pollard (1984)) if there exist constants A and. v
for which:

card{C n E : C € C} ¢ A[card(.E)]V
for every finite subset E of S . (Here card denotes cardinality.)
If f is a real-valued function on a set X , define its graph as

graph(f) = {{(x,t) e X @ R: 0 <t < f(x) or 0> t> f(x)}
Trivial modifications of Lemma 11.25 of Pollard (1984) establish the result: if
{graph(f) : £ € 3} is a VC class of sets, then % is Euclidean for ever;'
envelope. When spe»cialized to the indicator functions of sets in a class € , this
result reduces to L.emma 7.13 of Dudley (1978), which may be reinterpreted as: the
indicator funct.ipns of the sets in a VC class form a Euclidean class for the
envelope 1. This property characterizes VC classes. [If € is not a.  VC class
there exists for each n a set of n points, E, , that is shattered by € . For
the probability measure Qp that puts mass n~! at each point of Ep, , the
indicators of all 20 distinct sets of the form C n E, are at least n~!' apart
in 1'(Qp) distance; for a Fuclidean class the number of sets this far apart should
increase at a polynomial rate.] The equivalence identifies the Euclidean ﬁmperty
as one natural generalization of the VC property from sets to fuﬁctions. Dudley

(1986) has investigated several other plausible generalizations.
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If a nhon-constant e¢nvelope F is chosen for the class of indicator functions of

gets in € , the Euclidean property need no longer imply the VC ffproperty.

(3.1) Example

Let ¥ be the set of non-negative integefs and € be the ciaés of all- subsets
of X . Certainly C. is not a VC class. But it is Euclidean for f{he envelope F
define by F(n) = 20 . :

Given ¢ with 0.< e < 1 find the integer k for which 2K z e=t > 2k-r
Let X consist‘c;f all 2k+1 gyubsets of {0,1,...,k) . For each C ‘!in C define
c¥ = ¢ n {0,1,..,k} . Then for each measure Q on I , ‘

QIC - c¥I < Q[k+l,) w
< 2ks Qrk,»)
S ¢ QF
Thus N,(£,Q,) < 2kt < 421, . _ 0

The example shows how Euclidean properties can be forced on n‘ bad class by
‘choosing the envelope to be very large in a region,of the unde‘rlyin"vg space where
the class is badly behaved. Of course this artifice will succeed only if the
sampling .distribution P does not put too much mass in the bad rejgions; otherwise

1

the moment condition Pg(F) < « of Theorem 2.1, or PF? < o of T]heorem 2.4,

would be violated.
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$4. Applications and Examples

The three examples in this section all involve smoothing by means of a bounded

: I
kernel K . In each case &= will assume that the class of all functions of the
form K[-.—g'—&) is Euclidean for its natural constant envelope. Conditions to

guarantee this may be found in Section 5 of Nolan and Pollard (1986); When K
satisfies the assumption, let us say that' K is a Euclidean kernel. ~In one
dimension every kernel with bounded variation is Buclidean,

{4.1) Example

Let ¢,,£2,... be independent observations from a distribution P on Rd .
Suppose P has a bounded density p(*) with respect to Lebesgué measure.
Let K be a Euclidean kernel that integrates to 1. Without loss ofl‘, generality (the

positive and negative parts could be treated separately) assume K is non-

negative. Write ft.,o(') for K[L—;—t‘] . For each ¢ > 0 define»a dénsity

"estimate

i — t]

a

n
Bn(t,o) = (ned)=t 3 K = o dpyfy
i=1

The usual method of analysis first compares f)n(t,c) with the smoothed density
p(t,e) = PPp(te) = o~dPfrq .

Then deterministic arguments based on assumed smoothness of p(')j‘ are used to

handle the bias term. For example, if p() is uniformly cokntinuous’, then

sup sup Ip(t,e) - p(t)!I =0
g < ap t

for every- sequence {ap} that converges to zero. The results fror?h Section 2 can
handle the random component f)n(-,o) - pl*o)-.

Let {Bp} be a scquence of constants for .which nﬂg/log n = m . Fix £>0.
Then, from Theorem 2.1, with probability one it is eventually trueb _that for all t

~and o,
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Pnft,o - PFt,ol < #(Paft,o + Pft,o + Fn)
This. implies, for all ¢ with ¢ 2 g, , and all t ,

1Pn(te) - p(to)l < e[Pp(t,e) + pllio)] + &
or

&

- —— (1 + 2p(t,0)) < pp(t,o) - p(t,o) <

T— (1 + 2p(t,0))

Because p(‘) is bounded, we deduce that

sup sup lﬁn(t,c) - p(t,e)t » 0 . almost surely
o2fn t :

For a uniformly continuocus p(*) this means that

sup sup Iﬁh(t,o) - p(t)! 20 v almost surely
Bpsosan t ’ ]

for every choice of «, and pfn with B, < an 2 0 and nﬂndllo“g n= o, Any
on lying in the band [Bp,2n] produces a uniformly consistent es:timate of the
underlying density. The smoothing parameters could even be randqm and depend
- on t in some complicated fashion that.produced awkward de_pendeﬁcies between
the values op(t) and o'n(tl‘r) . Provided
P{Ap ¢ op(t) € ¢y for all t, eveﬁtuaﬂy} =1,

the corresponding seqﬁence of density eslimales would be urﬁfornﬂy consistent.

For example, suppose on(t) is chosen .so that the closed ball Bp(t) with
radius opn(t) and center t contains exactly k(n) sample points.. That is,
PnBn(t) = k(n)/n . Assume that K(x) = 0 for Ix! > 1, for olherwise the
density estimate might not be even pointwise consistent in regions éf zZero densily.
Then ﬁn(han(w) is uniformly consknént for a bounded, uniformly continuous
p(*) if k(n) 2 0 and k(n)/log n @ » . Write yp for k(n)/n . From Corollary
2.2 applied to the VC class of all closed -balls in rd ,

PBn(t) _
"n

(1.2) sup

1' >0 almost surely
t
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Because the density p(:) is bounded, this implies that there exists a constant ¢
for which, with probability one,

igf Gn(t)d 2 Crp eventually.

The sequence Fp = (cyn)‘/d' is an appropriate choice. As the upper bound «p

choose numbers for which o 2 0 and 7yp = o(and) . Then
sup lﬁn(t,cn(t)) - p(t)t >0 almost surely
ap(t)<eay |

In the low density region where op(t) > « there is simple bound:

Pnlty on(t)) = O(rn/ont)d) = o(1)
These two results imply the desired uniform convergence. For if & > 0 lthen (4.2)
implies that |

sup on(l_)d = 0(rp) = o(ep) almost surely;
p(t)2e 1

the convergence of 'ﬁn(t,on(t)) to p(t.) is certainly uniform ovér the set
{p2¢}. On the set {p < &} , either op(t) < ay , in which case the first
result applies, or op(t) > «n , in which case ﬁ and p are clt;se because
both are small. ' . ; 0

{4.3) Example

Let ¢§ = (xjyi) for i=1,2,... be independent observations from a distribution
P on Rd o R. Let m(*) denote the fegression function of y; on the random
vector x; ; it is defiﬁed on the subset of RA that supports the éistribution of
the xj. Let Pp denote Lthe empirical measure for the (¢} .

For .a Euclidean kernel K define two families of functions on Rd+!  indexed

by Rd @ (0,0) :

=

-t
gt,o(x,y) = yK[K;—

fi,o(x,y)
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For simplicity suppose Kt ¢ 1 . By assumptknlthe(ﬂass 7  of all fi,0 is
Euclidean for the envelope 1. The class ¢ -ofaH' g{,0 is Euclidean for the
envelope F(x,y) = ly! , because |

N, (£,Q,3) < Ny(2,3) -
where p is.the measure having density ly{ with respect to . Q . Define

estimates of the regresgion function for each ¢ > 0,

ﬁn(t,o) = Eﬂgﬁig
Pnft,o

The first step in the analysis of ﬁn compares it with the smoothed regression

function
‘m(t,o) = Pgt,o :
Pft o
Then the second step treats the bias term m(t,o) - m(t) . In this example T will

consider only the first step, leaving to the reader the formulation of the '
" smoothness assumptions needed to bound the bias term.

To avoid delicate problems with division by small numbers, restrict attention
to a subset J of Rd for which

lim inf o d Pfy 4 > 0
oo teJ

sup (Plgt, ol + PIfg g!) = 0(cd) as o0
teJ -

Such inequalities would follow from the mnuﬁﬁqnsimposed'by Mack and Silverman

(1982); they also make uniforim over J the pointwise inequalities justﬁiod by Stute

(1986).

Suppose Plyl8 <.« for some s > 1. What conditions on {Bp)} will ensure
that | f
4.4 sup  sup Ihn(t,) - m(t,0)1 20 . almost surely? *

a2fn teJ
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When coupled with an upper bound on the bias term, a result of this type gives a
band of ¢ values for which r?ln(-,o) converges uniformly over J to m(:) .
Invok‘e_ Theorem 2.1 with ¢ fixed and 7y = ﬁnd y for a fixed Euclideén class
with PFS ¢ o, To get the ‘stated uniform convergence it suffices to have
nﬂnd/n‘/s increasing faster than log n, that is,
n'-1/8 gd/log n 5 «
This is weaker than the corresponding conditions imposed by Mack and Silverman
(1982) (for d = 1 they required n‘sﬁn % o for some 6 <1 - 1/s) or by St.uLe_
(1986) (the sumrﬁability condition of his Theorem 3 implies that n‘sﬂnd/log n->o
for some 6 < 1 - 1/8) . Under the condition on {fn} , we may eipress the
asgertions of the theorem fc%- 7 and ¢ as:
Pnfi,e = Pfi o + O(Pnlft,cl + Plify gl + ﬁndj almost surelyj
Pngt,o :'Pg_t,(’,.+ o(Pplgt,e! + Plgge! + ﬁnd) almost surely
Here the o(') terms éhould be interpreted to mean that the bound on the
‘remainder terms holds 'uniformly in t and o .
Restricting t to the set J and requiring ¢ 2 f, we get by division

Pgt, o + o(ed)
Pfi,o + o(cd)

ﬁn(t,o) = almost surely

Again the o(*) terms should be interpreted to hold uniformly. The¢ assumed
behavior of <T"dpft,o reduces the last ratio to m(t,0) + o(1) , which gives (4.4).

0

(4.5) Example

Nolan and Pollard (1986) sketched a new method for proving an optimalily
‘theorem for cross-validated kernel density estimation, a result first established
under differenf, conditions by Hall (1983) and Stone (1984). The metixod depénded
in part upon the application of two empiricai process results that were not

explicitly stated. The theorems from this paper fill the gap. As both applications
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are similaf, only one of them will be explained here. A complete discussion has
appeared in Nolan (1986).

The problem concerns the choice of the smoothing parameter a in the density
estimation method of Example 4,1, For simplicity assume p(*) is a bounded
density on the real line. Write p(x,0) for the density smoothed by a
non-negative BEuclidean kernel K .

Al the end of Examﬁle 11 of Nolan and Pollard (1986), it was necessary Lo prove
that (Pp - P)(p(40) - p(*)) is eventually small, uniformly in o , compared to_

Inle) = (no)™! + [[p(x,0) - p(x)]? dx
That is, a uniform limit theorem was required for the class of functions gqg

defined, for x € R and ¢ > 0, by

g0(x) = [ KX (v - p(0] dy = olp(x,0) - p(0)]

The desired result was

{Phgs — Pgo!

a Jn(o) 20 almost surely

"(4.6) sup
>0

Two app]i.(:ations of (2.5) provide the necessary justification.

Write i(c) for f[p(x,cr) - p(x.)]"1 dx. A simple application of Fatou’s lemma
shows tﬁat IA(G) behaves like ¢% as ¢ 2 0 and converges to a positive copstant
as ¢ 3 o, | 1t follows that the minimum of Ju(') decreases no fastm; than n=4/3 ,

The connection between the bound (2.5) and (4.6) is the inequality

R ,
(4.7) ~ Pgg = 0% [ p(x)[p(x,0) - p(x)]? dx £ C; o I(o)
for some cohstant Cy o

Because K(*) 1is bounded, the smoothed density 'p(x,u)._ is uniformly of order

O(c=!') as ¢ % o , For a large enough constant C the contribution to (4.6) from

those ¢ greater than C is bounded by
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£ + IPgp - Ppl

inf Ju(e)
a2C

It is easy to dispose of the contributions from large o .
On a bounded region 0 < ¢ < C the functions gg(') are uniformly bounded.

Rescale to make the bound 1, then invoke (2.5) to get, for Ap = n~tlog n ,

' . V'Pngo - Pgq! %
(4.8) ‘sup — ol 0(\p) almost surely
0<C (Pgg) + O(Xp)

From (4.7),

(Pgay” + oM
g Jn(a)

A %
¢t o ()™ + 0D

<
o((no)™ ! + I(e))
ck 0(nAY)
< =+
((no)~t + I(0))" 1 + nol(o)
= 0(n2/%) + O[_lgg_ﬂ_] x;%
] 1 + nos
Let {fn} be a sequence of constants with ip = o(ﬂ;) . On the region where
¢ 2 fp , the last bound is uniformly of order o(X;y') . Thus
- 1Ppge — Pgo! : :
sup = o(l) almost surely
pososc @ In()

The bound (4.8) is too wasteful for ¢ < fp .

Because both p(:,¢) and p(') are bounded, the functions gq(*) have a
‘uniform O(fn) bound in the regions 0 < ¢ < f . Rescale each g¢ by an
appropriately large multiple of £ ; then invoke (2.5) again to get

IPhgo ~ Pgol

sup
PneC (Pga)” + O(Bnhp)

%
= 0(Xp) almost surely
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Provided B, = o(1/log n) , which can be arranged without‘.violating the
constraint Ap = o(fp%) , the extra factor of B is enough to handle the problem
encountered with (4.8). That takes care of the contribution from 0:< ¢ < fp to

(4.6). o ‘ 0
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§5. Proofs

The proofs depend on a symmetrization argument.

{5.1) Lemma

If {A(t) :t e T} and {B(t) : t € T} are independent permissible families of
sets for which infy PB(t) = > 0, then

Py A(t) < A1 P ACE)B(L) o

For countable T this result is classical (Loeve 1977, Section 18.1.A). The
treatment for uncountable T requires grealer care. Iml&.\p(,‘nd(‘mce must then be
interpreted in terms of the coordinate projectibns of a product space. TFor the
proofs that follow, this mea'ns that the auxiliary randomizations have to be
constructed in a particular way. As the details of this construclion arc peripheral
to the main argumen}ts,‘further discussion is deferred to Section 6, where the

general version of Lemma 5.1 is proved under more precisely stated conditions.

Proof of Theorem 2.1

As the asserted inequality is trivial for those & greater than one, we may
assume 0 ¢ ¢ ¢ 1 for all n . Also we may assume that all members of every
¥n are non-negative, since the general case would follow by separate considemlion
of positivel and negalive parf.s. And we may assume that g is co'ntinuo'us and
strictly ihcreasing, so that there is no ambiguity in the definition of g=!(n) .

By the Strong l.aw of Large Numbers for _{PnF} , it is good enougﬁ to prove

that

P[ IP,f - PfI

N Copa i -
S;P Paf + PT + 7n + YoPgF + 7pPF 8z, infinitely often} 0
n :

(5.2)

First we show that Pp can be replaced by a truncated process. For each f

in 3, 'define. fi(x) = f(x){g(F(x)) < i} . Define Tp by
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n
Tnf = 7' T f3(¢4)
1=1

Justify the substitution of T, for P, by proving

(5.3) sup ITpf ~ Ppfl = O(n™?) almost surely
In
(5.4) IP Tpf - Pf! < & PFf + ap for all f in 3,

where {apn} 1is a sequence of numbers of order O(g '(n)/n&p)

Assertion (5.3) follows directly from the Borel-Cantelli lemma, because

L P(e(F(¢1)) > i)

1=1

= 3 Ple(R) > i)
1=1

< Pg(F)

{ o
‘ With probability one, only finitely many of the {£¢;} contributle lto
sup ITpf - Puf! . [Note: this is the only place where the moment assumption (i) is
used, For uniformly bounded classes, the truncation argument is unnecessary.]
For assertion (5.4) use «pn = PF(g(F) > n&y} :

P Tpf - Pfl

N

n
n”t L P HFi(E) - FOeD!
1=1

72

it § P f(g(F) > i)
i=1 -

N

n~! Pf (n A g(F))

< Pf sp + PF(g(F) > ney)
On the set '[g(F‘) > nen}l assumption (ii) gives
g(F)/F 2 g(g™'(nzn))/g~" (ney)

Because zp < 1 this implies



22

F < g~'(n)g(F)/nzp  on {g(F) > n&p)
and so
an ¢ (g='(n)/nsy) Pg(F)

The main condition of the theorem implies that nzp2y,/g™'(n) 3 » . Thus
both n~!' and g~'(n)/nz, are of order o(yptp) . Asserlion (4.1) will be a

consequence of

I'Tof - PTpfl |
(5.5) P s;p Pf + Pf + 7 *+ ypPF + 7oPF > Gep infinitely oftenf =0
n

If we but
Ap(f) = (1Tpf - PTLf1 > 6an(bnf + Pf 4+ vp + YnPnF + 7nPF)}
then 'for (5.5) it will suffice to show .
| I P(uv Ap(f)) < =
n I
A symmetrization argument will give an appropriate bound for the nth summand.
Let 't' = (G',,é',,...) be a second sample from P , taken independently of
¢ = (&1,8240..) « Construct T,'I and P;l from the new sample. Define
Bp(f) :(I’i‘;,f -~ PTpfl € en(Pf + yp)} n (PLF < 2PF}
By the Law of Large Numbers and Tchebychev’s inequality,
- PBR{f)C

< var(T;lf) / en2(Pf + yp)? + o(l)

n

n 2
L OPTE/ (PF 4y T ¢ o(D)
1=1 .

(nzn)_z
< (nen)=2 nPf g='(n) / (Pf + yp)? + of1)
< g7 (n) / nepnrn 4+ o(1)
—> 0 as n->>o

Thus there exists an ny for which P Bp(f) 2 % for all f, if n 2 ny . Lemma

5.1 gives
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(5.6) P(v Ap(£)) € 2 P(u Ag(£)By(£)) for n 3 ng .
Tn n S

The following inequalities are implied by the three conditions that define the

intersection Ap(f)Bp(f) :

ITpf -~ Tp £1 % en(6Puf + 5PF + 5y, + 6ynPnF + 67,PF).

6yn PF > 3y,PpF
yn + 2Pf > Tpf

and consequently

ITf ~ Ty £1 > z,(6PLf + 3Pf + Tpf + 4y + 67,PpF + 3ynPpF)

> sn(Wn(f) + Wn(f)) |

where

Wn(f) = Tpf + 2yn + 2ypPpF

Wnlf) = Tpf + 2y + 2ynPnF
Introduce new independent sign variablés o,,0,,... that are independent of ¢
and G' and such that every o¢; takes the values +1 and -1 each with
probability %. Then, for each n , the distribution of the stochnstic process
(Tpf - T;,f, Tnf + Tpf, PpF + PuF @ £ € 9p) |

.is the same as the distribution of the process

n A ' | |
[n—: 'E oi(f(¢i) - F1(€3)), Tnf + Tpf, PyF + PuF & £ ¢ 3n]
i=1

It follows that eventually
(5.7) P u AL(D)
In

. n )
< 2P (3fery s It D oog(£i(65) - F3(6D)1 > sn((F) + Wa(D)))

i=1

< 4P .(3fe?n: IT:,fl > egWp(f)}

where

n
Taf = 07t I oifi(¢y)
1=1
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| Bound the last probability by working conditionally on ¢ . Thatleaves‘only
the rgndomness due to the {04} ; for the moment P, and 'Tn are fixed
measures, - Invoke the definition of covering numbers to find a subclass ?ﬁ',.
containing ét most Mp = N,(inynﬁﬁv?n) members, such that for every f in 3,
there is an f% in 3% for which
Pnif-—f*lé tn’n PnF

Because

A

ITpf = TafX! & PIf - fx1
and

Tnf

v

Tpf¥ - Pu!f - X1
the validity oftheinequaﬁt&-
ITpf! > eWn(f) = hﬂTnf+-27n-{zynpnw)
would necessarﬂy-entaﬁ‘(renunnber: ep < 1)
LTaf%X! > sn(Tpf* + 27p)
Thus
P(If € 3 & 1Tafl > enWn(f) ! €

POf e 3X: 1T > efTof + 7 | §)

N

1 A My ma§ P{IT;fl > en(Tpf + vp) | &}
3n

in

The 1 comes from the trivial upper bound for all conditional prubabilitiés.
For each fixed f , Hoeffding’s inequality (Pollard 1984, page 192) implies

PUTREL > en(Tpf + ) | €)

. n
$ 2 exp(~%en?(Tpf + yn)? / 072 I (&)%)
, A i=r -

S 2 exp(~%nep?(Tpf 7p) / g7 (n)Tyf)
Average out over the distribution of ¢ to get
P{If € 3 ¢ ITaf! > en(Tpf + 2y + 27nPnF))

$ P[1 A 2Mpexp(-nep?ry/g ! (n))]
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An appeal to inequality (5.7) and the Borel-Cantelli lemma complete the

proof. | 0

Proof of Corollary (2.2)

With probability one it is eventually true thatl

anf - pfi < o <%
sup o £y <
P,f + Pf n
3n(7n) n

Since the condition on 2Ce, then rulés out the possibility Pf =0 , the ratio
Rnp(f) = Pnf/Pf is eventually well defined. The inequality
IRp(f) - 11 < 2Cen(Ru(f) + 1)
implies
-4Csp < Rplf) - 1 < 8Cepy 0

Proof of Corollary (2.3)

The class »§n = {f/ap : f £ 35} has envelope 1 and the same covering numbers
as % . Argue as for the proof of Theorem 2.1 with 3, instead of 9, and
Yn/en instead of 7, . The truncation part of the argument is unnecessary this

time; the role of g~!'(n) is taken over by the constant I. 0

Proof of Theorem 2.4
Therje is no loss in generality to assume that 0 < ¢, <1 for all n. As for
Theorem 2.1, there will be a reduction to a discrete problem by means of a
symmetrization. As before Pn' will be the empirical measure constructed from the
independent sample {E'i} y» and the ({¢j} will be the indepehdent sign variables.
To simplify the notation write. |
e = (P

prlf) = (Ppft)

pn(f) = (Ppf?)*

PH(E) = (Pnf? + Ppf?)%

Notice that max(pn(f),en(f)) < p(f) < pp(f) + pp(f) .
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For each f in %n define events

An(f)

{'Pnf - Pf1 5 gsn(Pn(” + p(f) +‘7npn(F) + YnP(F)”
Bn(f) = (1PLf - Pfl < zpp(f)) n {b{l(f) < 2p(0)} n {pp(F) < 2p(F)}
It is enough to prove that

I P(uAp(f)) <o
n gn

Bound the nth summand by an appeal to Lemma 5.1. First show that

inf PBnh(f) 2 % for all n large enough.
PBy(£)C < var(Ppf)/epp(£)2 + Ppp(£)2/4p(£)2 + P{pp(F) > 2p(F))

The first term on the righthand side is less than (nz;) ' ; which converges to
zero by virtue of the summability condition of the theorem; the second terrﬁ equals
%; the thil;d term converges.to zero by virtue of a law of large numbers.
On the intersection of the sets Ap(f) and Bp(f) we have
IPLf - thi> an(gfgﬂf)+ 4p;u)-+97npn(p)4—4z7np5(Fn
> den(pd(l) + yned (F)
Thus Lemma 5.1 gives, for all n large enough,

P(u An(f)) < 2P(3f € 35 & IPpf = Ppfl > den(ph(F) + mpfi(F)))
%n

Notice the symmetry in the probability expression on the righthand side; it would
be unaffected by an interchange of any (Gi,('i) pair. It would also be unaffected
by the random initerch'ange of pairs induced bby the sign variables ‘["i} ; as in the

proof of Theorem 2.1. If P; denotes the symmetrized cmpirical measure for which

o n '
Ppf = n~! .E "if(ei) y
i=1 :

then the last probability is less than
P(If € 35 ¢ IPRf1 > 2ep(pn(f)- + 7nen(F)))

Bound this probability by working conditionally on £ .
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Given ¢, find a subclass 3} containing at most My = N,(7,Pn,¥p)
members, such that ‘for every f in 9, there is an ¥ in 3¥* for which
| palf = %) < spypen(F)
Because
IPSE - Pof¥l < PoIf - £%1 < pp(f - £%)
and (remember: & < 1)
pn(f¥) 2 pn(f) - ynpn(F)
the validity of the inequality
IPpfl > 2en(pn(f) + Tnen(F)
would necessarily entail
1PafXl > 2en0n (£%)
Thus i
P(3f € 35 : IPpfl > 2en(pn(f) + 7apn(F) 1 ¢}

S P(If € 35 ¢ IPpfl > 2epep(f) 1 €
< 1AM, m;x PUIPLEL > 28,00(f) 1 &)
3n

< 1AMy 2 exp(-2neppn(£)2/pn(£)?)
the last bound coming from Hoeffding’s inequality. Notice how the pp(f) is

exactly the right weighting for this inequalily.

Average out over the distribution of ¢ , then sum over n to complete the

proof.

o
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§6. Permissibility

Appendix C of Pollard (1984) defines an indexed class of functions
{(f(',t) : t € T} to be permissible if each f(:,") is measurable as a function on a
product space, and T is a Souslin melasurable space. This definition is adequate
for the usual sort of function class indexed by a finite dimensional
parametrization. It takes care of most of the measure-theoretic technicalities that
arise in the symmetrization arguments of this paper. But, as a trivial example
shows, permigsibility alone is not enough for a precise stalement of Lemma 5.1.

Let 0 be the unit interval equipped with lLebesgue measure P on its Borel
o-field. For each t in [0,1] define A(t) as the singleton {’t} , and B(t) as
the cpmplem'ent of A(l) . The o-field A generated by {A(t) : 0 <t < 1)
contains only countable sets and their complements. Each B(l) has probability 1
a;xd is independent of A . Bul nevertheless

| _Pg A(E)B(t) =0 ¢ 1 =Py A(t)

Clearly a definilion of independence -based only on finite dimensional distributions
is inadequate.for the families of sets in LLemma 5.1. Here is a better;‘ version.
6.1) Lemma

Let 0 ® 0' be a product space equipped with a product o-field L ’D,I' and
a product probability measure P ® P' . Let ({A(t) 1t € T) bea permissibie |
family of sﬁb'sets of o and (B(t) : t € T} be a permissible family of subsets of
0 o0 . If there exists a f > 0 for which |

inf P B(t)  2 ]
then .
Py A(t) < F7* P OP [y (A(t) &0°) n (0 ®RCL)]

Proof. Write A fo'r’ the set {(t,0) : © € A(L)}) . By definilion it 1<; 2 measurable
subget of T ® 0, The cross-section theorem for Souslin spaces (Dellacherie and

Meyer (1978), I11.45) gives a-measurable map 7 from 0 into T v [} such Lhat
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(r(w),0) € A whenever T(w) # o

and

T(w) # o for P almost all © in y ACE)

Thus
Py A(t) < Plo: 7(0) # o)
£~ Plo : 1(w) # o) |P' [m' PTR- B(r(w))}

n

B P OF ((00 ) ! we A(T(e)), & € B((v)))

A

723

B=1 P ® Py (A(t) ® ') n (0 @ B(L))]
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