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ABSTRACT

This paper describes a method for finding exponential bounds on the
maximum deviation, taken over a class of functions, between an empirical
measure and its underlying population measure. The technique is an outgrowth
of work on functional central limit theorems for empirical processes. The
cxponential bounds are applied, by way of illustration, to recover the
characteristic n~110g n rates of almost—sure uniform convergence for
kernel-type density estimators. The method works in any dimension; it does not

depend directly upon order properties of the real line.



SECTION 1: Introduction

Many problems in the asymptotic theory for statistical procedures,
especially multivariate problems, find their most natural formulation within
the theory of empirical processes. If a statistic depends symmetrically on
independent observations §1, oo én taken from a distribution P, it can
usually be treated as a functional of the empirical measure Pn’ the measure
that puts mass n_1 at each ii' Sometimes the functional is expressible
through the integrals Pnf for f ranging over some restricted class €}h of
functions. (Think, for example, of li-estimators for location parameters; the
estimator is chosen to minimize P _p(.-8), for some weight function p(+).) The

asymptotic behaviour of such a functional is governed by the stochastic
processes
(P f-Pf:fe k).

Rates of convergence of these processes to zero, in some uniform sense,
determine rates of convergence of the functionals; central limit theorems for
the processes (usually with a n*? normalization) lead to central limit
theorems for the functionals.

In this paper I shall concentrate on the problem of rates of convergence:

When, and how fast, does
%gy iPnf - pei/pitl —o almost surely?
n

Using a technique that has emerged from recent work on empirical

processes, I shall relate the speed of convergence to the rate at which

h, := inf P|f|
n

converges to zero, For classes {f%g satisfying an entropy condition, the
rate will turn out to be just a little slower than (log n)¥/? /(nhn)”’. Three
examples, each involving kernel estimation of densities or their derivatives,

will illustrate the possible uses for such a result,



SECTION 2: Statement of the resﬁlts

The supremum of ]Pnf - Pfi{ over a class ?}n should be close to a maximum
taken over some suitably large, finite subclass, The difference should be
related to how closely functiomns in €}h can be approximated, in some sense, by
functions in the subclass. The notion of capacity quantifies the degree of

approximation in a way that is well-suited to empirical process arguments.

1 Definition: For each probability measure @, each & > 0, and each class
é} of functions square—integrable with respect to Q, define the capacity

C(f&,Q,B) to be the largest m for which there exist fl,...,fm in 6}'with

Qe - fj)2 > 52 for i # j.

Lorentz (1966) defined a more general notion of capacity as a measure of
size for subsets of abstract metric spaces, not just L2 spaces. (He applied
the name to the logarithm of my C.) It is closely related to the older
concept of metric entropy, which has enjoyed a lot of attention (Dudley 1973)
because of its conmections with the continuity properties of gaussian process
sample paths. Dudley (1978) introduced a similar, but more restrictive
measure of size —— metric entropy with inclusion -— into the study of
functional central limit theorems for empirical processes. In the same paper
he invoked an apparently unrelated combinatorial property as another way of
getting at the limit theorems, Pollard (1982a) showed that this combinatorial
property gives bounds on the capacity for certain restricted classes of
functions. Section 3 of the present paper contains a more complete account of
the connections between capacity and combinatorial properties for classes of
functions, I shall show there that for classes used in kermnel estimation of
density functions the capacity increases more slowly than a polynomial in 1/6.
This is what leads to the characteristic n_llog n that appears in so many

results on uniform rates of convergence.



To avoid measurability complications I state the main results only for
countable classes of functions. The restriction will be lifted by ad hoc

arguments for each of the density estimation applications.

2 Theorem: Let 4}‘,%}2,... be countable classes of functions with
If] ¢ 1 for every f in(u)<}i. Suppose there exist constants A and W, not
i

depending on n, such that

(3) c(F 0,8 ¢ A"

for 0 ¢ 6§ < 1 and for every probability measure Q. Let o(f) be a weight

function satisfying o(f) > Pif{ for every f. Set

h, = inf c(f).

n

-1
If {an} is a decreasing sequence of positive numbers with (nhn) log n =

o(ai). then

sup iPnf - Pfl/o(f) = o(a,) almost surely.

n
The proof of the theorem occupies Section 4. Stute (1982a) has proved a

slightly sharper result for empirical processes indexed by classes of
intervals on the real line. Alexander (1982) found multidimensional analogues
for empirical processes indexed by classes of sets having the combinatorial
property that I shall diséuss in Section 3,

The details of the proof will show that I could allow W to increase
slowly with n without disturbing the conclusions of the theorem. For want of
an immediate application, I have not tried for this extra gemerality, but Le
Cam (1982) was able to make real gains in his functional central limit theorem
by exploiting this possibility.

4 Example: Suppose P has a bounded, uniformly continuous density p(-) with

respect to lebesgue measure on the real line. An estimate of p(:) is obtained

by convoluting the empirical measure P with a rescaled smoothing kermel K(.):



-1

pn(X) =0, P K((y - x)/cn) .

If o, —0, and
j K(z) dz = 1 and jiK(z)l dz { =,
uniform continuity of p(-) ensures that the bias term
bias(x) = ]Ppn(x) - p(x)

converges uniformly to zero. If one cares to assume that p(.) has a bounded

uniformly continuous derivative and if K is chosen so that

fizK(z)fdz ( = and IzK(z) dz = 0,
then

sup lbias(x)i = o(c,) .
X
One then needs to arrange that

(5) sup ipn(x) —prn(x)ﬂ = o(op) almost surely,
X

to balance out the two sources of error, leaving

sup lpp(x) - p(x)i = oloy) almost surely.
X

This is possible if K has bounded variation and n—llog n = o(ci).

I shall show that (5) follows from Theorem 2 for the case o, = o, . But
first notice that, if K hés bounded variation, the estimator p,(:) can be
written as a difference of two non—-decreasing functions; the supremum in (5)
could just as well run over ratiomnal x values.

Define €}n to consist of functioms f (x,y) = K((y - x)/cn)/ﬁKH for
rational x. Lemma 12 in Section 3 will show that the capacity of {}h has the
polynomial bound demanded by the theorem.

Boundedness of the density p(-.) implies



Plf (x,-)1 < oy lipli/liKil := o(£,(x,)).

Pividing by G(fn(x,-)) gives the same rate of convergence as dividing by o,,
the factor required for p,(.).
-1
An almost identical argument, but with o, = 1 for all n, shows that n logn

= o(an) is sufficient to give uniformly consistency:

sup ipn(x) - p(x)i =0 almost surely.
x

This is Theorem A of Silverman (1978) without some of his restrictions on the
kernel. Bertrand-Retali (1978) showed this to be the best rate possible.
(The largest gap between the order statistics taken from any smooth demnsity
will be of order nnllog n.) Stute (1982b) found the exact rate of

convergence. h

6 Example: Let P and K be as in the previous example. Suppose p(.) has a

bounded, uniformly continuous derivative D(.)., Estimate the derivative by

-2

Dll(x) = Gn

P (K(y - x)/o)).
If X has bounded variation and

I K(z) dz = 0 and fﬁzK(z)idz { ® and IzK(z) dz = 1
this estimator makes some sense:

sup iIPDn(x) - D(x)i

X
= sup ijc;l K(z)[p(x + o,2z) - p(x) - o,z D(x)] dzl
X

{ sup fizK(z)f . ID(x + 60,2) - D(x)!} dz
X

—0.

Theorem 2 with 0, = O, requires n_llog n = o(ci) for

sup iDn(x) -IWDn(x)i -0 almost surely.
x

This corresponds to Theorem C of Silverman (1978). F



I desist from extending these results to cover rates of convergence of
higher order derivatives of demnsities: the method is clear but the motivation
is murky. But I do see some value in one of the multivariate analogues. Only
bounded variation ties the kernel to the real line; that’s all that changes in

the transition to higher dimensions.

7 Example: Suppose P has a bounded uniformly continuous density p(-) with

respect to lebesgue measure on IRd. Estimate the density by

p () = o0 PK((y - x)/o)).

Bertrand—-Retali (1978) showed that, under weak conditions on K, the

requirement n—llog n = o(cﬁ) is necessary and sufficient for

sip ipn(x) - p(x)i =0 almost surely.
(Of course o, must converge to zero as well.) Breiman, et al. (192;), pointed
out the desirability of allowing the amount of smoothing, as determined by o,
to vary between regions of apparent high and low densities. Theoretically ome

could accommodate this by choosing

p,(x) = <r(x,V)—1 P pl(y - x)'V(y - x)]

where V is a positive definite matrix that can depend on x and n, and o(x,V)

is some rescaling factor., For example, one might choose p(z) = exp(—%z ) and

o(x,V) = (2n)d/2 fdet VI-1/2 |

The matrix V might even be random, depending upon some preliminary crude
estimate of the local shape of p(:.).
Such a ciass of variable kernel estimators could be forced into the mould

of Theorem 2. Vrite {%‘for the class of functions of the form

f(y,x,V) = pl(y - x)'V(y - x)1]



for a fixed p(-). Those members of 6& chosen for local smoothing of P, would

belong to the subclass {}h for which

o(x,V) 2 b where n_llog n = o(h ).

The capacity of i}h would be bounded by a polynomial in 1/6 (Lemma 13) if p
were, for example, non—negative and decreasing on [0,®). Left continuity of
p(+) would eliminate measurability difficulties associated with suprema over
uncountable sets. With a smooth density one could expect

sup Pf(.,x,V}/o(x,V) < =,

"
Then one would get from Theorem 2

sup G(X,V)—l iPnf(o,x,V) - IPPnf(-,x,V)f -0 almost surely.
B

Uniform strong convergence of p (-) to p(+) would follow by restricting V to
an appropriate subclass.

Even though this result is a long way from having any immediate practical
value, it does bring out an idea that can be applied to other asymptotic

problems. Often one can construct a plausible estimator for some unknown

parameter 6 when a scale parameter o, is known:

T, (c,) —6 almost surely.
If o, must be estimated, by o, * say, how can one prove that
I, (c,%) —86 almost surely?

One way would be: show that G; almost surely lies in some range S

eventually; then show that

sgp T () = Tplo) | —0 almost surely.
n

Empirical process methods can often help with this task. The weak convergence

analogue of this idea was applied successfully in Pollard (1982b) to deduce a



central limit theorem for a statistic found by optimizing over a range of

parameter values.
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SECTION 3: Combinatorial results

v/ .
Vapnik and Cervonenkis (1971) proved uniform convergence of Pn to P over

classes of sets that have since become known as VC classes,

8 Definition: Call 2) a VC class of sets if there exists a positive

integer V such that, for every set E of cardinality V, the class

{DE : D sil}

has cardinality strictly less than 2V. That is, JD cannot pick out all

This mild-looking condition has surprising consequences: the number of
subsets that ja can pick out from any set of N points is bounded by a
polynomial in N, Steele (1975) gave a nice proof of a more general
combinatorial coloring result. As his proof is apparently not well-known in
the statistical literature, I think it worthwhile to record here a variation

on his argument as specialized to VC classes.

9 Lemma: Let S be a set with N points. Suppose there is an integer V ¢
N such that g} shatters no collection of V points in S. Then 25 picks out no

more than (g) + (?) + ...+ (Vﬁl) subsets from 8§,

Proof: Vrite Tl' T2, oo Tk for the collection of all subsets of V
elements from 8 (of course k = (ﬁ)). By assumption, each T, has a "hidden”
subset Hi that O overlooks: DT, # H, for every D 11195 . That is, all the

sets of the form DS, with D in®), belong to
(10) € = {(C S s :cT, # B, for each i}.

It will suffice to set an upper bound to the size of C .

In one special case it is possible to count the number of sets in %%
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directly. If Hi = T; for every i then no C in Eb can contain a Ti; no C can
contain a set of V points, 1In other words, members of gb consist of either
0,1, ..., or V-1 points. The sum of the binomial coefficients gives the
number of sets of this form,

By playing around with the hidden sets one can reduce the general case to
the special case just treated. Label the points of § as 1, 2, ..., N. For
each i define I} = (Hik)[ll)Ti; that is, augment H; by the point 1, provided
it can be domne without violating the constraint that the hidden set be

contained in Ti' Define the corresponding class
731 = {C& S : CT; # K} for each i}.

This class has nothing much to do wiﬂl‘co. The only connection is that all
its hidden sets, the sets it overlooks, are bigger. I shall show that this
implies 3§0i < tll' (Notice: the assertion is not that CO < El.)

Show that ICOi < ICli by checking that the map C —C\{1} is one-to-one
from ﬁo\ﬁl into El\CO‘ Start with any C in EO\Cl' By definition, CT; #
H; for every i, but CTj = Hj for at least one j. Deduce from this that Hj #
Hj, so that 1 belongs to C and Tj and Hj, but not to Hj. The stripping of the

point 1 therefore does define a ome-to—one map.

Why should C\{1}) belong to Lj\&,? Observe that

C\{1})T, = H! =H.,
(c\ { })TJ J\{1} IJ
which bars C\{1} from belonging to Z?O‘ Also, if T; contains 1 then so must

Hi, but C\{1} certainly cannot; and if Ti doesn’t contain 1 then

(C\{(1D)T; = CT,

i # H, = Hj.

In either case (C\{1})T, # H}, so C\{1} belongs to Ygl, as required.

The rest of the proof is easy. Define HY = (HiKJ {2})T; and set
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£,=1cc s:cr; # 0 for each i}.

The same argument as above will give i t}l < IQCEI. Another N - 2 repetitions
of this would generate classes C3, 54, cees gN with lle < Hf3( € vee €
IZfﬁi. The hidden sets for C:N would fill out the whole of each Ti: the

special case already treated. 1

For N > 2, the sum of binomial coefficients is at most NV. (There are
fewer than NV - 1 different V-tuples of at most V — 1 distinct elements; add 1
for the (g) term.) This is a convenient upper bound in most applications,

Dudley (1978, Lemma 7.13) established a connection between VC classes and
metric entropy, which Pollard (1982a) extended to one very special class of

functions, Here is a more general result.

11 Lemma: Let‘?g be a class of non—-negative functions on a set

S. Suppose the class of all graphs
Gp := {(s,t) : s eS8, telR, 0t f(s)}

of functions in %; is a VC class of degree V. Then <§'has polynomially bounded
capacity: there exist constants A and W such that, for 0 < & < 1 and every

probability measure @ on S,

c’r,a,8) < A",

The constant W can be chosen as any value strictly greater than 2V.

Proof: Suppose fl,...,fm are functions in‘?; with

aey - £07 > 8 for i # j.

Neither this set of inequalities nor the VC class property is impaired if each
f, is replaced by min(fi,B) for a large enough constant B; without loss of

generality I may assume that O ¢ £, <1 for each i.
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Choose points (sl,tl), e (sk,tk) in S(X)[O,l] by independent sampling
on a probability measure M, the product of Q with lebesgue measure on [0,1].
Take k as the smallest integer greater than (2 log m)/&z. Certainly k ¢
(1 + 2 log m)/&z.

Graphs G1 and GZ’ corresponding to functions fl and f2, pick out the same
subsets from this sample if and only if every one of the k points lands
outside the symmetric difference G4 A G,. This occurs with probability equal

to

(1

y k

= [1 - algy - £, 11"

2.k
(1 -8Hk
¢ exp(-k82).

Apply the same reasoning to each of the (g) possible pairs of functions f; and
fj to see that the probability of at least omne pair of graphs picking out the

same set of points from the k sample is less than

(2) exp(-ks?)

2
£ 7 exp(2 logm - kb )

wiE

<1 because of the way k was chosen.

With positive probability the graphs all pick different subsets from the k
sample; there exists a set of k points in SQO[O,I] from which the class of
graphs can pick out m distinct subsets. By the defining property of VC

€

classes and Lemma 9, m ¢ kV. Given & > 0, find mg so that (1 + 2 log n)V {n

for all n 2 my. Then either m < my or

Set W =2V/(1 - &) and A = 1 + m,. i
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12 Lemma: For any function K(.) of bounded variation on the real line,
. -10
the class g{ of all translates K(. ~ x) has capacity less than Bd for every

probability measure on IR, with B constant.

-+ -
Proof: Split K into a difference K - K of two non-negative increasing
+ _—
functions. Vrite G{ and fk_ for the corresponding classes of translates.
. . {Yf . .
The graphs of functions in can pick out at most 5 of the 4 possible

subsets of any pair of points inimz. By Lemma 11

(K ,a,6) ¢ As]

and similarly ifor {k:.
Measuring all distances between functions with the ;t?(Q) norm, choose
+ . .
from fk_ a maximal subclass of functions {fl,...,fm} at least &/4 apart and
from ZX. a maximal subclass {g1++..,8,} with the same property. By definition
m £ 45A8m5 and n ¢ 45A8—5.

Every K(. - x) in fk_lies within 8/2 of some £+ gj- Amongst any
collection of mn+ 1 functions inf}( some pair must share the same f; + g; (the
pigeon—hole principle); that pair cannot be more than & apart. It follows

that

c%,0,8) ¢ mn+ 1 ¢ (2207 + 16710,

i
13 Lemma: Let p be a fixed bounded, decreasing, left—-continuous function

on IR, Define the class f} of functions

£(.,x,V) = pl(- - x)'V(: - x)]

with x in ]Rd and V a d X d matrix, For every probability measure @ on IR

and 0 ¢ & < 1,
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c(%.,a,5) ¢ As~"

with A and W constants depending only on d.
Proof: The graph of f(.,x,V) contains (y,t) if and only if
0 ¢t £plyx)'Viy-x)1.
Equivalently, by virtue of the left continuity of p,
(y-x) 'V(y-x) £ a(t)
for some a(t) depending on t. Let the vector y have coordinates y[1],...,yldl.

Identify (y,t) with the point

20y, t) = <ylil,....yldl,y[112, yi1ly[2],y121%,...,y1d1%, a(t),1>

in euclidean space of dimension D = %dz + 24 + 2 and identify each (x,V) with

a linear functional Lx y on EJ)for which

Lx’v(z(y,t)) = (y-x)'V(y-x) - a(t)

Suppose that the graphs of functions in <§ can pick out all 2™ subsets
from a collection of points (yl,tl),...,(ym,tm). From the corresponding

collection of m points in KJ{ the sets

{Z . LX,V(Z) i O}

pick out all 2™ subsets. The space of all linear functionals onImD has
dimension D, A simple argument now leads to m { B (Dudley 1978, Theorem 7.2;
the original idea comes from Steele 1975, Theorem 2.1). The graphs of
functions in qx'form a VC class of degree no greater than D + 1. Lemma 11

completes the proof. i
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SECTION 4: Proof of Theorem 2

It will suffice to find constants C and C' (not depending on n) for which

(14) P{sup anf - Pfl/e(f) > 4ea } < C exp(—C'nhnszai)

vt

for all n. The condition log n = o(nhnai) ensures convergence of the series
obtained by summing over n. The borel-cantelli lemma does the rest,

By absorbing e into the « I can assume from now on that & = 1.

n!
The argument breaks naturally into five stages, which I label

stratification, symmetrization, conditioning, chaining, and recursion.

STRATIFICATION

Replacing the o(f) in the lefthand side of (14) by its lower bound h,
would be too extravagant if ﬁ}n contained functions with o(f) much larger than

h Avoid the extravagance by breaking C}n into disjoint classes

n*

- . 71 j
By =8 e, 27, Cotn C20ng)

n

Bound the probability in (14) (with & = 1) by
i-1

P{sup IP f - Pfl > 4a 2° "h }.

j=1 d}hj
It will be enough to find a bound for the f%nl contribution to this sum; the

Nie

bound for the {}nj term will be obtained by increasing h  to ZJ_lhn.
As far as I know, Chibisov (1964) was the first to use the stratification

idea for the study of weighted empirical processes.

SYMMETRIZATION

Replace P by a second empirical measure PA, independent of Pn' VWhen n is

large enough to ensure that nhnai 21, for n 2 ny say,

(15) P{sup IP f - Pf] > 4h o } ¢ 2 Plsup [P f - P/ £l > 2h a }.

B B
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This is essentially Lemma 11 of Pollard (1982a), which was based on an
argument of Vapnik and Cervonenkis (1971). Briefly, the proof works by
breaking the lefthand side into a sum of probabilities of disjoint events Qf.
On @f, the difference IPnf - Pf| is greater than 4hnan. With probability

1

greater than 2+ the corresponding lPﬁ - Pfl is less than 2h,a,, by virtue of

Tchebychev's inequality:

®{Ip;f - Pfl < 2h o}
, 2
> 1 - (var Pn)/(Zhnan)
2 2
21 - (2h,/n)/(2h c) because Pf~ { 2h

2

N[

if n 2 ny.
CONDITIONING

Construct the observations él""’tn for Pn and ﬁi,...,ﬁé for Pﬁ from a
vector X = (Xl""’XZn) of 2n independent observations on P by means of an
auxiliary randomization. Independently of X, generate independent random

variables o(1),...,6(n) for which

Pl{o(i) =0} =2 = P{s(i) = 1}.

2

Construct the two n—samples by setting

€1 = Xai-o(1) 204 &f = Xpi-140(i)-

For fixed f, the difference Pnf - Pﬁf can be written symbolically as

n
i=1

with the + signs determined by the o(i). Conditionally on X, this is just a
sum of bounded, independent summands with zero means, Hoeffding’s (1963,

Theorem 2) inequality gives the bound

(16) w{ip £ - Pifl >t | 3}
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P22 25
2 exp|-20"t /48lg (X ;) - 8(Xp;-1)1 |

2 exp [~nt2/8 anle

A

[ 72N

-1
where an = -;—(Pn + P;), the empirical measure that places mass (2n) on each
X5
This curious construction was introduced independently by Kolchinsky

(1981), Pollard (1982a), and Le Cam (1982). It ensures that the + signs are

allocated independently for each pair (X,; 1,%X5;).

CHAINING

To simplify the notation, temporarily drop the subscripts on 7351, hn,
and a,. Vrite Z(f) instead of P f - P f; understand all distributional
calculations for the stochastic process {Z(f) : f e’%} as conditional on X.

For example, (16) becomes
2 2
PLZ] > t) <2 exp [-nt™/8 @ £71.

Replace f by £ — g to turn this into a bound on the increments of Z. If

2, 52
Q, (£ - g)° 8", then

PUZE) - Z(e)| > t) 2 exp (-nt2/8 82).

Notice how the zﬁz(QZn) distance enters into the bound. It is precisely this
happenstance that allows the capacity C({},an,ﬁ) to say something useful
about the behavior of the supremum of |Z(f)| over {&.

From now on, I drop the qualifier gﬁ(ﬁhn) when talking about distances
between functions in (&.

Define 81 = he”i for i=0,1,... . Apply the defining property of capacity
to find maximal classes f}(O).{g(l).... (depending on Q, ) with functions in
{S(i) separated by a distance of at least §,. The class 4}(1) can contain at

most ABi—w functions.
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Maximality implies that to each fi+1 in ﬁ&(i+1) there exists an f, in
f}(i) at a distance less than Si. The functioms in /} are hooked together
into chains; for any fixed N, each fN+1 in {}(N+1) is connected to an fO in
?&(0) by a chain fy,q1,fy,...,fy with links of lengths less than
SN’SN—I""’SO' Define

n =4 E(i+1)*? hee *
with the constant E (approximately .2710) chosen to make

o©
2_ ny = ha.
i=1

Bound the supremum of {Z(f){ over /3(N+1) by its supremum over ‘}(0) plus a

sum of suprema over the links of the chains to get

(17) Pi{sup 1Z(£ ,4)1 > 2hal
ANt N+l
25
< Pi{sup 12(£fy)| > ha} + Pi{sup 1Z2(£..4) - Z(£)1 > 0}
B0y ° o o T 1 1
< 175(0) 1 max wilz(£) ] > hal
(o)
N
+ ) 1B+ pax P{z(f,,) - 21 > a3}
i=0 A(ir) N
< Ah—wmax 2 exp[—nh2a2/8 QanZ] + }_ Ahuwexp[W(i+1) - nn?/Bﬁ%].
i=0

The form of the second exponent guided the choice of ny . Whenever E ne, is
greater than VW, which happens for all n larger than some n, by virtue of the

condition h;llog n = o(nai), the inequality

2

nni/sai > 2W(i+1)

will hold. (I put back the n subscripts temporarily, to remind you that a is

changing with n.) While you are determining n, make sure also that

2 2
exp(-E"na”) ¢ % for n 2 ny. For such an n, the sum is less than
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<«
Ko

an"" s exp[-E2na’ (i+1)1 < 2Ah—wexp(—E2na2).
i=0
You can see already how the na2 in the exponent will easily overpower the h—w.
But this is not what determines the rate of convergence; the 6}(0)
contribution dominates the bound.

The behavior of anfz determines how fast the q}(O) contribution to (17)

converges to zero. From the inequality

2
sup Q, f° < sup Plfl + supla, l£l - Pifli
0 " T o) %) 2"

2
one might expect anfz to decrease at a O(hn) rate; one could hope that Q2nf

< Bh for most X's. When this does happen, the first exponential term at the

end of (17)is less than

ZAh—wexp[-nhaZ/SB].

For other X's bound the lefthand side of (17) by 1.

Now let N tend to infinity. Integrate out the resulting inequality over
all X values. Because each f in ég'lies within 8y, q of some fy,q in “ZRN+1),
and because Z is continuous in probability on”%, the supremum of 1zl over
f}(N+1) will converge to the supremum over 45 . Vith Z replaced by Pn - Pﬁ, to

make clear that the conditioning on X has been expunged, the bound becomes

]P{igp iPnf - Péfl > 2ha} £ 2Ah—wexp(—nha2/8B) + 2Ah_“exp(—E2na2)

+ IP{s%p!QZn!fl - plell > (B-2)n},

valid whenever n 2 n,. As long as h is less than SBEZ, which will always be
true for the values of B that I shall consider (10, 18, ...), the middle term
on the righthand side can be absorbed into the first term with a doubling of
the coefficient to 4A. Also reduce everything back to the sample of size n by

substituting f(Pn + Py) for Qy,, bounding the probability of the union of two
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events by the sum of their probabilities, then invoking the symmetrization

inequality. For n 2 max{nl,nz},

(18) IP{s’gpiPnf - Pfl > 4ha}

< 8An "exp(-nha®/8E) + 4]P{s61§)!Pn|f| - pigll > (B-2)n}.

Write A(B-2) for the probability appearing on the righthand side here.
1f the Ifl in the definition of A(B-2) were replaced by f, the last

inequality could be rewritten as

(19) A(4e) < 8Ah Vexp(-nha®/8B) + 4A(B-2).

This is actually a valid inequality. The entire argument given so far carries

over without change if {% is replaced by
{}* = {lel : £ 5.

The recursive bound (19) will allow me to eliminate the A(B-2) term from the
righthand side of (18).

The idea of feeding the inequality back upon itself recursively comes
from Alexander (1982), who applied it to get fine exponential bounds for
empirical processes indexed by class of sets satisfying the combinatorial
condition of Vapnik and Cervonenkis. Le Cam (1982) invoked a weaker form of
recursion to prove a functional central limit theorem for empirical processes
indexed by classes of sets. He remarked that the chaining argument goes back
to Kolmogorov —~ it has grown out of the dyadic—ratiomal constructions for
stochastic processes with continuous sample paths. You can find more of the
history in the notes to Gihman and Skorohod (1974). The form of the argument
given above is adapted from Pollard (1982a), who in turn drew from Dudley

(1973, 1978).
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RECURSION

In (18) set B = 10, Then apply (19) with a = Zk and B = 2k+3 + 2 for k =

brb311

1,2,...,M, where M is the smallest integer for which 2 > 1. Repeated back

substitution leads to the inequalities

m{s%pipnf - P£l > 4ho}

-V 3

M
i + 2k K+
Wrly (o™ 45exp [-nn2 25/ 8(2425)1

gan Vexp(-nna/80) + 4™ 1A2™3) + ) san
k=1

i~

8Ah—w[exp(—nha2/80) + } 4M+16XP("nh/36)}

i~

k

+
because A(B) = 0 as soon as Bh > 1 and because the ratio 22k/(2+2 3) takes on

g - .
its smallest value at k = 1. Bound the 4P+1 by (2h) 2. (This part of the

argument is due to Alexander.)

Now reinstate all the subscripts, and consolidate the constants:

Pisup [P_f - PEl > 4h a ) ¢ C exp[(W+2)log(1/hy) - C'mhyop]
"t

for all n 2 max{ny,n,}. The assumption log n = o(nhnai) implies that

log(1/h,) O(log n). With possibly an increase in C and a decrease in C', 1
can drop the logarithmic term and even assume that the inequality holds for
all n. The same argument works, with the same constants, if ?}nl is replaced

by @—nj and h is replaced by 237

P{sup !Pnf - pel > 4(23_1hnan)} < C exp(—C'nZJ_lhnai)
"
for all n and all j. Sum over j, as prescribed in the stratification step, to
arrive at the exponential bound (14) for the special case ¢ = 1. A similar
inequality holds for any other & > 0 (of course C and C' depend on ¢). Theorem

2 is proved.

A few details of the chaining argument continue to puzzle me. Vhy is it
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that the sum corresponding to the links of the chain made an insignificant
contribution to the final bound for (17)? Could chaining be dispensed with?

The calculations showed that

sup 1Z(£)| = sup lz(£) |
6

%(o)
with very high IP(-|X) probability. Functions in % 0) usually have JCZ(an)
norm less than Bh , for some moderately large B, even though they are at least
h, apart. This severely limits the rate at which if}(O)l can increase with
n. For indicator functions of intervals on the real line, the size of 2 (0)
would be of order Op(llhn). How does one explain this?

Eow much flexibility does one have in the choice of the chaining
sequences {Si} and {ni}? In most chaining arguments in the literature {Si}
decreases geometrically fast and {ni} is nearly determined by {Si} and the
rate of growth of C(if,QZn,-). Are there any situations where a different

rate of decrease for {éi} is needed?
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